
1 

Paper SAS596-2017

The Art of Overlaying Graphs for Creating Advanced Visualizations 

Vineet Raina, SAS Research and Development, India

ABSTRACT 

SAS® provides an extensive set of graphs for different needs. But as a SAS programmer or someone 
who uses SAS® Visual Analytics Designer to create reports, the number of possible scenarios you have 
to address outnumber the available graphs. This paper demonstrates how to create your own advanced 
graphs by intelligently combining existing graphs. This presentation explains how you can create the 
following types of graphs by combining existing graphs: a line-based graph that shows a line for each 
group such that each line is partly solid and partly dashed to show the actual and predicted values 
respectively; a control chart (which is currently not available as a standard graph) that lets you show how 
values change within multiple upper and lower limits; a line-based graph that gives you more control over 
attributes (color, symbol, and so on) of specific markers to depict special conditions; a visualization that 
shows the user only a part of the data at a given instant, and lets him move a window to see other parts 
of the data; a chart that lets the user compare the data values to a specific value in a visual way to make 
the comparison more intuitive; and a visualization that shows the overall data and at the same time shows 
the detailed data for the selected category. This paper demonstrates how to use the technique of 
combining graphs to create such advanced charts in SAS® Visual Analytics and SAS® Graph Builder as 
well as by using SAS procedures like the SGRENDER procedure. 

INTRODUCTION 

SAS provides a large set of graphs that satisfy common needs, but often we end up in situations where 
we have to contrive our own visualizations to show the data in the best possible way. Such visualizations 
might not be directly available in SAS graphs but can be created by combining existing graphs. This 
technique can be used by SAS programmers as well as by users of products like SAS Visual Analytics. 
This paper does not aim to educate readers in all possible graphs and their options, but aims to 
demonstrate the power of the overlay process by showcasing examples in which advanced visualizations 
were created to address uncommon requirements. This paper also describes a few other ways of 
combining graphs in addition to the overlay technique. These examples encourage readers to explore this 
technique further to find newer possibilities of combining graphs to address their specific needs. 

PREDICTING VALUES OF GROUPS 

Often we are required to display the actual values of groups along with the predicted values. A common 
way to accomplish this is by showing a grouped series plot that shows a line for each group that is partly 
solid and partly dashed to depict the actual and predicted values respectively. A series plot by itself does 
not enable a user to display a line that is partly solid and partly dashed. There are several constraints in 
this situation: 

 All this information should be displayed in a single coordinate system, so the x and y ranges of
actual and predicted data points need to be combined.

 Each line should be a unique color, distinct from other lines. The color of a line should be
consistent between actual and predicted regions.

 The legend should show what each line represents.

 The predicted values for all groups might start at different values of the x variable.

A simple overlay of two series plots (one for actual values and one for predicted values) gives us a 
visualization close to what we want. The following code results in this simple overlay: 

data work.actualpredicted; 

   year=1990; actual=20; predicted=.; product="TV";   output; 

   year = 1991;actual=21;predicted=.; product="TV";   output; 



2 

   year = 1992;actual=23;predicted=.; product="TV";   output; 

   year = 1993;actual=22;predicted=.; product="TV";   output; 

   year = 1994;actual=24;predicted=.; product="TV";   output; 

   year=  1995; actual=.; predicted=23; product="TV";   output; 

   year = 1996;actual=.;predicted=25; product="TV";   output; 

   year = 1997;actual=.;predicted=24; product="TV";   output; 

   year = 1998;actual=.;predicted=22; product="TV";   output; 

   year = 1999;actual=.;predicted=25; product="TV";   output; 

   year=1990; actual=22; predicted=.; product="Laptop";   output; 

   year = 1991;actual=25;predicted=.; product="Laptop";   output; 

   year = 1992;actual=27;predicted=.; product="Laptop";   output; 

   year = 1993;actual=23;predicted=.; product="Laptop";   output; 

   year = 1994;actual=.;predicted=26; product="Laptop";   output; 

   year=  1995; actual=.; predicted=28; product="Laptop";   output; 

   year = 1996;actual=.;predicted=30; product="Laptop";   output; 

   year = 1997;actual=.;predicted=27; product="Laptop";   output; 

   year = 1998;actual=.;predicted=26; product="Laptop";   output; 

   year = 1999;actual=.;predicted=31; product="Laptop";   output; 

   year=1990; actual=19; predicted=.; product="Cellphone";   output; 

   year = 1991;actual=21;predicted=.; product="Cellphone";   output; 

   year = 1992;actual=24;predicted=.; product="Cellphone";   output; 

   year = 1993;actual=22;predicted=.; product="Cellphone";   output; 

   year = 1994;actual=21.;predicted=.; product="Cellphone";   output; 

   year=  1995; actual=25; predicted=.; product="Cellphone";   output; 

   year = 1996;actual=22;predicted=.; product="Cellphone";   output; 

   year = 1997;actual=23;predicted=.; product="Cellphone";   output; 

   year = 1998;actual=.;predicted=25; product="Cellphone";   output; 

   year = 1999;actual=.;predicted=23; product="Cellphone";   output; 

run; 

ods path(prepend) work.templat(update);   

proc template; 

  define statgraph seriesplot; 

    begingraph;  

      entrytitle "Annual Sales";  

      layout overlay /cycleattrs=true 

        xaxisopts=(label="Year") 

        yaxisopts=(label="Revenue (million dollars)");  

        seriesplot x=year y=actual / group=product lineattrs=(thickness=4) 

name='actualrevenue'; 

        seriesplot x=year y=predicted / group=product display=(markers) 

markerattrs=(size=10px) lineattrs=(thickness=4 pattern=12) 

name='predictedrevenue' ; 

          discretelegend 'actualrevenue'/title="Product"; 

      endlayout; 

    endgraph; 

  end; 

run; 

proc sgrender data=work.actualpredicted template=seriesplot; 

run; 

 

Figure 1 shows the output for this program. Some of the constraints have been addressed. For example, 
there is a solid line for each group showing the actual values and a dashed line for each group showing 
the predicted values. Also, the x axis and y axis ranges have been combined to cover the actual and 
predicted ranges. However, there are several problems in this output: 



3 

 The dashed part of a line is not joined to the solid part of the corresponding group. 

 The color of the dashed part does not match the solid part. 

 Legend entries do not include the dashed parts. 

 

Figure 1. Output Using Basic Overlay 

REFINING THE VISUALIZATION 

The problems with the output shown in Figure 1 can be addressed by completing these steps: 

 Data Preparation: To ensure that the dashed part of a group is joined to the solid part, we need to 
insert a dummy predicted value for the last point that had a valid actual value such that the predicted 
and actual values for this point are same. This step needs to be completed for each group. 

 Changes to SAS procedures: The lines for the groups in the first series plot in this overlay use colors 
GRAPH_DATA_1 to GRAPH_DATA_N, where N is number of groups. The lines in the second series 
plot use GRAPH_DATA_N+1 to GRAPH_DATA_2N as cycleattrs is set to true. This can be solved by 
setting cycleattrs to false, which causes each series plot in the overlay to start the colors again from 
GRAPH_DATA_1. This setting ensures that the dashed lines use the same color as the solid lines. 

Following is the modified program: 

data work.modactualpredicted; 

    year=1990; actual=20; predicted=.; product="TV";   output; 

   year = 1991;actual=21;predicted=.; product="TV";   output; 

   year = 1992;actual=23;predicted=.; product="TV";   output; 

   year = 1993;actual=22;predicted=.; product="TV";   output; 

   year = 1994;actual=24;predicted=24; product="TV";   output; 

   year=  1995; actual=.; predicted=23; product="TV";   output; 

   year = 1996;actual=.;predicted=25; product="TV";   output; 

   year = 1997;actual=.;predicted=24; product="TV";   output; 

   year = 1998;actual=.;predicted=22; product="TV";   output; 

   year = 1999;actual=.;predicted=25; product="TV";   output; 

   year=1990; actual=22; predicted=.; product="Laptop";   output; 

   year = 1991;actual=25;predicted=.; product="Laptop";   output; 

   year = 1992;actual=27;predicted=.; product="Laptop";   output; 

   year = 1993;actual=23;predicted=23; product="Laptop";   output; 

   year = 1994;actual=.;predicted=26; product="Laptop";   output; 

   year=  1995; actual=.; predicted=28; product="Laptop";   output; 



4 

   year = 1996;actual=.;predicted=30; product="Laptop";   output; 

   year = 1997;actual=.;predicted=27; product="Laptop";   output; 

   year = 1998;actual=.;predicted=26; product="Laptop";   output; 

   year = 1999;actual=.;predicted=31; product="Laptop";   output; 

   year=1990; actual=19; predicted=.; product="Cellphone";   output; 

   year = 1991;actual=21;predicted=.; product="Cellphone";   output; 

   year = 1992;actual=24;predicted=.; product="Cellphone";   output; 

   year = 1993;actual=22;predicted=.; product="Cellphone";   output; 

   year = 1994;actual=21.;predicted=.; product="Cellphone";   output; 

   year=  1995; actual=25; predicted=.; product="Cellphone";   output; 

   year = 1996;actual=22;predicted=.; product="Cellphone";   output; 

   year = 1997;actual=23;predicted=23; product="Cellphone";   output; 

   year = 1998;actual=.;predicted=25; product="Cellphone";   output; 

   year = 1999;actual=.;predicted=23; product="Cellphone";   output; 

run; 

ods path(prepend)  

work.templat(update);   

proc template; 

  define statgraph modseriesplot; 

    begingraph;  

      entrytitle "Annual Sales";  

      layout overlay / cycleattrs=false 

        xaxisopts=(label="Year") 

        yaxisopts=(label="Revenue (million dollars)");  

        seriesplot x=year y=actual / group=product lineattrs=(thickness=4) 

name='modactualrevenue'; 

       seriesplot x=year y=predicted / group=product display=(markers) 

markerattrs=(size=10) lineattrs=(thickness=4 pattern=12) 

name='modpredictedrevenue' ; 

        discretelegend 'modactualrevenue'/; 

      endlayout; 

    endgraph; 

  end; 

run; 

proc sgrender data=work.modactualpredicted template=modseriesplot; 

run; 

 

Figure 2 shows the output using the refined program. Note that the dashed parts and solid parts of the 
lines are joined. Also, the color of the dashed part also matches the color of the solid part of the 
corresponding group, giving the impression of a continuous line. Now the legend entries match the color 
of the corresponding solid and dashed line. 



5 

 

Figure 2. Output Using Refined Program 

OVERLAYING A REFERENCE LINE TO CREATE NEW VISUALIZATIONS 

We are often required to compare response values in a chart to a specific threshold in order to make 
certain conclusions about the data. Consider the following SAS program: 

proc template; 

  define statgraph scatterplot; 

    begingraph;  

      entrytitle "Height and Weight by Sex";  

      layout overlay;  

        scatterplot x=height y=weight / group=sex name='scatter' 

datalabel=name; 

   

        discretelegend 'scatter'; 

      endlayout;  

   endgraph; 

 end; 

run; 

proc sgrender data=sashelp.class template=scatterplot; 

run; 

 

Figure 3 shows the output for this program. 

 



6 

 

Figure 3. Scatter Plot without Reference Line 

Suppose we want to know how many students weigh more than 100 pounds. One way to do this is to 
approximately locate the threshold value on the corresponding axis and then compare each data point to 
that location. But this method has several disadvantages: 

 It might be difficult to ascertain whether a point is above or below the threshold when its value is close 
to the threshold. For example, it’s difficult to determine whether John and Barbara are above or below 
the threshold. 

 For points far from the threshold value, you might not get an accurate impression of the difference 
between the point’s value and the threshold value. 

We can solve these two problems by drawing a line at the threshold value. In graphs, you can do this by 
overlaying a reference-line component on top of an x-y chart. The following SAS program overlays a 
reference line at weight 100 on the graph shown in Figure 3: 

proc template; 

  define statgraph scatterplot; 

    begingraph;  

      entrytitle "Height and Weight by Sex";  

      layout overlay;  

        scatterplot x=height y=weight / group=sex name='scatter' 

datalabel=name; 

      referenceline y=100; 

        discretelegend 'scatter'; 

      endlayout;  

   endgraph; 

 end; 

run; 

proc sgrender data=sashelp.class template=scatterplot; 

run; 

 

Figure 4 shows the output of this program. Note how both problems have been solved. One can easily 
infer that the John and Barbara fall slightly below the threshold, and that Carol and Henry fall above the 
threshold. 



7 

 

Figure 4. Scatter Plot with Reference Line 

BASIC CONTROL CHART USING OVERLAY WITH REFERENCE LINE 

A control chart is a graph used to study how a measured value changes over time. Data is plotted in time 
order. A control chart always has a central line for the average, an upper line for the upper control limit, 
and a lower line for the lower control limit. These lines are determined from historical data. We can create 
a control chart in SAS by plotting the measured value using a series plot and overlaying reference lines 
that show the mean line, lower limit line, and upper limit line. The following program demonstrates how to 
do this. It plots the temperature of a room measured over several days and displays the reference lines 
for the mean and limits: 

data work.temperaturedata; 

    format date Date9.; 

    date=18250; temp=60;    output; 

    date=18251; temp=65;    output; 

    date=18252; temp=78;    output; 

    date=18253; temp=72;    output; 

    date=18254; temp=68;    output; 

    date=18255; temp=59;    output; 

    date=18256; temp=71;    output; 

    date=18257; temp=70;    output; 

    date=18258; temp=62;    output; 

    date=18259; temp=49;    output; 

    date=18260; temp=56;    output; 

    date=18261; temp=62;    output; 

    date=18262; temp=64;    output; 

    date=18263; temp=68;    output; 

    date=18264; temp=70;    output; 

run; 

ods path(prepend)  

work.templat(update);   

proc template; 

  define statgraph simplecontrolplot; 



8 

    begingraph;  

      entrytitle "Temperature Monitoring Using Basic Control Chart";  

      layout overlay / cycleattrs=true 

        xaxisopts=(label="Date" type=discrete) 

        yaxisopts=(label="Temperature");  

          referenceline y=50/ curvelabel= "lower_limit" curvelabelattrs= 

 

(color=red) lineattrs=(color=red thickness=2); 

          seriesplot x=date y=temp / lineattrs=(thickness=2) 

name='meanvalues'; 

    referenceline y=64.933/curvelabel="mean" curvelabelattrs= 

 

(color=red) lineattrs=(color=green thickness =2); 

          referenceline y=77/curvelabel="upper_limit" curvelabelattrs= 

 

(color=red) lineattrs=(color=red thickness =2); 

       discretelegend 'meanvalues'/; 

      endlayout; 

    endgraph; 

  end; 

run; 

proc sgrender data=work.temperaturedata template=simplecontrolplot; 

run; 

 

Figure 5 shows the output of this program. You can see that the graph shows how the temperature varies 
between the upper and lower limit and how it compares to the mean at every instant. You can control the 
attributes of the reference lines. Note that the limit lines use increased thickness and red color to make 
them more prominent. The mean line is shown in green. You can also easily figure out that the 
temperature on 21st and 28th were outside the limit range. Such points are said to be out of control. 

 

Figure 5. Simple Control Chart Using Reference Lines 

BASIC CONTROL CHART IN SAS VISUAL ANALYTICS 

You can also use the overlay technique when you create reports in SAS Visual Analytics. To overlay a 
reference line on a chart, SAS Visual Analytics provides a simple button on the Properties tab for the 
chart that opens a window. You can specify the value for the reference line and its attributes like color 



9 

and thickness in this window, which is shown in Figure 6.

 

Figure 6. Reference Line Window in SAS Visual Analytics 

You can add multiple reference lines. Figure 7 shows a control plot in SAS Visual Analytics that was 
created by adding multiple reference lines on a time series plot. 

 

Figure 7. Control Chart in SAS Visual Analytics 

ADVANCED CONTROL CHART USING OVERLAY 

You have seen that a control chart shows how a value changes between upper and lower control limits. 
These limits are often constant and are determined using historical data, as shown in the previous 
section. A control chart that has varying upper and lower limits is called an advanced control chart. Let us 
look at an example of such a control chart created for the sales data of products over many quarters. We 
want to display the mean sale across products for each quarter and how it varies between the minimum 
sale and maximum sale for that quarter. We also want to show how the sales of products vary from the 
mean by displaying the (mean-standard deviation) and (mean+standard deviation) for each quarter. The 
following program demonstrates how we can create such an advanced control chart by overlaying a 
series plot for mean values with band plots for standard deviation ranges and extreme (min/max) ranges: 



10 

data work.controlchartdata; 

    format date Date9.; 

    date=18250; minimum=10; maximum=100; std2_lower=20; std2_upper=90; 

std1_lower=30; std1_upper=80; mean=55;    output; 

    date=18340; minimum=10; maximum=200; std2_lower=15; std2_upper=195; 

std1_lower=20; std1_upper=190; mean=105;    output; 

    date=18430; minimum=0; maximum=200; std2_lower=10; std2_upper=190; 

std1_lower=20; std1_upper=180; mean=100;    output; 

   date=18520; minimum=10; maximum=200; std2_lower=15; std2_upper=195; 

std1_lower=20; std1_upper=190; mean=105;    output; 

    date=18615; minimum=20; maximum=100; std2_lower=25; std2_upper=95; 

std1_lower=30; std1_upper=90; mean=60;    output; 

    date=18705; minimum=10; maximum=100; std2_lower=20; std2_upper=90; 

std1_lower=30; std1_upper=80; mean=55;    output; 

    date=18795; minimum=0; maximum=150; std2_lower=15; std2_upper=135; 

std1_lower=30; std1_upper=120; mean=75;    output; 

    date=18885; minimum=30; maximum=60; std2_lower=36; std2_upper=54; 

std1_lower=41; std1_upper=48; mean=45;    output; 

    date=18980; minimum=30; maximum=100; std2_lower=40; std2_upper=90; 

std1_lower=50; std1_upper=80; mean=65;    output; 

    date=19070; minimum=30; maximum=100; std2_lower=35; std2_upper=95; 

std1_lower=40; std1_upper=90; mean=65;    output; 

    date=19165; minimum=40; maximum=50; std2_lower=41; std2_upper=49; 

std1_lower=41; std1_upper=48; mean=45;    output; 

    date=19260; minimum=0; maximum=150; std2_lower=15; std2_upper=135; 

std1_lower=30; std1_upper=120; mean=75;    output; 

    date=19345; minimum=30; maximum=100; std2_lower=35; std2_upper=95; 

std1_lower=40; std1_upper=90; mean=65;    output; 

    date=19435; minimum=20; maximum=100; std2_lower=25; std2_upper=95; 

std1_lower=30; std1_upper=90; mean=60;    output; 

    date=19525; minimum=10; maximum=200; std2_lower=15; std2_upper=195; 

std1_lower=20; std1_upper=190; mean=105;    output; 

run; 

ods path(prepend)  

work.templat(update);   

proc template; 

  define statgraph controlplot; 

    begingraph;  

      entrytitle "Control Chart";  

      layout overlay / cycleattrs=true 

        xaxisopts=(label="Date" type=discrete) 

        yaxisopts=(label="Revenue (million dollars)");  

          bandplot x=date limitlower=minimum limitupper=maximum / 

name='extremes'; 

          bandplot x=date limitlower=std1_lower limitupper=std1_upper / 

name='standard_deviation'; 

          seriesplot x=date y=mean / lineattrs=(thickness=4) 

name='meanvalues'; 

          discretelegend 'extremes' 'standard_deviation' 'meanvalues'/; 

      endlayout; 

    endgraph; 

  end; 

run; 

 

proc sgrender data=work.controlchartdata template=controlplot; 

run; 

 



11 

Figure 8 shows the output for this program. Notice how mean values are shown as a line. It’s easy to see 
how it varies in the regions representing the standard deviation ranges and extremes. The legend shows 
what the line represents and what the two regions represent. 

 

Figure 8. Advanced Control Chart 

DEPICTING SPECIAL CONDITIONS 

Sometimes you might want to depict data points that meet certain constraints in a special way in a graph. 
For example, you might have a grouped series plot that shows a line and markers for each group. The 
following program creates a grouped series plot for stock data, showing the closing value on each day for 
each stock: 

proc template; 

  define statgraph seriesplot; 

    begingraph;  

      entrytitle "Tech Stock Trends";  

             layout overlay;   

        seriesplot x=date y=close / group=stock name='stocks' 

lineattrs=(thickness=3) display=(markers); 

           

        discretelegend 'stocks'; 

      endlayout; 

    endgraph; 

  end; 

run; 

proc sgrender data=sashelp.stocks template=seriesplot; 

  where date > '31dec1999'd; 

run; 

 

Figure 9 shows the output for this program.  



12 

 

Figure 9. Stock Data 

Supposed you want to highlight the instances when a stock was unstable and exhibiting a lot of variation 
in its value in a single day by assigning the corresponding point a red triangular filler marker. You could 
do this in the following ways: 

 You can use an attribute map to specify the desired marker color and symbol for a whole group. But 
the points that satisfy the condition might be scattered across groups 

 In SAS Visual Analytics, you can use the display rules functionality to assign a specific color to points 
that satisfy a certain condition. But display rules currently don’t allow you to change the marker 
symbol for those points. 

We again solve this by overlaying multiple charts and using some other graph features. The following 
points summarize the solution: 

 Data Preparation: Add a new calculated column to the data set whose value is Stable or Unstable 
depending on whether the stock was stable or unstable on that particular day. 

 Turn off the markers on series plot. 

 Overlay a scatter plot on the series plot for drawing the markers. 

 Set the new calculated column as the group role for the scatter plot so that the scatter plot draws two 
types of markers: one for stable stock instances and the other for unstable stock instances. 

 Use an attribute map to make the relevant points in the unstable group red-filled triangle shapes. 
Specify a normal circle shape and black color to the stable group, and set its transparency to 0.6 so 
that these points fade out a bit to give more prominence to unstable points.  

 Add another legend to the chart for the scatter plot to depict what each type of marker means. 

The following program shows how to specify this information to achieve the desired output: 

data work.modStocks; 

     set sashelp.stocks; 

     if abs(close-open) >15 then stable = 'Unstable'; 

     else stable = 'Stable'; 

run; 

proc template; 

  define statgraph seriesplot; 



13 

    begingraph;  

      entrytitle "Tech Stock Trends";  

        discreteattrmap name="stabilitymap" / ignorecase=true; 

    value "Stable" / 

      markerattrs=GraphData1(color=black symbol=circle size=10  

 

transparency=0.6); 

      

    value "Unstable" / 

      markerattrs=GraphData2(color=red symbol=trianglefilled size=12); 

       enddiscreteattrmap; 

       discreteattrvar attrvar=stabilityvar var=stable 

    attrmap="stabilitymap"; 

      layout overlay;   

        seriesplot x=date y=close / group=stock name='stocks' lineattrs= 

 

(thickness=3); 

          scatterplot x=date y=close/ group=stabilityvar name='stability'; 

         discretelegend 'stocks'/title='Stock' ; 

         discretelegend 'stability'/autoalign=(topright) location=inside;; 

      endlayout; 

    endgraph; 

  end; 

run; 

proc sgrender data=work.modStocks template=seriesplot; 

  where date > '31dec1999'd; 

run; 

 

Figure 10 shows the output for this program. Note the following characteristics in the output: 

 Each line shows a stock and has a unique color. 

 The points satisfying the condition are scattered across groups, and they are red, triangle  shapes. 

 All other points have faint circular black markers. 

 The legend at the bottom shows which stock each line represents. 

 The legend at the top right shows what condition each marker type represents. 



14 

 

Figure 10. Stock Data Depicting Special Conditions 

A slightly modified scenario might require each normal marker to match its line color and specify that only 
the unstable points should have red triangular markers. To achieve this, we can make the following 
changes in the code: 

 Turn on the markers of the series plot, which automatically makes the markers match line colors. 

 Set the transparency of the stable markers to 1 in the attribute map of the scatter plot. This ensures 
that only unstable, red triangular markers overwrite the series plot markers; the stable ones are not 
visible, leaving the original series plot markers visible. 

The following program contains these and a few other modifications: 

data work.modStocks; 

     set sashelp.stocks; 

     if abs(close-open) >15 then stable = 'Unstable'; 

     else stable = 'Stable'; 

run; 

proc template; 

  define statgraph seriesplot; 

    begingraph;  

      entrytitle "Tech Stock Trends";  

        discreteattrmap name="stabilitymap" / ignorecase=true; 

    value "Stable" / 

      markerattrs=GraphData1(color=black symbol=circle size=10 

transparency=1); 

      

    value "Unstable" / 

      markerattrs=GraphData2(color=red symbol=trianglefilled size=12); 

enddiscreteattrmap; 

  discreteattrvar attrvar=stabilityvar var=stable 

    attrmap="stabilitymap"; 

      layout overlay;   



15 

        seriesplot x=date y=close / group=stock name='stocks' 

display=(markers)  

lineattrs=(thickness=3) markerattrs=(symbol=circlefilled); 

          scatterplot x=date y=close/ group=stabilityvar name='stability'; 

        discretelegend 'stocks'/title='Stock' ; 

      endlayout; 

    endgraph; 

  end; 

run; 

proc sgrender data=work.modStocks template=seriesplot; 

  where date > '31dec1999'd; 

run; 

 

Figure 11 shows the output for this program. 

 

Figure 11. Stock Data with Marker Color Matching Line Color 

Note the following characteristics of this output: 

 Marker colors of stable stock instances match the line color. 

 Only unstable markers are red triangles. 

 The legend shows what each line/marker combination represents. 

VISUALIZING OVERVIEW WITH SPECIFIC DETAILS USING OVERVIEW AXIS 

With the volume of data growing to gigantic sizes, it is sometimes cumbersome to analyze the whole data 
in one go. You might want to look at an overview of all the data, and then choose a specific subset of data 
to focus on. You can subsequently move on to a different subset. SAS graphs provide such a window 
mechanism by which you can choose one subset of data at a time and then move the window to view 
different parts of the data. You can achieve this by combining an overview axis with other x-y charts. 
Using an overview axis is not strictly part of the overlay technique as per graph terminology, but it is a 
useful combinational technique. SAS procedures do not yet support an overview axis, but the grammar is 
defined as follows: 



16 

proc template; 

  define statgraph overviewaxis; 

    begingraph; 

      layout overlay / xaxisopts=(name='axis1');; 

        seriesplot x=date y=close / group=stock name='stocks'; 

        discretelegend 'stocks'; 

      endlayout; 

      overviewaxis axis="axis1" / maxplotsize=150 minplotsize=100; 

      endoverviewaxis; 

    endgraph; 

  end; 

run; 

proc sgrender data=sashelp.stocks template=overviewaxis; 

where date > '31dec1999'd; 

run; 

 

Figure 12 shows the expected output. The output displays an overview component that shows all the 
data, using the same charts that are defined in the layout overlay. The actual graph above the overview 
axis shows only a subset of the data. In future, you could use the overview axis syntax to specify the 
lower and upper bound of the corresponding axis; the main graph would then show the data points 
between these bounds.  

 

Figure 12. Overview Axis 

MOVABLE WINDOW IN SAS VISUAL ANALYTICS 

 Even though SAS procedures do not yet support an overview axis, SAS Visual Analytics does provide 
this mechanism in a way that is very simple to use. Figure 13 shows a window in SAS Visual Analytics 
that shows a time series plot. Note that the Properties tab for this chart contains a simple check box for 
displaying the overview axis. Also note that the main chart shows only the data that lies in the interval 
selected in the overview axis.  

 



17 

 

Figure 13. Overview Axis in SAS Visual Analytics 

The overview axis bounds are interactive in SAS Visual Analytics. You can move them to choose a 
different interval. Figure 14 shows the same chart with a different interval selected. 

 

Figure 14. Overview Axis with Shifted Window 

VISUALIZING OVERVIEW WITH SPECIFIC DETAILS USING INTERACTIONS 

There is another way you can look at an overview of all the data and choose a subset from it to focus on. 
SAS Visual Analytics enables you to view all the data using one chart, and simultaneously view detailed 
data for the selected element of this chart in a different chart. (Since this is an interactive functionality 
involving selections, it is not available by using SAS procedures). Figure 15 shows a SAS Visual Analytics 
window with two charts that represent the overview and detailed data. In this example, the pie chart 
shows the distribution of all cars across dealers. The bar chart shows the distribution of all cars across 
manufacturers. 



18 

 

Figure 15. Two Charts for Overview and Detailed View 

To use the Interactions view, click the Interactions tab for either chart. Then, click Interactions View. 
Define a filter interaction from the first chart to the second by clicking on the first chart and dragging the 
mouse pointer to the second chart. Figure 16 demonstrates this action for our scenario. 

 

Figure 16. Interaction View 

Click Close in the bottom right corner of the Interactions view to go the regular view. After you have 
defined the filter interaction, clicking on any element of the first chart causes the second chart to display 
only the data that corresponds to the selected element in the first chart. Figure 17 shows how clicking on 
the slice for dealer Finch causes the bar chart to display the distribution of cars across manufacturers for 



19 

only the Finch dealer.

 

Figure 17. Filter Interaction Example 

Figure 18 shows the filter interaction for a different dealer. Clicking dealer Smith causes the bar chart to 
show only the data for Smith. 

 

Figure 18. Filter Interaction Sample II 

CONCLUSION 

The examples described in this paper demonstrate the power of combining graphs to create advanced 
visualizations. These examples are just a handful of the numerous possible combinations. I encourage 
you to explore this technique further to create the visualizations that meet your particular needs. Not only 
can you combine different graphs, but you can also set options on the participating graphs to generate 
more variations of the advanced visualizations. 

REFERENCES 

SAS Graph Documentation (http://support.sas.com/documentation) 

http://support.sas.com/documentation


20 

ACKNOWLEDGMENTS 

This paper is a result of my interactions with product teams in helping them create visualizations that 
meet their needs. I sincerely thank the team members with whom I interacted to create these 
visualizations. I also thank Vijay Chougule for his valuable suggestions in rephrasing the abstract. I also 
thank Kush Shukla for evaluating these examples and providing valuable inputs. 

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the author: 

Vineet Raina 
SAS Research and Development, India  
+91 (20) 4911 8339 
Vineet. Raina@sas.com 
https://www.linkedin.com/in/vineet-raina-8b83a254 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  


