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ABSTRACT  
Longitudinal count data arise when a subject's outcomes are measured repeatedly over time.   Repeated 
measures count data have an inherent within-subject correlation that is commonly modeled with random 
effects in the standard Poisson regression.  A Poisson regression model with random effects is easily fit 
in SAS® using existing options in the NLMIXED procedure.  This model allows for over-dispersion via the 
nature of the repeated measures; however, departures from equi-dispersion can also exist due to the 
underlying count process mechanism.  We present an extension of the cross-sectional Conway-Maxwell-
Poisson (COM-Poisson) regression model established by Sellers and Shmueli (2010) – a generalized 
regression model for count data in light of inherent data dispersion – to incorporate random effects for 
analysis of longitudinal count data.  We detail how to fit the COM-Poisson longitudinal model via a user-
defined log-likelihood function in PROC NLMIXED.  We demonstrate the model flexibility of the COM-
Poisson longitudinal model via a real data example. 

INTRODUCTION 

Count data are prevalent in a variety of fields of study including health (e.g. number of hospitalizations), 

risk analysis (e.g. number of traffic accidents, number of insurance claims), and marketing (e.g. number of 

purchases of a product).  The Poisson model is commonly used to analyze integer-valued count data, 𝑌 = 
0,1,2, …; however, it makes the strong assumption of equi-dispersion such that the variance, 𝑉𝑎𝑟(𝑌), is 

equal to the mean, 𝐸(𝑌).  In many real data applications, this equi-dispersion assumption is violated as 

the data may exhibit either over-dispersion, 𝑉𝑎𝑟(𝑌) > 𝐸(𝑌), or under-dispersion, 𝑉𝑎𝑟(𝑌) < 𝐸(𝑌).   

Positive correlation between responses is one cause of over-dispersion in count data (Hilbe 2008).  
Longitudinal count data – count data that arise from repeated measurements taken on a subject – have 
an inherent correlation within subject, leading to the violation of the Poisson equi-dispersion assumption.  
This subject-level correlation can be accounted for by extending the Poisson model to include a random 
effect.  Specifically, the random intercept Poisson model loosens the equi-dispersion assumption to 
capture additional variability induced by the correlation of measurements within a subject.  The model 
assumptions of the random intercept Poisson model are: 

𝑦𝑖𝑡|𝑢𝑖 ~ 𝑃𝑜𝑖(𝜆𝑖𝑡
∗ )

log(𝜆𝑖𝑡
∗ ) =  𝛽0 + 𝛽1𝑥𝑖𝑡1 + ⋯ + 𝛽𝑝𝑥𝑖𝑡𝑝 + 𝑢𝑖

𝑢𝑖  ~ 𝑁(0, 𝜎2)

where 𝑦𝑖𝑡 is the count outcome for subject 𝑖 in time period 𝑡 for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇𝑖; 𝑥𝑖𝑡1, … , 𝑥𝑖𝑡𝑝 are 

the 𝑝 covariates for subject 𝑖 in time period 𝑡; and 𝑢𝑖 is the random intercept (Winkelmann 2008, Cameron 
and Trivedi 2013).  This model is easily fit via the NLMIXED procedure using existing options.  

Specifically, (1) the poisson distribution is called in the MODEL statement, and (2) the random intercept 

𝑢 is defined in the RANDOM statement along with the cluster variable.  The following code fits a random 
intercept Poisson model with one covariate:  

1 This paper is intended to inform interested parties of ongoing research and to encourage discussion.  Any views expressed on 
statistical, methodological, technical, or operational issues are those of the authors and not necessarily those of the U.S. Census 
Bureau. 
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PROC NLMIXED data=mydata; 

  parms logsig=0 beta0=1 beta1=1;  

  lambda = exp(beta0 + beta1*x1 + u); 

  model y ~ poisson(lambda); 

  random u ~ normal(0,exp(2*logsig)) subject=ID; 

RUN; 

 
In this code, the PARMS statement starts the procedure at arbitrarily chosen initial parameter values, the 
variable ID uniquely identifies a subject, and the specification of the variance of the random effect 

ensures that the positive variance constraint is satisfied (𝜎2 > 0).  PROC NLMIXED implements maximum 
likelihood estimation of nonlinear mixed models with default options of adaptive Gaussian quadrature for 
numerical integration and a dual quasi-Newton algorithm for optimization.  The procedure assumes that 
the specified random effect follows a normal distribution.  For details about PROC NLMIXED, see the 
chapter titled “The NLMIXED Procedure” in the SAS/STAT User’s Guide (2015).  The MCMC procedure 
and the GLIMMIX procedure can be used to implement alternative techniques - Bayesian and pseudo-
likelihood, respectively – for fitting a random intercept Poisson model. 

The Poisson model with random effects explicitly models the longitudinal structure by incorporating 
random effects to address over-dispersion induced by correlation over time.  However, it is based on the 
assumption that the underlying count mechanism, absent the longitudinal structure, exhibits equi-
dispersion.  The Conway-Maxwell-Poisson (COM-Poisson) distribution is a flexible alternative count 
distribution that allows for under- and over-dispersion (Shmueli et. al. 2005).  Cross-sectional regression 
formulations of the COM-Poisson distribution have been studied (Guikema and Coffelt 2008, Sellers and 
Shmueli 2010) and shown to be useful in many applications including in accident analysis (Lord et. al. 
2010), marketing (Boatwright et. al. 2003) and auction bidding (Borle et. al. 2006). We extend the cross-
sectional COM-Poisson regression model to incorporate a random intercept that allows for the modeling 
of additional variability due to the correlation of repeated measures as well as the over- or under-
dispersion of the underlying count process.  This paper describes how to fit a random intercept COM-
Poisson regression model using PROC NLMIXED.  The model simply requires a user-defined conditional 
loglikelihood – this is a straightforward programming task for any SAS user with beginner’s knowledge of 
PROC NLMIXED syntax and mixed models theory. 

COM-POISSON DISTRIBUTION AND REGRESSION 

COM-POISSON DISTRIBUTION 

The COM-Poisson distribution is a two-parameter generalization of the Poisson distribution that allows for 
over- or under-dispersion in count data.  Originally derived by Conway and Maxwell (1961) and revived by 
Shmueli et. al. (2005), the COM-Poisson probability mass function takes the form: 

𝑃(𝑌 = 𝑦|𝜆, 𝜈) =
𝜆𝑦

(𝑦!)𝜈𝑍(𝜆, 𝜈)
  ,   𝑦 = 0,1,2, … 

for a random variable 𝑌, where 𝑍(𝜆, 𝜈) = ∑
𝜆𝑠

(𝑠!)𝜈
∞
𝑠=0  is a normalizing constant.  The dispersion 

parameter, 𝜈 ≥ 0, allows the COM-Poisson distribution to cover a wide range of discrete distributions as it 
captures all cases of count data dispersion: equi-dispersion, under-dispersion and over-dispersion for 𝜈 =
1, 𝜈 > 1, and 𝜈 < 1, respectively.  The COM-Poisson distribution reduces to commonly used discrete data 
distributions in three special cases governed by the assumption of the dispersion parameter.  These three 
special cases are: 

Poisson: 𝜈 = 1 ⇒ 𝑍(𝜆, 𝜈) = 𝑒𝜆 ⇒ 𝑌~𝑃𝑜𝑖(𝜆), 

Geometric: 𝜈 = 0 ⇒ 𝑍(𝜆, 𝜈) =
1

1−𝜆
⇒ 𝑌~𝐺𝑒𝑜(1 − 𝜆) for 𝜆 < 1, and 

Bernoulli: 𝜈 → ∞ ⇒ 𝑍(𝜆, 𝜈) → 1 + 𝜆 ⇒ 𝑌~𝐵𝑒𝑟 (
𝜆

1+𝜆
). 

The moments of the COM-Poisson distribution are not of closed form; however, Shmueli et. al. (2005) 
note that assuming an asymptotic approximation for 𝑍(𝜆, 𝜈) leads to a close approximation for the mean: 
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 𝐸(𝑌) = 𝜆
𝜕𝑙𝑜𝑔𝑍(𝜆,𝜈)

𝜕𝜆
 ≈  𝜆1/𝜈 −

𝜈−1

2𝜈
 for 𝜈 ≤ 1 or 𝜆 > 10𝜈. (1) 

COM-POISSON REGRESSION 

Sellers and Shmueli (2010) introduce a generalized linear models (GLM) regression formulation of the 
COM-Poisson distribution, taking advantage of the exponential family features to allow for elegant 
estimation, inference and diagnostics.  Assuming a log link between the parameter 𝜆 and the linear 

predictor, the COM-Poisson regression model lets 𝜆 vary for each observation 𝑖: 

𝑦𝑖  ~ 𝐶𝑀𝑃(𝜆𝑖 , 𝜈) 

log(𝜆𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝  . 

This specification indirectly models the relationship between the mean and the linear predictor, capturing 
the special cases of logistic and Poisson regression.  The maximum likelihood estimates can be obtained 

in SAS via the COUNTREG procedure with the DIST=cmpoisson and PARAMETER = lambda options 

in the MODEL statement (SAS/STAT User’s Guide 2015).  In this work we assume a constant dispersion 
parameter; however, the model, in general, and the fitting of the model in NLMIXED can additionally 
assume observation-level variation in 𝜈. 

COM-POISSON LONGITUDINAL MODEL 

We extend the Sellers and Shmueli (2010) COM-Poisson regression model to include a random intercept.  
The random intercept COM-Poisson model assumes: 

𝑦𝑖𝑡|𝑢𝑖  ~ 𝐶𝑀𝑃(𝜆𝑖𝑡
∗ , 𝜈) 

log(𝜆𝑖𝑡
∗ ) =  𝛽0 + 𝛽1𝑥𝑖𝑡1 + ⋯ + 𝛽𝑝𝑥𝑖𝑡𝑝 + 𝑢𝑖 

𝑢𝑖  ~ 𝑁(0, 𝜎2) 

The generality of PROC NLMIXED for fitting nonlinear random effects models allows this model to be fit 

using existing options combined with a user-written model specification.  The general loglikelihood 

option in PROC NLMIXED allows flexibility to fit a wide variety of random effects models.  Fitting the 
COM-Poisson longitudinal model in PROC NLMIXED simply requires specifying the conditional 
loglikelihood which is: 

log 𝐿(𝜆𝑖𝑡
∗ , 𝜈) = 𝑦log(𝜆𝑖𝑡

∗ ) − 𝜈 log(𝑦𝑖𝑡!) − log(𝑍(𝜆𝑖𝑡
∗ , 𝜈)) , 

where 𝑍(𝜆𝑖𝑡
∗ , 𝜈) = ∑

(𝜆𝑖𝑡
∗ )𝑠

(𝑠!)𝜈
∞
𝑠=0  can be written as 𝑍(𝜆𝑖𝑡

∗ , 𝜈) = ∑ ∏
𝜆𝑖𝑡

∗

𝑟𝜈
𝑠
𝑟=1

∞
𝑠=0 .  Previous work has found that 

truncating the infinite sum provides a good approximation (Minka et. al. 2003).  The following code fits a 
random intercept COM-Poisson model with one covariate: 

PROC NLMIXED data=mydata; 

  parms logsig=0 beta0=1 beta1=1 nu=1;  

  lambda = exp(beta0 + beta1*x1 + u); 

  Z = 1; 

  DO s = 1 to 100; 

    Q = 1; 

    DO r = 1 to s; 

      Q = Q * (lambda / (r**nu)); 

    END; 

    Z = Z + Q; 

  END; 

  ll = y*log(lambda) – nu*lgamma(y+1) – log(Z); 

  model y ~ general(ll); 

  random u ~ normal(0,exp(2*logsig)) subject=ID; 

RUN; 
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The user must explicitly program the random intercept COM-Poisson conditional loglikelihood, while the 
rest of the PROC NLMIXED syntax is largely unchanged from the random intercept Poisson model. 

APPLICATION: EPILEPSY DATA 

To illustrate the performance of the random intercept COM-Poisson model for longitudinal count data, we 
study the epilepsy dataset originally analyzed by Thall and Vail (1990), further discussed in Diggle et. al. 
(1994), and generally often used as an example for longitudinal data analysis of discrete outcomes (e.g. 
PROC GENMOD in SAS/STAT User’s Guide (2015)).  This dataset concerns the number of seizures 
measured for 59 epileptic patients in an initial eight-week baseline period followed by four consecutive 
two-week treatment periods.  The outcome variable of interest, 𝑦𝑖𝑡, is the number of seizures for subject 𝑖 
in time period 𝑡 (𝑡 = 1, 2, 3, 4, 5).  Diggle et. al. (1994) fit a random intercept Poisson regression with the 
associated loglinear form: 

log(𝜆𝑖𝑡
∗ ) =  𝛽0 + 𝛽1𝑥𝑖𝑡1 +  𝛽2𝑥𝑖𝑡2 + + 𝛽3𝑥𝑖𝑡1𝑥𝑖𝑡2 + log(𝑇𝑖𝑡) + 𝑢𝑖 , 

where 𝑥𝑖𝑡1 is an indicator of a period after baseline (weeks 8-16), 𝑥𝑖𝑡2 indicates the receipt of an anti-

epileptic drug Progabide as opposed to a placebo, the offset term 𝑇𝑖𝑡 is the length of time period 𝑡 in 

weeks, and 𝑢𝑖 is the random intercept.  Following the Diggle et. al. (1994) analysis of this data, we 
likewise fit this model as well as a random intercept negative binomial model (parameterized as 
documented for PROC NLMIXED in SAS/STAT User’s Guide 2015) and a random intercept COM-
Poisson (CMP) model using PROC NLMIXED as stated in the previous section.  The resulting parameter 
estimates and associated standard errors are presented in Table 1.   

 

 Poisson R.E. Negative Binomial R.E. CMP R.E. 

Variable Est. Std. Err. Est. Std. Err. Est. Std. Err. 

Intercept 1.033* (0.153) 1.100* (0.176) -0.779* (0.178) 

𝑥1 0.111* (0.047) 0.016 (0.101) -0.791* (0.071) 

𝑥2 -0.024 (0.211) 0.074 (0.242) 0.051 (0.106) 

𝑥1 ∗ 𝑥3 -0.104 (0.065) -0.312* (0.142) -0.177* (0.053) 

k   0.148* (0.025)   

𝜈     0.421* (0.050) 

𝜎 0.780* (0.075) 0.813* (0.082) 0.379* (0.054) 

AIC 2031.4 1789.8 1754.6 

* Statistically significant estimates at the 5% significance level are marked with an asterisk. 

Table 1. Epilepsy Data Results: Poisson Random Intercept, Negative Binomial Random Intercept 
and COM-Poisson Random Intercept Model Estimates and Standard Errors.  

 

The random intercept COM-Poisson model has the lowest AIC, indicating the best model fit.  Both the 
random intercept negative binomial and random intercept COM-Poisson models provide a better fit than 
the random intercept Poisson model providing evidence that there is additional variability beyond that 
captured by the subject-specific random effect.  Within-subject variability is reflected through the 
significantly greater than zero estimates of the random intercept variance parameter, 𝜎̂ = 0.780, 𝜎̂ =
0.813 and  𝜎̂ = 0.379, for the Poisson, negative binomial and COM-Poisson model, respectively.  
Furthermore, additional over-dispersion is evident through the estimates of the dispersion parameters, 

𝑘̂ = 0.148 > 0 and 𝜈̂ = 0.421 < 1, for the negative binomial and COM-Poisson model, respectively.  Both 
the negative binomial and the COM-Poisson models can account for dispersion beyond that induced by 
within-subject correlation, however the slightly better model fit for the COM-Poisson model indicates that it 
captures the dispersion in a way that the negative binomial model cannot. 

The interaction effect (𝑥1 ∗ 𝑥3) is negative in all models indicating that the Progabide drug is associated 
with fewer seizures in the treatment period.  However, estimated parameters are not directly comparable 
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across models.  For example, the point estimates of the interaction vary as they represent different 
effects: on the mean for the Poisson and negative binomial models and on an indirect function of the 
mean for the COM-Poisson model.  Similarly, the estimated random effect variance is smaller for COM-
Poisson than the estimates from the Poisson and negative binomial models.   

DISCUSSION 

The COM-Poisson regression model is a flexible model for count data in light of data dispersion. We 
extend the cross-sectional COM-Poisson model of Sellers and Shmueli (2010) to include random effects 
to address subject-level correlation in longitudinal data.  The flexibility of the random intercept COM-
Poisson model allows modeling of additional variability in the count outcome beyond that induced by 
repeated measures – multiple such sources of dispersion are evident in the epilepsy data.  Implementing 
this model in the NLMIXED procedure simply requires the user-written log-likelihood function detailed in 
this paper.  The flexibility of PROC NLMIXED allows any SAS programmer with beginner’s knowledge of 
the procedure to fit this general, possibly better fitting, COM-Poisson mixed model.  Furthermore, the 
generality of PROC NLMIXED would allow additional features in a longitudinal COM-Poisson model, 
notably incorporating random slopes and mixed modeling of the dispersion parameter. 

An alternative parameterization of the COM-Poisson regression model is available in SAS and can be 
extended to include random effects.  In order to link on a more direct centering measure, Guikema and 

Coffelt (2008) re-parameterize the COM-Poisson regression model letting 𝜇 =  𝜆1/𝜈 so that: 

𝑦𝑖  ~ 𝐶𝑀𝑃(𝜇𝑖
𝜈 , 𝜈) 

log(𝜇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝  . 

In this formulation of the COM-Poisson regression model, the centering parameter 𝜇 is a decent 

approximation for the mean in the case of 𝜇 > 10 (see Equation 1) and in all cases the integer part of 𝜇 is 
the mode.  The Bayesian approach for estimating the COM-Poisson regression model as studied in 
Guikema and Coffelt (2008) can be fit with PROC MCMC.  The maximum likelihood approach is 

implemented in SAS via PROC COUNTREG with the DIST=cmpoisson and PARAMETER = mu (the 

default) options in the MODEL statement (SAS/STAT User’s Guide 2015).   

Just as for the Sellers and Shmueli (2010) COM-Poisson regression model, the Guikema and Coffelt 
(2008) parameterization of the random intercept COM-Poisson model can be fit using PROC NLMIXED.  
For the epilepsy data, this fit yields estimates of the linear predictor roughly similar to those from the 
negative binomial model2.  For example, the estimated random effect variance parameter is 𝜎̂ =

0.899 (0.092) and the estimated interaction effect is 𝛽3̂ = −0.419 (0.118).  Because the average 

estimated 𝜇𝑖𝑡
∗  is reasonably large (𝜇̂𝑖𝑡

∗ = 14.06), it appears to be sensible to assume that 𝜇 =  𝜆1/𝜈  is a 

decent approximation of the mean.  Thus, in the epilepsy data, the linear predictor is closely related to the 
mean and the estimated coefficients can be loosely interpreted in the usual way.  This interpretation, 
however, depends crucially on the assumptions of a further approximation of the mean approximation 
detailed in Equation 1.   
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