
1

Paper 175-2017

Best Practice Programming Techniques for SAS® Users

Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California
Mary Rosenbloom, Lake Forest, California

Abstract
It’s essential that SAS® users possess the necessary skills to implement “best practice” programming techniques when using the
Base-SAS software. This presentation illustrates core concepts with examples to ensure that code is readable, clearly written,
understandable, structured, portable, and maintainable. Attendees learn how to apply good programming techniques including
implementing naming conventions for datasets, variables, programs and libraries; code appearance and structure using
modular design, logic scenarios, controlled loops, subroutines and embedded control flow; code compatibility and portability
across applications and operating platforms; developing readable code and program documentation; applying statements,
options and definitions to achieve the greatest advantage in the program environment; and implementing program generality
into code to enable its continued operation with little or no modifications.

Introduction
Code is an intellectual property and should be treated as a tangible asset by all organizations. Best practice programming
techniques help to clarify the sequence of instructions in code, permit others to read code as well as understand it, assist in the
maintainability of code, permit greater opportunity to reuse code, achieve measurable results, reduce costs in developing and
supporting code, and assist in performance improvements (e.g., CPU, I/O, Elapsed time, DASD, Memory).

Best Practice Concepts
A best practice programming technique is a particular approach or method that has achieved some level of approval or
acceptance by a professional association, authoritative entity, and/or by published research results. Successful best practice
programming techniques translate into greater code readability, maintainability and longevity while ensuring code reusability.
Best practice programming techniques achieve status by being:

 Measurable with quantifiable results

 Successful in accomplishing stated goals and objectives

 Reproducible or adaptable to specific needs

Naming Conventions
The adherence of naming conventions serves the purpose of making program code, SAS libraries, catalogs, catalog entries,
datasets (or tables), variables, virtual tables (or views), macro definitions, macro variables, arrays, indexes, hash objects,
subroutines, labels, user-defined formats, SAS/ACCESS access descriptors and view descriptors, external files, and SAS name
literals more readable. Good naming conventions can also satisfy self-documentation for individual application components by
permitting others to better understand the application and code details.

“Good” naming conventions are a must and should always be adhered to whenever possible. To inforce the use of “good”
naming conventions in the SAS environment, specify:

OPTIONS DATASTMTCHK = COREKEYWORDS ;

Naming Conventions for SAS Data Sets and Variables
The rules associated with good naming conventions for SAS data sets and variables include:

 A name consisting of 1-32 positions in length.

 1st position can only be a letter (A-Z, a-z) or underscore (_).

 Remaining positions can be letters (A-Z, a-z), underscore (_), or numbers (0-9).

 Example:

DATA WORK.PG_Rated_Movies ;

 SET libref.Movies ;

 WHERE Rating = “PG” ;

RUN ;

Best Practice Programming Techniques Using SAS® Software, continued SGF 2017

2

In the next example, below, the use of not-so-good naming conventions is illustrated. In this example, you’ll notice valid, but
confusing naming conventions, rendering the code difficult to read and maintain.

Code Containing Poor Use of Naming Conventions

OPTIONS DATASTMTCHK = NONE ;

%LET WHERE = SAN DIEGO ;

DATA WORK.DATA ;

 SET WORK.SET ;

 WHERE UPCASE(VARIABLE4) = “&WHERE” ;

RUN ;

In the next example, below, valid and less confusing naming conventions are utilized resulting in program code that is easier to
read, maintain and support.

Code Containing Good Use of Naming Conventions

OPTIONS DATASTMTCHK = COREKEYWORDS ;

%LET WHERE = SAN DIEGO ;

DATA WORK.SanDiego_Employees ;

 SET WORK.Employees ;

 WHERE UPCASE(City) = “&WHERE” ;

RUN ;

Naming Conventions for Librefs, Filerefs and Subroutines
The rules associated with good naming conventions for librefs, filerefs and subroutines include:

1. Assigned name can be 1-8 positions in length.

2. 1st position can be a letter (A-Z, a-z) or underscore (_) only.

3. Remaining positions can be letters (A-Z, a-z), underscore (_), or numbers (0-9).

4. Example:

LIBNAME MYDATA ‘C:\DataLibrary’ ;

DATA MYDATA.PG_Rated_Movies ;

 SET MYDATA.Movies ;

 WHERE Rating = “PG” ;

RUN ;

Naming Conventions for Macro Names and Macro Definitions
The rules associated with good naming conventions for macro names and macro definitions include:

1. Name that is assigned can be 1-32 positions in length.

2. 1st position can be a letter (A-Z, a-z) or underscore (_) only.

3. Remaining positions can be letters (A-Z, a-z), underscore (_), or numbers (0-9).

4. Example:

PROC SQL ;

 SELECT TITLE INTO :mtitle SEPARATED BY “* “

 FROM MYDATA.Movies ;

 WHERE UPCASE(Rating) = “PG” ;

QUIT ;

%PUT &mtitle ;

Casablanca* Jaws* Poltergeist* Rocky* Star Wars* The Hunt for Red October

Best Practice Programming Techniques Using SAS® Software, continued SGF 2017

3

Comments and Documentation
Comments and documentation serve to assist in the understanding of what’s in data sets and variables, provide descriptive
information about the intricacies of a program, minimize confusion about what a program is doing, save time during support or
maintenance of a program and document program run instructions. They also provide important information about the
purpose of the program; how to run the program; what the input, processing and output is; and special operations that need
additional understanding.

Assignment of Data Set Labels
Data set Labels are typically specified when saving permanent data sets and are displayed with PROC CONTENTS or PROC
DATASETS output.

DATA libref.PG_RATED_MOVIES

 (LABEL=“PG-Rated Movies”) ;

 SET libref.MOVIES ;

 WHERE RATING = “PG” ;

RUN ;

PROC CONTENTS DATA=WORK._ALL_ ;

RUN ;

Assignment of Variable Labels
Variable Labels are typically specified with permanent data sets and can be displayed as column headers using PROC PRINT.

DATA libref.PG_RATED_MOVIES

 (LABEL=“PG-Rated Movies”) ;

 SET libref.MOVIES ;

 WHERE RATING = “PG” ;

 NEW_LENGTH = LENGTH + 1 ;

 LABEL NEW_LENGTH = “Length with Trailer” ;

RUN ;

PROC PRINT DATA=libref.PG_RATED_MOVIES LABEL ;

 TITLE ;

RUN ;

Best Practice Programming Techniques Using SAS® Software, continued SGF 2017

4

Assignment of Comments
Comments can be added to program code in the following ways.

* (Asterisk) (aka Flower-box)

**;

***** This program selects PG movies. *****;

**;

COMMENT statement

COMMENT This program selects PG movies ;

In-stream comments can be added on any line of code

DATA PG_RATED_MOVIES ; /* Create temp dataset */

SET libref.MOVIES ; /* Read MOVIES dataset */

WHERE RATING = “PG” ; /*Select PG Movies */

RUN ;

Assignment of Program Headers
Program Headers should be created at the beginning of each program. It serves to provide details about the name of the
program, the program purpose, the names of the called and calling programs, who wrote the program, the date it was written,
the input and output sources, and the modification history. An example of a program header is illustrated below.

Assignment of Section Headers
Section Headers should be created at the beginning of major sections of a program, routines, subroutines and/or complicated
sections of code. Generally shorter and less detailed than the Program Header, the section header serves to provide some level
of understanding about the purpose of specific program code, along with what the code is doing. An example of a section
header appears below.

Best Practice Programming Techniques Using SAS® Software, continued SGF 2017

5

Configuration Management
Wikipedia defines configuration management as establishing and maintaining consistency of a product's performance,
functional, and physical attributes with its requirements, design, and operational information throughout its life. The
configuration process includes initialize “key” variables (columns); support structured and/or modular design; construct and use
shareable code libraries; enable SAS to systematically handle changes so a program can maintain high integrity over the life of
the program; utilize pre-written source code as “callable” routines so that it can be included, as needed, by a calling program.

Determining SAS System Options
SAS Option settings can be examined by the following methods.

Using the PROC OPTIONS statement

PROC OPTIONS ;

RUN ;

Accessing the contents of DICTIONARY.OPTIONS using SQL

PROC SQL ;

SELECT * FROM DICTIONARY.OPTIONS ;

QUIT ;

Accessing the virtual table SASHELP.VOPTION

PROC PRINT DATA=SASHELP.VOPTION ;

RUN ;

Using the SOURCE / NOSOURCE System Option
The SOURCE system option tells SAS to write all in-stream SAS source code to the SAS Log. The result is a complete audit trail of
executed SAS code.

SOURCE System Option

options SOURCE ;

data libref.processed_movies ;

 set libref.movies ;

 < other SAS statements > ;

run ;

Best Practice Programming Techniques Using SAS® Software, continued SGF 2017

6

SOURCE2 System Option
The SOURCE2 system option ells SAS to write all included source code to the SAS Log to produce a comprehensive audit trail.
This is sometimes referred to as a “Copybook” process.

SOURCE2 System Option

options SOURCE2 ;

data libref.processed_movies ;

 set libref.movies ;

 %include ‘c:\include-sas-code.sas’ ;

 < other SAS statements > ;

run ;

Coding Conventions
The adherence of coding conventions often produces SAS code that is easier to understand; results in more maintainable code;
produces higher quality and more efficient code; results in code with greater integrity over its productive life; enables code to
be reused from project to project, department to department, within an organization; results in code with fewer defects
providing greater effectiveness and value; and reduces the time spent on debugging.

Read Only Fields (Variables) and Data Needed
To reduce the size of the input buffer and SAS data set, read only the fields that are needed from the external file. Any field(s)
not listed on the INPUT statement is/are automatically eliminated from being read. An example appears below.

filename rawdata

 ‘e:\workshops\workshop data\movies.dat’ ;

data PG_MOVIES ;

 infile rawdata missover ;

 input @1 title $30.

 @32 length 3.

 @36 category $20.

 @88 rating $5. ;

 if rating = “PG” or

 rating = “PG-13” ;

run ;

Subsetting Data Sets with WHERE=
Specifying a WHERE= data set option on a SET statement or a DATA= parameter is a good way to efficiently subset a SAS data
set because it only reads observations into the Program Data Vector (PDV) that satisfy the WHERE-clause expression. An
example appears below.

data PG_MOVIES ;

 set libref.movies (where=(rating = ‘PG’)) ;

 < other SAS statements > ;

run ;

< OR >

proc print data=libref.movies (where=(rating = ‘PG’)) noobs ;

run ;

Types of IF Statements

 Subsetting IF

 Simple IF-THEN

 Chains of IF-THENs

 Chains of IF-THEN/ELSEs

Best Practice Programming Techniques Using SAS® Software, continued SGF 2017

7

Subsetting IF Statement
A subsetting IF statement is best used for subsetting in-stream data from non-SAS input files. An example appears below.

data PG_Movies ;

 infile carsdata ‘e:\workshops\workshop data’ ;

 if rating = ‘PG’ ;

run;

Simple IF-THEN Statement
A simple IF-THEN statement can be combined with other SAS statements and operations (e.g., DELETE, DO, OUTPUT, assigning
values to variables, etc.). An example appears below.

data PG_Movies ;

 set libref.movies ;

 if rating = ‘PG’ then output PG_Movies ;

run ;

Chains of IF-THEN Statements
Although coding chains of IF-THEN statements is syntactically correct, it forces the SAS System to incur additional processing
costs because each IF-THEN statement is executed regardless if the condition was satisfied in an earlier IF-THEN statement. An
example appears below.

data G_Movies PG_Movies PG13_Movies R_Movies ;

 set libref.movies ;

 if rating = ‘G’ then output G_Movies ;

 if rating = ‘PG’ then output PG_Movies ;

 if rating = ‘PG-13’ then output PG13_Movies ;

 if rating = ‘R’ then output R_Movies ;

run ;

Chains of IF-THEN/ELSE Statements
A more efficient technique of coding chains of IF-THENs is to insert an ELSE between each IF-THEN, because once a condition is
satisfied it branches out of the IF-THEN/ELSE logic construct. An example appears below.

data G_Movies PG_Movies PG13_Movies R_Movies ;

 set libref.movies ;

 if rating = ‘G’ then output G_Movies ;

 else

 if rating = ‘PG’ then output PG_Movies ;

 else

 if rating = ‘PG-13’ then output PG13_Movies ;

 else

 if rating = ‘R’ then output R_Movies ;

run ;

Assigning Many Values
SAS often provides users with many approaches to accomplish the same result. This is also the case with the assignment of
values. In the two examples illustrated below, an okay approach is illustrated followed by a better approach.

Okay Approach to Assigning Many Values
Although using a series of IF-THEN/ELSE statements to assign many values is acceptable, it can be harder to maintain and
increases CPU costs.

data Movies_with_IF_THEN_ELSE ;

 set libref.Movies ;

 if rating = ‘R’ then age_grp = ‘>=17’ ;

 else

Best Practice Programming Techniques Using SAS® Software, continued SGF 2017

8

 if rating = ‘PG-13’ then age_grp = ‘>=13’ ;

 else

 if rating = ‘PG’ then age_grp = ‘>=13’ ;

 else

 if rating = ‘G’ then age_grp = ‘All Ages’ ;

run ;

Better Approach to Assigning Many Values
A more maintainable and efficient method to assign many values is to use PROC FORMAT with the PUT function.

proc format ;

 value $age_grp “G” = “All Ages"

 “PG” = “>=13"

 “PG-13” = “>=13“

 “R” = “>=17” ;

run ;

data Movies_with_Age_grp ;

 set libref.Movies ;

 age_grp = put (rating, $age_grp.) ;

run ;

Processing Data in a Repetitive Way
Data can be processed in a repetitive way in a variety of methods. The two methods that will be illustrated here are DATA step
approaches including without arrays and with arrays.

Processing Repetitive Data without an Array
Without arrays, some tasks require a series of IF-THEN/ELSE statements to be written, making the code harder to maintain. An
example appears below.

data IF_THEN_Example ;

 set transposed_movies ;

 if _NAME_ = ‘Length’ and col1 < 100 then col1 = . ;

 else

 if _NAME_ = ‘Length’ and col2 < 100 then col2 = . ;

 else

 else

 if _NAME_ = ‘Length’ and col22 < 100 then col22 = . ;

run ;

Processing Repetitive Data with an Array
Arrays can be used to reduce the amount of code that is needed to perform a repetitive task. With arrays, actions on variables
can be repeated any number of times and the code is typically easier to maintain. An example appears below.

data Array_Example;

 set transposed_movies;

 array a1 (22) col1-col22;

 do i = 1 to 22;

 if _NAME_=‘Length’ and a1(i) < 100 then a1(i) = .;

 end;

run;

Best Practice Programming Techniques Using SAS® Software, continued SGF 2017

9

BY-group Processing with CLASS
Specifying a CLASS statement with PROC MEANS is an efficient way to process BY-groups without the need to first perform
costly sort operations. An example appears below.

proc means data=libref.movies ;

 class category ;

run ;

Specifying an OUT= Parameter with PROC SORT
To prevent writing over the original SAS dataset with PROC SORT, always specify an OUT= parameter with a different libref
and/or a different dataset name. An example appears below.

proc sort data=libref.Movies

 out=WORK.sorted_movies ;

 by rating ;

run ;

Conclusion
Code is an intellectual property and should be treated as a tangible asset by the organization. This paper offers numerous best
practice programming techniques to clarify the sequence of instructions in code, permit others to read code as well as
understand it, assist in the maintainability of code, permit greater opportunity to reuse code, achieve measurable results,
reduce costs in developing and supporting code, and assist in performance improvements (e.g., CPU, I/O, Elapsed time, DASD,
Memory).

References
Cody, Ron (2008), Cody’s Data Cleaning Techniques Using SAS®, SAS Institute Inc., Cary, NC, USA.

DeFoor, Jimmy (2006). “PROC SQL: A Primer for SAS® Programmers”, Proceedings of the SAS Users Group International (SUGI)
2006 Conference.

Fehd, Ronald (2004), “Array: Construction and Usage of Arrays of Macro Variables” SAS Institute, Inc. Proceedings of SUGI 29.

Cary, NC: SAS Institute Inc.

First, Steven and Ronk, Katie (2005), “SAS® Macro Variables and Simple Macro Programs” SAS Institute, Inc. Proceedings of

SUGI 30. Cary, NC: SAS Institute Inc.

Lafler, Kirk Paul and Mary Rosenbloom (2016), “Best-Practice Programming Techniques Using SAS® Software”, Proceedings of
the 2016 Pharmaceutical SAS Users Group (PharmaSUG) Conference, Software Intelligence Corporation, Spring Valley, CA,
USA.

Lafler, Kirk Paul (2015), “Top Ten SAS® Performance Techniques”, Proceedings of the 2015 Western Users of SAS Software
(WUSS) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2013). PROC SQL: Beyond the Basics Using SAS, Second Edition, SAS Institute Inc., Cary, NC, USA.

Rosenbloom, Mary and Lafler, Kirk Paul (2013), “Best Practices: PUT More Errors and Warnings in My Log, Please!”, Proceedings
of the 2013 SAS Global Forum (SGF) Conference.

Rosenbloom, Mary and Lafler, Kirk Paul (2012), “Best Practices: Clean House to Avoid Hangovers”, Proceedings of the 2012 SAS
Global Forum (SGF) Conference.

Rosenbloom, Mary and Carpenter, Art (2015), “Are You a Control Freak? Control Your Programs – Don’t Let Them Control
You!”, Proceedings of the 2015 Western Users of SAS Software (WUSS) Conference.

Whitlock, Ian (2008), “The Art of Debugging”, SAS Institute, Inc. Proceedings of the 2008 SAS Global Forum (SGF) Conference.
Cary, NC: SAS Institute Inc.

Acknowledgments
The authors thank the SAS Global Forum (SGF) 2017 Conference Chair; the SGF Executive Board; and SAS Institute for organizing
and supporting a great conference!

http://www2.sas.com/proceedings/sugi31/250-31.pdf
http://www2.sas.com/proceedings/sugi29/070-29.pdf
http://www2.sas.com/proceedings/sugi30/130-30.pdf
http://www.lexjansen.com/pharmasug/2016/AD/PharmaSUG-2016-AD11.pdf
http://www.lexjansen.com/wuss/2015/23_Final_Paper_PDF.pdf
http://support.sas.com/resources/papers/proceedings13/350-2013.pdf
http://support.sas.com/resources/papers/proceedings12/049-2012.pdf
https://support.sas.com/resources/papers/proceedings15/2220-2015.pdf
https://support.sas.com/resources/papers/proceedings15/2220-2015.pdf
http://www2.sas.com/proceedings/forum2008/165-2008.pdf

Best Practice Programming Techniques Using SAS® Software, continued SGF 2017

10

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Google is the registered trademark of Google Inc., Mountain View, CA,
USA. Other brand and product names are trademarks of their respective companies.

About the Author
Kirk Paul Lafler is an entrepreneur, consultant and founder of Software Intelligence Corporation, and has been using SAS since
1979. Kirk is a SAS Certified Professional, provider of IT consulting services, advisor and professor at UC San Diego Extension and
educator to SAS users around the world, mentor, and emeritus sasCommunity.org Advisory Board member. As the author of six
books including Google® Search Complete (Odyssey Press. 2014) and PROC SQL: Beyond the Basics Using SAS, Second Edition
(SAS Press. 2013); Kirk has written hundreds of papers and articles; been an Invited speaker and trainer at hundreds of SAS
International, regional, special-interest, local, and in-house user group conferences and meetings; and is the recipient of 25
“Best” contributed paper, hands-on workshop (HOW), and poster awards.

Mary Rosenbloom is a statistical programmer in Lake Forest, California. She has been using SAS for over 20 years, and is
especially interested in using macros to generate data-driven code, documenting best practice techniques, DDE, and program
validation methods.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Senior SAS® Consultant, Application Developer, Data Analyst, Educator and Author

Software Intelligence Corporation
E-mail: KirkLafler@cs.com

LinkedIn: http://www.linkedin.com/in/KirkPaulLafler
Twitter: @sasNerd

mailto:KirkLafler@cs.com
http://www.linkedin.com/in/KirkPaulLafler

