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ABSTRACT  

Since its inception, SAS® Text Miner has used the singular value decomposition (SVD) to convert a term-
document matrix to a representation that is crucial for building successful supervised and unsupervised 
models. In this presentation, using SAS® code and SAS Text Miner, we compare these models with 
those that are based on SVD representations of subcomponents of documents. These more granular 
SVD representations are also used to provide further insights into the collection. Examples featuring 
visualizations, discovery of term collocations, and near-duplicate subdocument detection are shown. 

INTRODUCTION  

The singular value decomposition, or SVD, is a key technique for representing high-dimensional, sparse 
data in a low-dimensional space. The technique allows for long, sparse document vectors to be 
represented as compressed, dense vectors that can be used by data mining or machine learning 
algorithms. SAS Text Miner leverages the SVD for building and applying models (Albright, 2004). 

A vector representation works particularly well on short textual observations of a sentence to about a 
paragraph in length. As documents become longer, the representation can become less effective, 
particularly if those documents convey multiple themes or concepts. In this case, it might be beneficial to 
divide the document so that multiple vectors are used for each one. Each individual vector can 
encapsulate a small portion of text such as a sentence or a group of sentences. The SVD is then applied 
to these subcomponent vectors and used for text mining.  

This subdivision of documents not only makes the SVD more effective, it also permits an investigation 
and discovery of other characteristics of the collection that are based on local information between terms. 
By treating sentences or groups of sequential sentences as “documents”, new and interesting analysis 
might be available to you. In this paper, the following examples are discussed and demonstrated: 

 more focused and informative clusters 

 document and subdocument similarity 

 term collocations 

 sentence visualizations  

 supervised learning 

 

In the next section, an approach for creating the subcomponents of documents using sentences is 
explained. Following that, a section is devoted to each of the bullets listed above. In each case, they draw 
on various nodes within SAS Text Miner. Any additional SAS code that is required to accomplish the task 
is provided in each section. Finally, some conclusions are made at the end of this paper.  

DOCUMENTS, SENTENCES AND OTHER SUBCOMPONENTS 

In this section, code is provided to create a new data set in which subcomponents of the original 
document become separate textual observations. Because SAS Text Miner is designed to work at the 
document level, these subcomponents are then interpreted as documents when SAS Text Miner runs. 
Later in the paper, you can see how SAS Text Miner results can then be mapped back to reflect on the 
original document based on the document identifier variable, or docid. 
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A data set of the text of 10,000 Wikipedia entries is used to demonstrate the process of transforming your 
data to a collection of sentences. These sentences are used in subsequent sections of this paper to show 
various examples. 

 

The Output Term Position Data Set 

For each strategy outlined below, PROC HPTMINE is used to create the outpos (term position) data set. 
This data set provides needed information about sentence breaks and the location of parsed terms 
relative to one another. A display of a few observations of this data set are shown in Figure 1. 

 

 

Figure 1. Observations and Variables from the outpos Data Set 

 

As you can see, the data set in Figure 1 shows a row for each occurrence of every term in every 
document in the collection. Note that the natural language processing features such as noun groups and 
tagging are not being used for this initial run since the goal is only to determine sentence boundaries. The 
code to accomplish this task is shown below: 

  

proc hptmine data=documents; 

    doc_id doc_id; 

    var text; 

    parse  

          entities =none 

          nostemming 

          notagging  

          outpos   =position 

          nonoungroups 

          shownumpunct 

          buildindex 

          ; 

    performance details ; 

run; 

 

 

Now that the outpos data set has been created, the following sections show how to reconstruct data sets 
in which the sentences or groups of sentences become the documents in a new data set.  

Sentences Become Documents 

The following code processes the outpos data set that was formed in the previous section into a new 
documents data set. One DATA step calculates the start and length of each sentence in bytes, and the 

second DATA step uses the substr function to copy the identified sentences from the original text 

variable into a new observation. The resulting data set, sentenceObs, contains a row for each sentence 
in the collection and three variables: the sentence, a unique identifier for the sentence, and the ID of the 
document that contains that sentence. This data set can be used as input to SAS Text Miner where the 
sentences can be reinterpreted as documents for the analysis. 
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data sentenceSize; 

retain document start size; 

set position; 

by document sentence; 

if First.sentence then start=_start_+1; 

if Last.sentence then do; 

   size=_end_ -start+2; 

   output; 

end; 

keep document start size; 

run; 

 

data sentenceObs; 

length sentences $1000; 

merge sentenceSize(in=A ) documents (rename=(docid=document) ); 

by document; 

if A then do; 

sentences=substrn(text,start,size); 

output; 

end; 

keep sentences document; 

run;  

 

In order to improve the performance and effectiveness of some of the analysis done later in the paper, a 
final DATA step, shown below, removes sentences if they consist of only one or two words and adds a 
sentence id, sid, to each observation.   

 

data tm.sentenceObs; 

retain sid 0; 

set sentenceObs; 

if lengthn(kstrip(sentences)) ge lengthn(kstrip(kcompress(sentences)))+ 2 

then do; 

    sid=sid+1; 

    output; 

end; 

run; 

 

A few sample sentence observations from the Wikipedia data set are shown in Figure 2.  

 

Figure 2. The First Few Sentences of a Wikipedia Data Set 
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CLUSTERS AND TOPICS 

As you might expect, using sentences in an exploratory analysis produces different clustering and/or topic 
results than does analyzing the entire document at once. Because of its limitations, clustering, in 
particular, can benefit from this approach.   

Clusters partition the observations such that each observation belongs in exactly one group, as opposed 
to topic analysis, where an observation might relate to any number of topics. When the inputs are 
documents, the cluster results tend to produce high-level topics or themes. In a sentence-based analysis, 
the clusters now partition the sentences rather than the original documents. Since each document can 
contain many sentences, each document might still be associated with multiple clusters. The behavior 
becomes very similar to that of the Text Topic node.  

Producing the sentence clusters in SAS Text Miner is straightforward. Once the data set of sentences is 
obtained, the Text Parse, Text Filter, and Text Cluster nodes can be run as normal. Then, on output from 
the Text Cluster Node, the following small piece of code can be run in a SAS Code node to assign 
documents to clusters based on the sentences that the documents contain.  

data docCluster; 

set emws1.TextCluster_train; 

array clus[*] TextCluster_doc1-TextCluster_doc64; 

retain clus; 

by document; 

if First.document then do; 

    do i=1 to dim(clus); 

     clus[i]=0; 

    end; 

end; 

clus[TextCluster_cluster_]=1; 

if Last.document then do; 

   numCluster=0; 

   do i=1 to dim(clus); 

     numCluster= numCluster+clus[i]; 

   end; 

   output; 

end; 

keep document numCluster TextCluster_doc: ; 

run; 

 

proc means data=docCluster; 

variable numCluster; 

run; 

 

 

The new binary variables TextCluster_doc1- TextCluster_docn, where n is the number of clusters, 
contains a 0 or a 1 indicating whether at least one sentence in that document is in that cluster (1) or not 
(0), allowing documents to now be members of more than one cluster.  

When the above technique was applied to the Wikipedia data set, the discovered clusters revealed 
aspects of the collection that were not apparent when clustering the original articles. For example, the 
52nd cluster (out of 64), shown in Figure 3, appears to be about winning or receiving an award of some 
kind. This theme was not evident when the original articles were clustered with either 64 or even 500 
clusters.  When the entire document was the context, the cluster was not evident because it cut across 
several more prominent document clusters about sports figures, military personal, and musicians. While 
aspects of these types of articles fit this recognition theme partially, because documents can belong to 
only a single cluster, the theme is not revealed as its own cluster unless the sentence analysis is used. 
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Figure 3. An Example Cluster from Clustering Sentences 

 

In comparison, when the Text Topic node was run on the original articles, it could pick up on this award 
theme, confirming that sentence-based clustering behaves more like document-based topics.  

There are differences between clustering on sentences and a topic analysis on the documents that 
contain them, however. In the table below, the two types of runs are compared using 64 and 500 
clusters/topics. For clustering, the sentences were clustered and the documents were assigned to the 
corresponding cluster. The topic run was performed on the original articles. The table shows the mean 
number of clusters/topics that each document belonged to, as well as the standard deviation of this 
variable. In addition, the minimum and maximum number of clusters any one document belonged to is 
shown. 

 Number 
of 

Clusters  

Mean 
Number 
per 
Document 

Std. 
Dev 

Minimum 

 

Maximum 

Clusters  64 5.78 5.07 1 33 

500 8.28 9.03 1 55 

Topics 64 3.62 2.56 0 17 

500 28.7 22.3 0 125 

Table 1. Cluster and Topic Statistics  

As the requested number of topics/clusters increases, the average number of topics/clusters that a 
document belongs to also increases. This increase is much more dramatic for topics. For clustering, the 
maximum number of clusters a document could belong to is obviously bound by the number of sentences 
that the document contains. The topic functionality has no such upper bound. In fact, the Text Topic node 
allows for customization of its settings, so how many documents get assigned to individual topics can be 
controlled if desired.  

Perhaps the best reason to use a sentence-based approach when a large number of overall topics or 
clusters is desired is because the Text Topics node requires as many SVD dimensions to be calculated 
as there are topics. The Text Cluster node can use the same number of dimensions, typically 50 or 100, 
regardless of how many clusters you request.  

 

DOCUMENT AND SUBDOCUMENT SIMILARITY 

BACKGROUND 

Document similarity can be important in a number of contexts. One common application involves 
identifying and removing redundant information from your collection. This redundancy should be 
considered because it can inappropriately alter your analysis. For example, news releases frequently get 
picked up by multiple media outlets and rebroadcasted so that multiple occurrences of any given news 
story can exist in your collection. Each new release might also be surrounded by text that varies from 
different outlets. So the entire document is different, but a subcomponent of that document is practically 
identical. How can you identify these duplicates and remove the multiple versions of them? 
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Other tasks are also relevant, such as removing the history thread of a set of email or forum posts 
because the thread is contained in other emails. Plagiarism is another interesting application area where 
the SVD has proven useful (Ceska, 2008). Plagiarism detection involves determining when either exactly 
copied, slightly altered, or paraphrased portions of text from some document matches, in some sense, 
those in a reference data set. 

DOCUMENT SIMILARITY AND THE SVD 

Subdocument similarity algorithms are similar to search and retrieval tasks. A reference data set is 
searched against a new observation. In this case, the new observation is a document rather than a query, 
and the process is to detect whether the new document is similar to any of those in a reference set. 

First is a training phase in which the reference data set is prepared for the scoring action. The training 
phase creates the sentence representation for each document in the reference data set. This can be 
done with a flow containing either the Text Cluster node or the Text Topic node, since both of them 
produce the SVD dimensions.  

Note that if your reference set itself contains duplications, you might want to first remove them by 
gradually rebuilding this reference set. Start with a few documents in your reference set and then, before 
you add additional entries to the set, score them for duplication against the current reference.  

Second, the scoring phase creates the sentence representations for the documents that are under 
consideration and compares the sentences to the sentences of each document in the reference training 
data. The score code from the cluster or topic node creates the scored sentence representation, but in 
order to calculate distances from each sentence in your training data to each sentence in the data to be 
scored, you need the code that appears in the next section.  

Euclidean distance, rather than cosine similarity, can be used to determine distance between sentences 
that have been projected into the SVD space because the vectors have been normalized to unit length in 
SAS Text Miner. In addition, if the entropy or idf (inverse document frequency) weight has been chosen, 
frequently occurring terms will have already been down-weighted so that the rarer but concentrated terms 
have the greatest influence on similarity.  

DEMONSTRATING SIMILARITY DETECTION 

The following heuristics are used to detect possible duplicated sentences in the Wikipedia data set.  

1. A sentence is considered a potential copy if it is within a distance of .0001 of a sentence in 
the reference set. Allowing some tolerance threshold means that sentences do not have to be 
exactly the same. They might have been altered by a word or two. This near duplication is 
important if we were to attempt to detect plagiarism, for example.  

2. If a sentence in the document under consideration is close to more than one sentence from 
the reference set, it is not considered a candidate match as it is unlikely to be a copied 
version of a sentence. This prevents the detection of short common sentences as duplicates, 
which can give false positives. 

3. A document under consideration triggers further review if it contains at least two potentially 
copied sentences. This helps avoid spurious matches. 

If hold-out data were available, these threshold values could be tuned for the particular data you are 
analyzing, your number of SVD dimensions, and the type of copying that you are detecting. 

The code for the Euclidean distance computation between the observations in the training set and the 
validation set is shown below. It does not assume that the sentences are sequential, although typically 
that is the case. 

 

/* for performance reasons, eliminate variables then place them back on */ 

data traincluster; 

set  emws1.textcluster4_train(rename= (sid=trainsid document=traindocument 

textcluster4_SVD1-textcluster4_SVD&numdim = trainsvd1-trainsvd&numdim)); 
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keep trainsid traindocument trainsvd1-trainsvd&numdim; 

run;  

 

data validatecluster; 

set  emws1.textcluster4_validate; 

keep sid document textcluster4_SVD1-textcluster4_SVD&numdim; 

run; 

 

 

/* distance calculation */ 

 

data cartesianDist;  

  set traincluster; 

  array trainloc[*] trainSVD1-trainSVD&numdim; 

  do i=1 to n; 

     

  set validatecluster point=i nobs=n; 

 array valloc[*] textcluster4_SVD1-textcluster4_SVD&numdim; 

 sse=0; 

    do j=1 to dim(valloc); 

        sse=sse+((trainloc(j)-valloc(j))**2); 

    end; 

 if sse<.0001 and textcluster4_SVD1>0 then output; 

 keep trainsid sid sse; 

  end; 

run; 

 

/* fold needed variables back onto data */ 

 

proc sql; 

create table compSent as 

select a.*, b.sentences,b.document, c.sentences as trainsentences, 

c.document as traindocument 

from cartesianDist a, emws1.textcluster4_validate b, 

emws1.textcluster4_train c 

where a.sid=b.sid and a.trainsid=c.sid; 

quit; 

 

 

 

Now you can select only the documents that match at least two sentences. However, if a possibly copied 
sentence matches more than one sentence from other documents in the reference set, it is not 
considered duplicated. This prevents the detection of short common sentences as duplicates, which can 
give false positives.  

 

/* select the unique matches of at least 3*/ 

proc sort data=subcompSent; 

by sid traindocument; 

run; 

 

 

data triggerMatch; 

length composite $3000 traincomposite $3000; 

retain matchcount composite traincomposite; 

set subcompSent; 

by sid traindocument ; 
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if first.sid and first.traindocument then matchcount=0; 

if first.traindocument then do; 

    matchcount=1; 

 composite = left(trim(sentences)); 

 traincomposite = left(trim(trainsentences)); 

end; 

else do; 

    matchcount = matchcount +1; 

 composite = left(trim(composite))||"... " || left(trim(sentences)); 

 traincomposite = left(trim(traincomposite))||"... 

"||left(trim(trainsentences)); 

end; 

 

if last.sid and last.traindocument and matchCount gt 1 then output; 

run; 

 

 

 

To investigate how well the approach works, 80% of the Wikipedia data set was placed into the reference 
data set (train) and the remaining 20% into a data set to score (validate). The split was done across  
articles so that sentences from the same article always remain in the same split.  

Using the process described above, 31 documents from the 2000 found in the validation data triggered as 
potential duplication. Initially this was surprising but after examining the matches, it was easily explained. 
Two of the 31 are shown in Figure 4 and are representative of the others. The matched sentences have 

been concatenated into composites (called composite for the test document and traincomposite for 

the corresponding train document) with an ellipse between them and are shown in the figure, along with 
the titles of the matched articles. The matches are not exact but rather indicate that the same structure or 
pattern was used in creating the entries. 

 

Figure 4. Example Document and Sentence Matches Found from the Partitioned Wikipedia Data Set 
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As a secondary example, we made an individual copy, and then made minor alterations to sections of text 
from an article in the reference data set and placed the altered text into one of the holdout articles. Then 
the holdout article was scored against the reference data. Figure 5 shows an example of the detection. 

Again, the composite variable holds the sentence that matched those of the training document and 

placed in traincomposite. 

 

Figure 5 Subdocument Duplication Detection Example 

Not all types of near duplication will be detected with this approach. If the duplicated sentence contains 
more than a couple of different terms, it is likely to be too far away in the SVD space to be considered a 
match. A rich synonym mapping could help in these situations. 

Also, if the sentence is restructured, the sentences will not match. In one example, a pair of sentences 
from the reference collection was changed to a compound sentence. In this case, no match was detected 
because the sentence boundary had changed significantly. Other features such as word n-grams would 
have to be used instead of sentences in order to detect this type of match. 

If you need to score in batch, performance and memory can be an issue. A performance improvement 
that is not shown but that should be straightforward to implement involves using the cluster prediction for 
the sentences you are scoring. The reference data sentences are already being clustered at train time. In 
order for you to obtain the SVD dimensions during scoring, the sentences you are scoring receive a 
cluster membership prediction. The distance comparison for any sentence should need to be done only 
against those in the same cluster from the reference data rather than with all the reference data 
sentences. 

TERM COLLOCATIONS 

BACKGROUND 

The word collocation has several definitions. Some use the word to describe a set of terms that form a 
phrase and have a distinct meaning and usage such as “to pay attention” or “to feel under the weather”. 
Others define a collocation with a broader scope. For our purposes, a collocation of interest is a set of 
terms that satisfy the two following conditions: 
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1. The terms in the set tend to occur near one another. For our purposes, the set should occur 
within the same sentence. 

2. The terms in the set occur together at an unexpectedly high rate relative to the rate of their 
individual occurrences.  

In addition, the collocations that are the most interesting are the ones that also occur frequently in the 
collection. Examples of collocations we might be interested in finding include frequent noun groups such 
as “data mining” or common non-sequential terms that are used together such as “launch” and “attack”. 

The noun group functionality in SAS Text Miner is a concept related to a collocation but that uses 
linguistic information within a sentence to identify when sequential terms are functioning together as a 
phrase. A collocation can form a noun group, but it also can just be a set of terms that co-occur within a 
sentence regardless of the linguistic structure. The elements in the collocation don’t even need to be 
sequential. 

Recognizing collocations is important and useful because often a set of terms is used to characterize, 
summarize, or describe a document or a group of documents. This list of descriptive terms can be more 
informative if you know which of those terms actually appear together and near one another rather than 
being independent of each other within the context. 

COLLOCATIONS AND THE SVD 

Sentence-level analysis and the SVD can be useful in identifying collocations without doing direct counts 
of the intersection of terms. Direct counting can be expensive, particularly when identifying collocations 
consisting of more than three terms. The SVD approach, shown in the following section, can be a fast and 
effective alternative if you are already doing a cluster analysis or topic analysis.   

The main insight in the approach is that collocations of interest are strong influencers of clusters and 
topics. They influence because they are both multi-term and relatively frequent as a multi-term. So, it is 
likely that the best collocations will be evident as important influencers in the clusters of sentences.  

If a good collocation does exist in your cluster, then the individual terms that make up the collocation will 
necessarily be near one another in the SVD space. The next section demonstrates a process to identify 
the collocations from the current set of descriptive terms included in a label for a cluster in the Text 
Cluster node and for topic labels in the Text Topic Node. 

DETECTING COLLOCATIONS IN A TERM LIST 

In this example, the descriptive terms from a cluster discovered by the Text Cluster node are analyzed to 
identify potential collocations within the elements of this set. Currently the list of terms is ordered by 
importance and presented as a list but there is no indication if some of the terms on the list actually are 
dependent and form a collocation. In the approach that follows, if any of the terms are near one another in 
the SVD space, they are considered a collocation and the precise counts are calculated to confirm the 
decision. 

Figure 6 shows the 50 descriptive terms from one of the 64 clusters found on the Wikipedia data set. The 
plus sign in front of a term means it is parent term that represents many related terms that have been 
assigned as a synonym or stem.   

 

Figure 6. Fifty Terms from a Sentence-Based Cluster 

The terms were extracted, stripped of their leading plus sign if they had one, and placed in a data set to 
be scored, one term per observation. You can use the DISTANCE procedure to calculate distances and 
find terms that are near one another from the term list. When the data is sorted by distance, the shortest 
distances indicate the purest collocations among the members of the term list. 
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In order to get an indication of how well this performed, the actual counts were also generated for how 
often each term in the list occurred independently and with the other terms in the list. This allows for a 
mutual information calculation. The ranking comparison of the top 25 out of the possible 1275 
combinations is shown in Figure 7. The SVD approach emphasizes word pairs that occur very rarely 
outside the cluster.  

 

Figure 7. Highest-Ranking Collocations of a Cluster's Descriptive Terms 
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VISUALIZING TERMS, SENTENCES, AND DOCUMENTS 

The SVD dimensions from either the Text Topic node or the Text Cluster node can be used for two-
dimensional visualizations of terms, sentences, documents, or groups of documents when the mean of 
each SVD has been calculated. All of these objects can be projected into the same space and plotted.  

Once the representation is obtained, there are several ways you can project them into two-dimensional 
coordinates. One approach is to use multidimensional scaling with the MDS procedure. PROC 
DISTANCE is used prior to PROC MDS to create the input table for PROC MDS. In Figure 8, the “win 
award” cluster is plotted along with several clusters about sports, military, and music using ODS and 
PROC MDS. Note how the award cluster is located in the center of the diagram as it shares aspects with 
the other clusters; it spans the topic of sports, military, and music. 

 

 

Figure 8. Multidimensional Scaling Plot of Several Clusters 

 

The SAS code to generate Figure 8 from a table of cluster means is shown below: 

 

data plotclusters(drop =_cluster_); 

   length title $32; 

   set emws1.textcluster_clusters; 

   cluster=put(_cluster_,best12.); 

   title=_cluster_||":"||scan(clus_desc,1," ")||" "||scan(clus_desc,2," "); 

   if  _N_=49 or _N_=9 or _N_=2 or _N_=3 or _N_=5 or _N_=11 or _N_=19 or           

_N_= 52 or  _N_=8; 

run; 
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proc distance data=plotclusters out=plotit method=EUCLID nostd;                                            

    var RATIO(_mean1-_mean100);                                                                                     

    id title;                                                                                                          

run;                                     

proc mds data=plotit out=plotit                                                                      

    level=ratio dimension=2 noprint;                                                                                     

  run;     

 

                                                                                                                  

In the above example, a higher number of dimensions (100) was used with the SVD so MDS was applied 
to create two dimensions. If only two SVD dimensions are computed to begin with, then they can be used 
directly to plot.1 The two documents from the subdocument duplicate detection example of Figure 5 are 
shown in Figure 9. The sentences of both documents along with the documents themselves are projected 
into this two-dimensional representation. The two colors represent sentences from the two different 
documents, and those of opposite color that are near one another are the sentences that were copied 
and altered from one document to the other. The points were also jittered so that the overlapped ones 
can be seen. 

 

Figure 9. A Plot of a Subdocument Duplication Example 

SUPERVISED LEARNING 

Supervised learning presents a challenge when sentences or other subcomponents of documents are to 
be used. Each sentence needs a label for training, but since the label provided corresponds to the 
document, it is not always clear how to do this assignment. You could transfer the label from the 

                                                           

1 SAS Text Miner normalizes the projections to unit length, so you shouldn’t choose to plot only two if 
more were calculated. 
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document to each of its sentences, but this defeats the purpose of isolating aspects of a document that 
might be more informative versus those that perhaps misrepresent the label. 

Manually labeling sentences is too time-consuming and not a realistic solution either, so ensuring that 
each sentence is labeled properly often requires a different approach. Active learning or other semi-
supervised approaches are possible. They involve labeling some representative sentences and then 
making a prediction about your unlabeled sentences. The previously unlabeled sentences with the 
highest posterior probability are then labeled according to the model (and perhaps reviewed by the 
modeler) and the process repeats. Eventually you have a collection of sentences from your document, 
some of which are labeled positive and the others labeled negative. However, unless they all are 
reviewed, not all of these sentences will be accurately labeled and predictions will suffer. 

Another approach is to just select sentences that are the most likely to be indicative of the label and throw 
the others out. The subset receives the same label as the original document, so there is no decision to be 
made. The desired outcome is that the selected sentences create a smaller, but information-rich, 
document for the prediction. Depending on the content you are learning with, this might be done by 
choosing the first few sentences of each document, the abstract of a document, or, if you have additional 
information, you could choose sentences with certain characteristics such as sentences containing a 
keyword.  

CONCLUSION 

Vector space models are dependent on the context that you generate term counts from. Typically, in text 
mining, the document provides the context. In this paper, the perspective shifted from documents to the 
sentences they contain. The results of the analysis also shifted from a discussion about main themes and 
topics in a document to a more refined analysis driven by the local information within each sentence.  

The sentence analysis led to the following results: 

 clusters were delivered that were no longer exclusively describing a document’s primary theme 
but also included secondary themes found within document 

 duplication within a document was detected, even if the documents themselves were quite 
different overall 

 term pairs were discovered that were important collocations 

 visual relationships between sentences in multiple documents were created 

The applications for a sentence-based approach are not limited to what was shown here. Whenever you 
feel that more local information between terms is important, you should consider this approach.  

Finally, the sentences themselves provided a convenient and natural context for the creation of the 
vectors, but you are not limited to that context. Your context could be based on document structure such 
as an abstract or elements in a list, or your context could be done with a sliding window across your 
document that captures n-grams for each vector. Your text mining goals and your data will drive these 
decisions.  
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