
1

Paper 6241-2016

Getting More from the Singular Value Decomposition (SVD): Enhance Your
Models with Document, Sentence, and Term Representations

Russ Albright, James Cox, and Ning Jin, SAS Institute Inc., Cary, NC

ABSTRACT

Since its inception, SAS® Text Miner has used the singular value decomposition (SVD) to convert a term-
document matrix to a representation that is crucial for building successful supervised and unsupervised
models. In this presentation, using SAS® code and SAS Text Miner, we compare these models with
those that are based on SVD representations of subcomponents of documents. These more granular
SVD representations are also used to provide further insights into the collection. Examples featuring
visualizations, discovery of term collocations, and near-duplicate subdocument detection are shown.

INTRODUCTION

The singular value decomposition, or SVD, is a key technique for representing high-dimensional, sparse
data in a low-dimensional space. The technique allows for long, sparse document vectors to be
represented as compressed, dense vectors that can be used by data mining or machine learning
algorithms. SAS Text Miner leverages the SVD for building and applying models (Albright, 2004).

A vector representation works particularly well on short textual observations of a sentence to about a
paragraph in length. As documents become longer, the representation can become less effective,
particularly if those documents convey multiple themes or concepts. In this case, it might be beneficial to
divide the document so that multiple vectors are used for each one. Each individual vector can
encapsulate a small portion of text such as a sentence or a group of sentences. The SVD is then applied
to these subcomponent vectors and used for text mining.

This subdivision of documents not only makes the SVD more effective, it also permits an investigation
and discovery of other characteristics of the collection that are based on local information between terms.
By treating sentences or groups of sequential sentences as “documents”, new and interesting analysis
might be available to you. In this paper, the following examples are discussed and demonstrated:

 more focused and informative clusters

 document and subdocument similarity

 term collocations

 sentence visualizations

 supervised learning

In the next section, an approach for creating the subcomponents of documents using sentences is
explained. Following that, a section is devoted to each of the bullets listed above. In each case, they draw
on various nodes within SAS Text Miner. Any additional SAS code that is required to accomplish the task
is provided in each section. Finally, some conclusions are made at the end of this paper.

DOCUMENTS, SENTENCES AND OTHER SUBCOMPONENTS

In this section, code is provided to create a new data set in which subcomponents of the original
document become separate textual observations. Because SAS Text Miner is designed to work at the
document level, these subcomponents are then interpreted as documents when SAS Text Miner runs.
Later in the paper, you can see how SAS Text Miner results can then be mapped back to reflect on the
original document based on the document identifier variable, or docid.

2

A data set of the text of 10,000 Wikipedia entries is used to demonstrate the process of transforming your
data to a collection of sentences. These sentences are used in subsequent sections of this paper to show
various examples.

The Output Term Position Data Set

For each strategy outlined below, PROC HPTMINE is used to create the outpos (term position) data set.
This data set provides needed information about sentence breaks and the location of parsed terms
relative to one another. A display of a few observations of this data set are shown in Figure 1.

Figure 1. Observations and Variables from the outpos Data Set

As you can see, the data set in Figure 1 shows a row for each occurrence of every term in every
document in the collection. Note that the natural language processing features such as noun groups and
tagging are not being used for this initial run since the goal is only to determine sentence boundaries. The
code to accomplish this task is shown below:

proc hptmine data=documents;

 doc_id doc_id;

 var text;

 parse

 entities =none

 nostemming

 notagging

 outpos =position

 nonoungroups

 shownumpunct

 buildindex

 ;

 performance details ;

run;

Now that the outpos data set has been created, the following sections show how to reconstruct data sets
in which the sentences or groups of sentences become the documents in a new data set.

Sentences Become Documents

The following code processes the outpos data set that was formed in the previous section into a new
documents data set. One DATA step calculates the start and length of each sentence in bytes, and the

second DATA step uses the substr function to copy the identified sentences from the original text

variable into a new observation. The resulting data set, sentenceObs, contains a row for each sentence
in the collection and three variables: the sentence, a unique identifier for the sentence, and the ID of the
document that contains that sentence. This data set can be used as input to SAS Text Miner where the
sentences can be reinterpreted as documents for the analysis.

3

data sentenceSize;

retain document start size;

set position;

by document sentence;

if First.sentence then start=_start_+1;

if Last.sentence then do;

 size=_end_ -start+2;

 output;

end;

keep document start size;

run;

data sentenceObs;

length sentences $1000;

merge sentenceSize(in=A) documents (rename=(docid=document));

by document;

if A then do;

sentences=substrn(text,start,size);

output;

end;

keep sentences document;

run;

In order to improve the performance and effectiveness of some of the analysis done later in the paper, a
final DATA step, shown below, removes sentences if they consist of only one or two words and adds a
sentence id, sid, to each observation.

data tm.sentenceObs;

retain sid 0;

set sentenceObs;

if lengthn(kstrip(sentences)) ge lengthn(kstrip(kcompress(sentences)))+ 2

then do;

 sid=sid+1;

 output;

end;

run;

A few sample sentence observations from the Wikipedia data set are shown in Figure 2.

Figure 2. The First Few Sentences of a Wikipedia Data Set

4

CLUSTERS AND TOPICS

As you might expect, using sentences in an exploratory analysis produces different clustering and/or topic
results than does analyzing the entire document at once. Because of its limitations, clustering, in
particular, can benefit from this approach.

Clusters partition the observations such that each observation belongs in exactly one group, as opposed
to topic analysis, where an observation might relate to any number of topics. When the inputs are
documents, the cluster results tend to produce high-level topics or themes. In a sentence-based analysis,
the clusters now partition the sentences rather than the original documents. Since each document can
contain many sentences, each document might still be associated with multiple clusters. The behavior
becomes very similar to that of the Text Topic node.

Producing the sentence clusters in SAS Text Miner is straightforward. Once the data set of sentences is
obtained, the Text Parse, Text Filter, and Text Cluster nodes can be run as normal. Then, on output from
the Text Cluster Node, the following small piece of code can be run in a SAS Code node to assign
documents to clusters based on the sentences that the documents contain.

data docCluster;

set emws1.TextCluster_train;

array clus[*] TextCluster_doc1-TextCluster_doc64;

retain clus;

by document;

if First.document then do;

 do i=1 to dim(clus);

 clus[i]=0;

 end;

end;

clus[TextCluster_cluster_]=1;

if Last.document then do;

 numCluster=0;

 do i=1 to dim(clus);

 numCluster= numCluster+clus[i];

 end;

 output;

end;

keep document numCluster TextCluster_doc: ;

run;

proc means data=docCluster;

variable numCluster;

run;

The new binary variables TextCluster_doc1- TextCluster_docn, where n is the number of clusters,
contains a 0 or a 1 indicating whether at least one sentence in that document is in that cluster (1) or not
(0), allowing documents to now be members of more than one cluster.

When the above technique was applied to the Wikipedia data set, the discovered clusters revealed
aspects of the collection that were not apparent when clustering the original articles. For example, the
52nd cluster (out of 64), shown in Figure 3, appears to be about winning or receiving an award of some
kind. This theme was not evident when the original articles were clustered with either 64 or even 500
clusters. When the entire document was the context, the cluster was not evident because it cut across
several more prominent document clusters about sports figures, military personal, and musicians. While
aspects of these types of articles fit this recognition theme partially, because documents can belong to
only a single cluster, the theme is not revealed as its own cluster unless the sentence analysis is used.

5

Figure 3. An Example Cluster from Clustering Sentences

In comparison, when the Text Topic node was run on the original articles, it could pick up on this award
theme, confirming that sentence-based clustering behaves more like document-based topics.

There are differences between clustering on sentences and a topic analysis on the documents that
contain them, however. In the table below, the two types of runs are compared using 64 and 500
clusters/topics. For clustering, the sentences were clustered and the documents were assigned to the
corresponding cluster. The topic run was performed on the original articles. The table shows the mean
number of clusters/topics that each document belonged to, as well as the standard deviation of this
variable. In addition, the minimum and maximum number of clusters any one document belonged to is
shown.

 Number
of

Clusters

Mean
Number
per
Document

Std.
Dev

Minimum

Maximum

Clusters 64 5.78 5.07 1 33

500 8.28 9.03 1 55

Topics 64 3.62 2.56 0 17

500 28.7 22.3 0 125

Table 1. Cluster and Topic Statistics

As the requested number of topics/clusters increases, the average number of topics/clusters that a
document belongs to also increases. This increase is much more dramatic for topics. For clustering, the
maximum number of clusters a document could belong to is obviously bound by the number of sentences
that the document contains. The topic functionality has no such upper bound. In fact, the Text Topic node
allows for customization of its settings, so how many documents get assigned to individual topics can be
controlled if desired.

Perhaps the best reason to use a sentence-based approach when a large number of overall topics or
clusters is desired is because the Text Topics node requires as many SVD dimensions to be calculated
as there are topics. The Text Cluster node can use the same number of dimensions, typically 50 or 100,
regardless of how many clusters you request.

DOCUMENT AND SUBDOCUMENT SIMILARITY

BACKGROUND

Document similarity can be important in a number of contexts. One common application involves
identifying and removing redundant information from your collection. This redundancy should be
considered because it can inappropriately alter your analysis. For example, news releases frequently get
picked up by multiple media outlets and rebroadcasted so that multiple occurrences of any given news
story can exist in your collection. Each new release might also be surrounded by text that varies from
different outlets. So the entire document is different, but a subcomponent of that document is practically
identical. How can you identify these duplicates and remove the multiple versions of them?

6

Other tasks are also relevant, such as removing the history thread of a set of email or forum posts
because the thread is contained in other emails. Plagiarism is another interesting application area where
the SVD has proven useful (Ceska, 2008). Plagiarism detection involves determining when either exactly
copied, slightly altered, or paraphrased portions of text from some document matches, in some sense,
those in a reference data set.

DOCUMENT SIMILARITY AND THE SVD

Subdocument similarity algorithms are similar to search and retrieval tasks. A reference data set is
searched against a new observation. In this case, the new observation is a document rather than a query,
and the process is to detect whether the new document is similar to any of those in a reference set.

First is a training phase in which the reference data set is prepared for the scoring action. The training
phase creates the sentence representation for each document in the reference data set. This can be
done with a flow containing either the Text Cluster node or the Text Topic node, since both of them
produce the SVD dimensions.

Note that if your reference set itself contains duplications, you might want to first remove them by
gradually rebuilding this reference set. Start with a few documents in your reference set and then, before
you add additional entries to the set, score them for duplication against the current reference.

Second, the scoring phase creates the sentence representations for the documents that are under
consideration and compares the sentences to the sentences of each document in the reference training
data. The score code from the cluster or topic node creates the scored sentence representation, but in
order to calculate distances from each sentence in your training data to each sentence in the data to be
scored, you need the code that appears in the next section.

Euclidean distance, rather than cosine similarity, can be used to determine distance between sentences
that have been projected into the SVD space because the vectors have been normalized to unit length in
SAS Text Miner. In addition, if the entropy or idf (inverse document frequency) weight has been chosen,
frequently occurring terms will have already been down-weighted so that the rarer but concentrated terms
have the greatest influence on similarity.

DEMONSTRATING SIMILARITY DETECTION

The following heuristics are used to detect possible duplicated sentences in the Wikipedia data set.

1. A sentence is considered a potential copy if it is within a distance of .0001 of a sentence in
the reference set. Allowing some tolerance threshold means that sentences do not have to be
exactly the same. They might have been altered by a word or two. This near duplication is
important if we were to attempt to detect plagiarism, for example.

2. If a sentence in the document under consideration is close to more than one sentence from
the reference set, it is not considered a candidate match as it is unlikely to be a copied
version of a sentence. This prevents the detection of short common sentences as duplicates,
which can give false positives.

3. A document under consideration triggers further review if it contains at least two potentially
copied sentences. This helps avoid spurious matches.

If hold-out data were available, these threshold values could be tuned for the particular data you are
analyzing, your number of SVD dimensions, and the type of copying that you are detecting.

The code for the Euclidean distance computation between the observations in the training set and the
validation set is shown below. It does not assume that the sentences are sequential, although typically
that is the case.

/* for performance reasons, eliminate variables then place them back on */

data traincluster;

set emws1.textcluster4_train(rename= (sid=trainsid document=traindocument

textcluster4_SVD1-textcluster4_SVD&numdim = trainsvd1-trainsvd&numdim));

7

keep trainsid traindocument trainsvd1-trainsvd&numdim;

run;

data validatecluster;

set emws1.textcluster4_validate;

keep sid document textcluster4_SVD1-textcluster4_SVD&numdim;

run;

/* distance calculation */

data cartesianDist;

 set traincluster;

 array trainloc[*] trainSVD1-trainSVD&numdim;

 do i=1 to n;

 set validatecluster point=i nobs=n;

 array valloc[*] textcluster4_SVD1-textcluster4_SVD&numdim;

 sse=0;

 do j=1 to dim(valloc);

 sse=sse+((trainloc(j)-valloc(j))**2);

 end;

 if sse<.0001 and textcluster4_SVD1>0 then output;

 keep trainsid sid sse;

 end;

run;

/* fold needed variables back onto data */

proc sql;

create table compSent as

select a.*, b.sentences,b.document, c.sentences as trainsentences,

c.document as traindocument

from cartesianDist a, emws1.textcluster4_validate b,

emws1.textcluster4_train c

where a.sid=b.sid and a.trainsid=c.sid;

quit;

Now you can select only the documents that match at least two sentences. However, if a possibly copied
sentence matches more than one sentence from other documents in the reference set, it is not
considered duplicated. This prevents the detection of short common sentences as duplicates, which can
give false positives.

/* select the unique matches of at least 3*/

proc sort data=subcompSent;

by sid traindocument;

run;

data triggerMatch;

length composite $3000 traincomposite $3000;

retain matchcount composite traincomposite;

set subcompSent;

by sid traindocument ;

8

if first.sid and first.traindocument then matchcount=0;

if first.traindocument then do;

 matchcount=1;

 composite = left(trim(sentences));

 traincomposite = left(trim(trainsentences));

end;

else do;

 matchcount = matchcount +1;

 composite = left(trim(composite))||"... " || left(trim(sentences));

 traincomposite = left(trim(traincomposite))||"...

"||left(trim(trainsentences));

end;

if last.sid and last.traindocument and matchCount gt 1 then output;

run;

To investigate how well the approach works, 80% of the Wikipedia data set was placed into the reference
data set (train) and the remaining 20% into a data set to score (validate). The split was done across
articles so that sentences from the same article always remain in the same split.

Using the process described above, 31 documents from the 2000 found in the validation data triggered as
potential duplication. Initially this was surprising but after examining the matches, it was easily explained.
Two of the 31 are shown in Figure 4 and are representative of the others. The matched sentences have

been concatenated into composites (called composite for the test document and traincomposite for

the corresponding train document) with an ellipse between them and are shown in the figure, along with
the titles of the matched articles. The matches are not exact but rather indicate that the same structure or
pattern was used in creating the entries.

Figure 4. Example Document and Sentence Matches Found from the Partitioned Wikipedia Data Set

9

As a secondary example, we made an individual copy, and then made minor alterations to sections of text
from an article in the reference data set and placed the altered text into one of the holdout articles. Then
the holdout article was scored against the reference data. Figure 5 shows an example of the detection.

Again, the composite variable holds the sentence that matched those of the training document and

placed in traincomposite.

Figure 5 Subdocument Duplication Detection Example

Not all types of near duplication will be detected with this approach. If the duplicated sentence contains
more than a couple of different terms, it is likely to be too far away in the SVD space to be considered a
match. A rich synonym mapping could help in these situations.

Also, if the sentence is restructured, the sentences will not match. In one example, a pair of sentences
from the reference collection was changed to a compound sentence. In this case, no match was detected
because the sentence boundary had changed significantly. Other features such as word n-grams would
have to be used instead of sentences in order to detect this type of match.

If you need to score in batch, performance and memory can be an issue. A performance improvement
that is not shown but that should be straightforward to implement involves using the cluster prediction for
the sentences you are scoring. The reference data sentences are already being clustered at train time. In
order for you to obtain the SVD dimensions during scoring, the sentences you are scoring receive a
cluster membership prediction. The distance comparison for any sentence should need to be done only
against those in the same cluster from the reference data rather than with all the reference data
sentences.

TERM COLLOCATIONS

BACKGROUND

The word collocation has several definitions. Some use the word to describe a set of terms that form a
phrase and have a distinct meaning and usage such as “to pay attention” or “to feel under the weather”.
Others define a collocation with a broader scope. For our purposes, a collocation of interest is a set of
terms that satisfy the two following conditions:

10

1. The terms in the set tend to occur near one another. For our purposes, the set should occur
within the same sentence.

2. The terms in the set occur together at an unexpectedly high rate relative to the rate of their
individual occurrences.

In addition, the collocations that are the most interesting are the ones that also occur frequently in the
collection. Examples of collocations we might be interested in finding include frequent noun groups such
as “data mining” or common non-sequential terms that are used together such as “launch” and “attack”.

The noun group functionality in SAS Text Miner is a concept related to a collocation but that uses
linguistic information within a sentence to identify when sequential terms are functioning together as a
phrase. A collocation can form a noun group, but it also can just be a set of terms that co-occur within a
sentence regardless of the linguistic structure. The elements in the collocation don’t even need to be
sequential.

Recognizing collocations is important and useful because often a set of terms is used to characterize,
summarize, or describe a document or a group of documents. This list of descriptive terms can be more
informative if you know which of those terms actually appear together and near one another rather than
being independent of each other within the context.

COLLOCATIONS AND THE SVD

Sentence-level analysis and the SVD can be useful in identifying collocations without doing direct counts
of the intersection of terms. Direct counting can be expensive, particularly when identifying collocations
consisting of more than three terms. The SVD approach, shown in the following section, can be a fast and
effective alternative if you are already doing a cluster analysis or topic analysis.

The main insight in the approach is that collocations of interest are strong influencers of clusters and
topics. They influence because they are both multi-term and relatively frequent as a multi-term. So, it is
likely that the best collocations will be evident as important influencers in the clusters of sentences.

If a good collocation does exist in your cluster, then the individual terms that make up the collocation will
necessarily be near one another in the SVD space. The next section demonstrates a process to identify
the collocations from the current set of descriptive terms included in a label for a cluster in the Text
Cluster node and for topic labels in the Text Topic Node.

DETECTING COLLOCATIONS IN A TERM LIST

In this example, the descriptive terms from a cluster discovered by the Text Cluster node are analyzed to
identify potential collocations within the elements of this set. Currently the list of terms is ordered by
importance and presented as a list but there is no indication if some of the terms on the list actually are
dependent and form a collocation. In the approach that follows, if any of the terms are near one another in
the SVD space, they are considered a collocation and the precise counts are calculated to confirm the
decision.

Figure 6 shows the 50 descriptive terms from one of the 64 clusters found on the Wikipedia data set. The
plus sign in front of a term means it is parent term that represents many related terms that have been
assigned as a synonym or stem.

Figure 6. Fifty Terms from a Sentence-Based Cluster

The terms were extracted, stripped of their leading plus sign if they had one, and placed in a data set to
be scored, one term per observation. You can use the DISTANCE procedure to calculate distances and
find terms that are near one another from the term list. When the data is sorted by distance, the shortest
distances indicate the purest collocations among the members of the term list.

11

In order to get an indication of how well this performed, the actual counts were also generated for how
often each term in the list occurred independently and with the other terms in the list. This allows for a
mutual information calculation. The ranking comparison of the top 25 out of the possible 1275
combinations is shown in Figure 7. The SVD approach emphasizes word pairs that occur very rarely
outside the cluster.

Figure 7. Highest-Ranking Collocations of a Cluster's Descriptive Terms

12

VISUALIZING TERMS, SENTENCES, AND DOCUMENTS

The SVD dimensions from either the Text Topic node or the Text Cluster node can be used for two-
dimensional visualizations of terms, sentences, documents, or groups of documents when the mean of
each SVD has been calculated. All of these objects can be projected into the same space and plotted.

Once the representation is obtained, there are several ways you can project them into two-dimensional
coordinates. One approach is to use multidimensional scaling with the MDS procedure. PROC
DISTANCE is used prior to PROC MDS to create the input table for PROC MDS. In Figure 8, the “win
award” cluster is plotted along with several clusters about sports, military, and music using ODS and
PROC MDS. Note how the award cluster is located in the center of the diagram as it shares aspects with
the other clusters; it spans the topic of sports, military, and music.

Figure 8. Multidimensional Scaling Plot of Several Clusters

The SAS code to generate Figure 8 from a table of cluster means is shown below:

data plotclusters(drop =_cluster_);

 length title $32;

 set emws1.textcluster_clusters;

 cluster=put(_cluster_,best12.);

 title=_cluster_||":"||scan(clus_desc,1," ")||" "||scan(clus_desc,2," ");

 if _N_=49 or _N_=9 or _N_=2 or _N_=3 or _N_=5 or _N_=11 or _N_=19 or

N= 52 or _N_=8;

run;

13

proc distance data=plotclusters out=plotit method=EUCLID nostd;

 var RATIO(_mean1-_mean100);

 id title;

run;

proc mds data=plotit out=plotit

 level=ratio dimension=2 noprint;

 run;

In the above example, a higher number of dimensions (100) was used with the SVD so MDS was applied
to create two dimensions. If only two SVD dimensions are computed to begin with, then they can be used
directly to plot.1 The two documents from the subdocument duplicate detection example of Figure 5 are
shown in Figure 9. The sentences of both documents along with the documents themselves are projected
into this two-dimensional representation. The two colors represent sentences from the two different
documents, and those of opposite color that are near one another are the sentences that were copied
and altered from one document to the other. The points were also jittered so that the overlapped ones
can be seen.

Figure 9. A Plot of a Subdocument Duplication Example

SUPERVISED LEARNING

Supervised learning presents a challenge when sentences or other subcomponents of documents are to
be used. Each sentence needs a label for training, but since the label provided corresponds to the
document, it is not always clear how to do this assignment. You could transfer the label from the

1 SAS Text Miner normalizes the projections to unit length, so you shouldn’t choose to plot only two if
more were calculated.

14

document to each of its sentences, but this defeats the purpose of isolating aspects of a document that
might be more informative versus those that perhaps misrepresent the label.

Manually labeling sentences is too time-consuming and not a realistic solution either, so ensuring that
each sentence is labeled properly often requires a different approach. Active learning or other semi-
supervised approaches are possible. They involve labeling some representative sentences and then
making a prediction about your unlabeled sentences. The previously unlabeled sentences with the
highest posterior probability are then labeled according to the model (and perhaps reviewed by the
modeler) and the process repeats. Eventually you have a collection of sentences from your document,
some of which are labeled positive and the others labeled negative. However, unless they all are
reviewed, not all of these sentences will be accurately labeled and predictions will suffer.

Another approach is to just select sentences that are the most likely to be indicative of the label and throw
the others out. The subset receives the same label as the original document, so there is no decision to be
made. The desired outcome is that the selected sentences create a smaller, but information-rich,
document for the prediction. Depending on the content you are learning with, this might be done by
choosing the first few sentences of each document, the abstract of a document, or, if you have additional
information, you could choose sentences with certain characteristics such as sentences containing a
keyword.

CONCLUSION

Vector space models are dependent on the context that you generate term counts from. Typically, in text
mining, the document provides the context. In this paper, the perspective shifted from documents to the
sentences they contain. The results of the analysis also shifted from a discussion about main themes and
topics in a document to a more refined analysis driven by the local information within each sentence.

The sentence analysis led to the following results:

 clusters were delivered that were no longer exclusively describing a document’s primary theme
but also included secondary themes found within document

 duplication within a document was detected, even if the documents themselves were quite
different overall

 term pairs were discovered that were important collocations

 visual relationships between sentences in multiple documents were created

The applications for a sentence-based approach are not limited to what was shown here. Whenever you
feel that more local information between terms is important, you should consider this approach.

Finally, the sentences themselves provided a convenient and natural context for the creation of the
vectors, but you are not limited to that context. Your context could be based on document structure such
as an abstract or elements in a list, or your context could be done with a sliding window across your
document that captures n-grams for each vector. Your text mining goals and your data will drive these
decisions.

ACKNOWLEDGMENTS

The authors would like to thank Joan Keyser for her editorial contributions.

REFERENCES

Albright, R. 2004. SAS Institute white paper. “Taming Text with the SVD.” Available at
ftp.sas.com/techsup/download/EMiner/TamingTextwiththeSVD.pdf.

Ceska, Z. 2008. “Plagiarism Detection Based on Singular Value Decomposition.” Proceedings of the International
Conference on Advances in Natural Language Processing,108–119.

15

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Russ Albright
russell.albright@sas.com

James Cox
james.cox@sas.com

Ning Jin
ning.jin@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:james.cox@sas.com

