
1

SAS5762-2016

That’s All Right: More Complex Reports

Cynthia L. Zender, SAS Institute Inc., Cary, NC

ABSTRACT

Are you living in Heartbreak Hotel because your boss wants different statistics in the SAME column on
your report? Need a currency symbol in one cell of your pre-summarized data, but a percent sign in
another cell? Large blocks of text on your report have you all shook up because they wrap badly on your
report? Have you hit the wall with PROC PRINT? Well, rock out of your jailhouse with ODS, DATA step,
and PROC REPORT. This paper is a sequel to the popular 2008 paper “Creating Complex Reports.”

The paper presents a nuts-and-bolts look at more complex report examples gleaned from SAS®
Community Forum questions and questions from students. Examples will include use of DATA step
manipulation to produce PROC REPORT and PROC SGPLOT output as well as examples of ODS
LAYOUT and the new Report Writing Interface. And PROC TEMPLATE makes a special guest
appearance. Even though the King of Rock ‘n’ Roll won’t be there for the presentation, perhaps we’ll hear
his ghost say “Thank you very much, I always wanted to know how to do that” at the end of this
presentation.

INTRODUCTION

ODS has been around even since SAS 7. And the main report writing procedures (PROC PRINT, PROC
REPORT and PROC TABULATE) have been around even longer than that. So what is there new to
learn? Well, ODS has not been static over the years. More features, more destinations (here’s a shout out
to ODS POWERPOINT and ODS EXCEL), new features like ODS LAYOUT and the Report Writing
Interface have all been introduced between SAS 7 and SAS 9.4, so there is more than enough in the
world of ODS and complex reporting to cover in this paper.

I view this paper as a sequel to my 2008 paper, “Creating Complex Reports”
(http://www2.sas.com/proceedings/forum2008/173-2008.pdf). What I said in that paper is still true today:
really complex reports frequently need some type of pre-processing or DATA step manipulation prior to
the report step in order to produce the desired final report.

Before we rock into the first set of examples, I need to provide some qualifying information. This paper
was written using SAS 9.4, maintenance release 3. This is important because some features of ODS,
such as ODS Excel, were not production until SAS 9.4, maintenance release 3. In addition, ODS
GRAPHICS capabilities have been continually enhanced since their introduction in SAS 9.2. Other
features, such as ODS LAYOUT and the Report Writing Interface (RWI), were available in earlier releases
of SAS but have been enhanced (they were pre-production). So if you download the ZIP file of programs
for this paper, you will get the same results only if you use the same version of SAS.

Also, note that some features I show are destination specific. For example, the use of TAGATTR= with an
Excel format will not work in ODS PDF or ODS RTF or ODS HTML destinations. ODS LAYOUT is
designed to work with Printer family destinations such as ODS PDF, some of the LAYOUT commands will
work with ODS HTML, but there are other destinations in which the code will not work.

Finally, there is always more than one way to accomplish something using SAS and ODS. So the
examples offered in this paper are not the only way to achieve a complex report. They only represent my
approach, based on feedback and questions from my students and from working with SAS customer
questions.

The code in this paper is aimed at intermediate to advanced SAS programmers. But with enough study
(and motivation), the programs are accessible to the beginner. Most of the techniques used in this paper
for data manipulation use topics covered in our Programming 1 and Programming 2 classes. Many of the
REPORT procedure examples build on topics covered in our Report Writing 1 class. Other topics are
covered in papers that you’ll find in the reference section at the end of the paper or in the documentation
topics for ODS, ODS LAYOUT, ODS GRAPHICS, and the Report Writing Interface. To see the full code,
download the ZIP file from support.sas.com at the URL listed at the end of the paper.

http://www2.sas.com/proceedings/forum2008/173-2008.pdf

2

COMPLEX EXAMPLES 1: RUSH INTO NEW ODS DESTINATIONS

Sometimes you need a ZIP file that contains files that you know you can create with ODS, and you can’t
figure out whether SAS can make a ZIP file for you automatically. Let the ODS PACKAGE destination
come to the rescue.

Oh, you didn’t know about the ODS PACKAGE destination? It’s been around for a while now, in various
releases. This example was written using SAS 9.4. Basically, you are going to create each of your
individual files the way you normally would. The code below used a standard PROC MEANS for the CSV
file and a simple PROC REPORT for the RTF file. The “new” part of the program is the ODS PACKAGE
set of statements.

Here’s the code used to produce the ZIP file:

filename meancsv "&mypath./prdsale_mean.csv";

ods csv file=meancsv;

. . . PROC MEANS code . . .

ods csv close;

filename rp "&mypath./prdsale_report.rtf";

ods rtf(id=report) file=rp;

. . . PROC REPORT code . . .

ods rtf(id=report) close;

ods package(myzip) open nopf;

ods package(myzip) add file=meancsv ;

ods package(myzip) add file=rp;

ods package(myzip) publish archive

 properties(archive_name="prdsum.zip"

 archive_path="&mypath");

ods package(myzip) close;

The program uses a “helper” macro variable called &mypath. In the download of program code, you will
see that there is a %LET statement that provides the path where the output files should all be written.
This macro variable is used for the location of the CSV file, the RTF file, and the path of the ZIP archive.

The ODS PACKAGE statements are slightly different from the usual ODS “sandwich” technique. There
are ODS PACKAGE OPEN and corresponding ODS PACKAGE CLOSE statements. The NOPF option in
the OPEN statement instructs the destination manager to create the ZIP package without inserting any
extra structure information in the file. If you have the Publishing Framework licensed, you might need this
additional information in the ZIP archive. But for a simple output like this, the extra information is not
necessary.

The way that ODS works with most destinations is that you can use an identifying string in parentheses
after the destination name. You see this in the ODS RTF example with the use of the (id=report)
suboption. If I wanted to create two RTF files simultaneously, using the ID= suboption would allow the
ODS controller (also called an ODA – Output Delivery Agent) to keep both files open at once.

Using slightly different syntax, you can specify a name for your ZIP archive by just using the name in
parentheses after the ODS PACKAGE invocation. You don’t need to use a name, but it’s probably a best
practice to always name your ZIP file. And, like your Mom advised, “If you open it, you should close it”; if
you do decide to use a name, then you should be consistent and close the same name that you opened.
Note that in this example, the name (myzip) is used in each ODS PACKAGE statement. The screen shot
of the Windows folder where I created the ZIP archive is shown in Output 1, with a view of the ZIP archive
contents.

Also, note that the ZIP archive contains the files that were inserted with the ODS PACKAGE ADD
statement. The file= option points to the file reference or fileref for each of the files. In the above example,

3

each ODS output file was defined in a FILENAME statement, but the direct file location could also be
used in the ODS PACKAGE ADD statement, as shown below:

ods package(myzip) add file="&mypath./prdsale_mean.csv";

But no matter which form of the file path location is used, the output is still the same as that shown in
Output 1.

Output 1. View of ZIP Archive Created with ODS PACKAGE

What if your Chief Marketing Officer needs a PowerPoint presentation based on SAS data? Can you do
that with ODS? Can you do that if you don’t have the SAS Add-in for Microsoft Office? The answer to
both questions is yes. Starting with SAS 9.4, ODS PowerPoint destination was production. This
destination creates a true PPTX (PowerPoint XML file) that conforms to the Microsoft Office Open XML
format.

But, what if, to further complicate the requirements, your PowerPoint document doesn’t just need the
tables and graphs, it also needs a company logo on each slide. To get a logo on each PowerPoint slide,
you basically need to use a style template to create a background for each slide that will “fill” the entire
slide area. Your logo will be specified as the background image for the entire “body” of the slide.

In the simplest invocation, you use the ODS “sandwich” technique, as shown in the code below:

proc template;

 define style styles.logo;

 parent=styles.powerpointlight;

 class body /

 backgroundimage = "&mypath./saslogo_pptx.png";

 end;

run;

ods powerpoint file="&mypath./sample.pptx" style=styles.logo nogtitle;

title 'Blood Pressure';

. . . PROC SGPLOT step . . .

run;

ods noptitle;

title 'Blood Pressure Statistics';

. . . PROC MEANS step . . .

ods powerpoint close;

4

The new style template is based on the PowerPointLight style template and adds a background image
specification to the BODY style element. The new template is specified on the ODS POWERPOINT
statement. In addition, the NOGTITLE option tells ODS to put the title OUTSIDE of any graphics images,
under the control of the destination (not under the control of the graphing method). The output from the
above code is shown in Output 2.

Output 2. PowerPoint Output, with Logo, Shown in SlideSorter View

ODS POWERPOINT can be used with PROC ODSLIST to generate a slide with bullet points. New
destinations aren’t the only new thing about ODS. Two new procedures, PROC ODSLIST and PROC
ODSTEXT, make report creation more flexible. You’ll have to look at the ODS Tip Sheet and other
resources to learn more about PROC ODSTEXT because this example only uses PROC ODSLIST.
Here’s the code used to produce the ZIP file:

ods powerpoint file="&mypath./TwoColumnContentx.pptx" nogtitle

 nogfootnote style=styles.powerpointlight layout=twocontent;

. . . PROC GRADAR step . . .

proc odslist;

 item 'A Wind Rose Chart ^{newline 1}displays:';

 item;

 list / style=[bullet=disc];

 item 'wind direction and speed';

 item 'over a period of time';

 item 'at a specific location.';

 end;

 end;

run;

ods powerpoint close;

5

Output 3. PowerPoint Output, with Side-by-Side Objects, Shown in Reading View

With the LAYOUT=TWOCONTENT specified, the PROC GRADAR graphic image was placed in the left
content area and the nested list from PROC ODSLIST was placed in the right content area.

Last, but not least, no discussion of new ODS destinations would be complete without a shout out to ODS
EXCEL, one of the newest and hottest of the ODS destinations. It provides two new, most desired
features: 1) it allows tables and graphs in the same workbook/worksheet file; and 2) the format created
conforms to the Microsoft Office Open XML format for Excel, which means the creation of a true XLSX
format output file using Base SAS.

The challenge with using other ODS destinations to create output that Excel can open and render is that
many of the outputs types (HTML or XML) also come with an annoying pop-up warning message when
you open them with Excel, as shown in Figure 1.

Figure 1. Excel Pop-up Window Warning Message

But with the ODS EXCEL destination, you don’t have to worry about the popup warning window from
Excel, as long as the appropriate extension is used. With the regular ODS “sandwich” approach, you can
combine tables and graphs in one workbook, or, as shown in this example, in one worksheet. The results

6

in Output 4 used the same data as the PowerPoint example. The ODS EXCEL statements surround
PROC REPORT and PROC GRADAR steps as shown below:

ods excel file="&mypath./report_graph_one_sheet.xlsx" style=htmlblue

 options(sheet_interval='none' embedded_titles='on' sheet_name='Both');

. . . PROC REPORT step . . .

. . . PROC GRADAR step . . .

ods excel close;

title; ;

Output 4. ODS EXCEL Output with Table and Graph in One Worksheet

The key to making this output work is the SHEET_INTERVAL=’NONE’ suboption, which instructs ODS
that both outputs go into one worksheet.

7

COMPLEX EXAMPLE 2: CAN’T HELP LOVING PROC REPORT

If Elvis had been a SAS programmer, and responsible for report writing, he would not sing the blues if he
used PROC REPORT. As illustrated in my earlier complex reports paper, with some pre-processing of the
data, this demographic report can be easily produced using PROC REPORT.

Figure 2. Demographic Report Example from 2008 Complex Reports Paper

The 2008 program that created Figure 2 is included in the ZIP file of programs for this paper. Some of the
techniques used in this paper should be part of your standard ODS toolkit. In particular, highlights of this
code use:

 STYLE=JOURNAL for the overall RTF style

 RTF control strings for the underlined text

 Multiple STYLE= overrides to alter the font, based on “helper” variables created when pre-
processing the data

 STYLE= override on the first column for LEFTMARGIN=12pt for the indented text underneath the
bold headers

 Macro “Helper” variables for the N= value

 Concatenating several numeric values into one character string for the second column’s values

When you have a truly complex report, you often find that pre-processing the data or making “helper”
variables that you hide on the report (with the NOPRINT option) are how you accomplish your task.

But, other times, you will find that the CALL DEFINE statement used in a COMPUTE block will allow you
to accomplish your report goals.

8

Consider data that you get emailed in a CSV file from someone. It is shown in the program below as
DATALINES:

data diff_fmts;

 length facility var_a $20 var_b 8;

 infile datalines dlm=',' dsd;

 input fnum ordvar var_a $ var_b;

 Facility = catx(' ','Facility',fnum);

return;

datalines;

1,1,"Number of Admissions", 30

1,2,"Percent Covered", .6783

1,3,"Plan Amount",3400

2,1,"Number of Admissions", 50

2,2,"Percent Covered", .7337

2,3,"Plan Amount",5183

3,1,"Number of Admissions", 45

3,2,"Percent Covered", .8451

3,3,"Plan Amount",4325

;

run;

The data is pre-summarized, almost ready to go, except your goal is to make a PDF version of the report,
an RTF version of the report, and an Excel version of the report. The Number of Admissions row needs to
be formatted in the report with only commas if the number exceeds 999. This is no problem with the
COMMA. format. Then the percent, of course, needs to be multiplied by 100 and have a trailing percent
sign (%), which is also possible with the SAS format for percents (which does an automatic multiply by
100). Then, the Plan Amount needs to be shown with a currency format. As good SAS programmers, we
are used to a FORMAT statement to accomplish this or a FORMAT option in the DEFINE statement in
PROC REPORT. However, the numeric values all belong to the same variable, VAR_B, so here is where
CALL DEFINE comes to the rescue.

Another way to accomplish this would be to make a character variable in the DATA step program and use
that in the report instead of using the CALL DEFINE statement. While this would work for pre-summarized
data, this approach would not work for detail data that needed to be summarized by PROC REPORT.

compute var_b;

 if var_a = 'Number of Admissions' then do;

 call define(_col_,'format','comma6.');

 end;

 else if var_a = 'Percent Covered' then do;

 call define(_col_,'format','percent9.2');

 end;

 else if var_a = 'Plan Amount' then do;

 call define(_col_,'format','dollar8.');

 end;

endcomp;

The PROC REPORT CALL DEFINE statement uses very predictable syntax:

CALL DEFINE(ARG1, ARG2, ARG3);

Where ARG1 is the report component you want to change; ARG2 is the attribute you want to change; and
ARG3 is the specification for the attribute change. Refer to the PROC REPORT documentation for more
information about how these values need to be specified. In the code snippet above, _COL_ identifies the
column named in the COMPUTE statement (VAR_B) as the report component that will be changed. The
quoted string ‘FORMAT’ identifies that the format attribute is what will change. Finally, the 3 different
format specifications are provided in quoted strings. Because the COMPUTE block supports the use of IF

9

statements, and because VAR_A is to the left of VAR_B in the COLUMN statement, VAR_A can be used
for the condition in the COMPUTE block.

The results of the PROC REPORT, shown in PDF and Excel spreadsheet form, indicate that for the most
part, the SAS format was respected in both destinations for the Number of Admissions, the Percent
Covered, and the Plan Amount as shown Output 5:

ODS PDF Output

ODS TAGSETS.EXCELXP Output

Output 5. ODS PDF Output and ODS TAGSETS.EXCELXP Output

But the DOLLAR8. format for Plan Amount specified in the Call DEFINE statement was used in the PDF
destination, but not used in the ExcelXP destination (and won’t be used in the ODS EXCEL destination
either).

There is another way to send a format specification to Excel if the destination does not respect the SAS-
defined format. The method is to use a Microsoft format in a style override. This method involves
changing the TAGATTR style attribute.

compute var_b;

 if var_a = 'Number of Admissions' then do;

 call define(_col_,'style','style={tagattr="format:###,##0"}');

 end;

 else if var_a = 'Percent Covered' then do;

 call define(_col_,'style','style={tagattr="format:###0.00%"}');

 end;

 else if var_a = 'Plan Amount' then do;

 call define(_col_,'style','style={tagattr="format:$###,##0"}');

 end;

endcomp;

Note how the first argument is the same (_COL_) but the second argument has changed to ‘STYLE’,
which means that the third argument is the TAGATTR style override. With the TAGATTR override, this
code can only be used for ODS EXCEL and ODS TAGSETS.EXCELXP destinations.

The use of TAGATTR for XML-based destinations and of HTMLSTYLE for HTML-based destinations was
the topic of my 2011 paper entitled “Don’t Gamble with Your Output: How to Use Microsoft Formats with
ODS” (https://support.sas.com/resources/papers/proceedings11/266-2011.pdf). Basically, with TAGATTR
or HTMLSTYLE format overrides, you have to have some idea of the way the format is created in Excel
before you can provide the value you need for the STYLE override. The 2011 paper has an appendix that
shows you how to reverse engineer the format specification in Excel to use in your TAGATTR (or
HTMLSTYLE) style override. Output using TAGATTR for the CALL DEFINE is shown in Output 6.

https://support.sas.com/resources/papers/proceedings11/266-2011.pdf

10

ODS Excel Output

ODS TAGSETS.EXCELXP Output

Output 6. ODS Excel Output and ODS TAGSETS.EXCELXP Output

The bottom line is that if you need different cells to have different formats, you can accomplish that with
PROC REPORT and CALL DEFINE.

Another attribute you can change, other than STYLE or FORMAT, is the URL attribute. If, for example,
you wanted to make a dynamic URL, you could do something like this in a COMPUTE block, which would
make a URL dynamically from the values of COUNTRY and PRODTYPE:

compute prodtype;

 length uvar $75;

 uvar = catt('https://www.google.com/#q=',holdcountry,'+',prodtype);

 call define(_col_,'url',uvar);

endcomp;

If the value of COUNTRY was Canada and the value of PRODTYPE was Furniture, then the ODS HTML
destination would build an ANCHOR tag like this:

Of course this URL uses www.google.com as the main part of the anchor tag HREF= value. But in a
production environment, the main part of the URL would usually be an address on your company server,
where the detail files would be loaded from. The ZIP file has a bonus program with a URL example that
shows PROC REPORT generating a set of drill-down reports using CALL DEFINE in a COMPUTE block.

COMPLEX EXAMPLE 3: SGPLOT IS ALWAYS ON MY MIND

If you haven’t used any SAS version higher then 9.1, you don’t really know about the ODS Graphics
procedures (SG procedures). Suffice it to say that ODS GRAPHICS and the SG procedures represent an
exciting new way to produce graphic images with SAS.

One of the challenges with classic SAS/GRAPH was understanding the PATTERN, SYMBOL and other
global statements and controlling them so that the same color was always used for the same bar or plot
line. Through the use of data attribute maps, the SGPLOT procedure can provide this level of style
control.

The style template can also be used for this task, by changing the style elements GDATA1 through
GDATA12 and GCDATA1 through GCDATA12 for grouped data. The style template assigns the colors
associated with GDATA1 to the first value in a group and then the second value uses the colors for
GDATA2, etc. Although you can control the colors associated with those style elements, you cannot
always control which of your data values will be considered in the first group and which in the second
group (depending on the data and missing values and missing observations). So, if you want to always
have particular presentation attributes (like fill color, line color, etc) used, then an ODS GRAPHICS
attribute map will do the job.

If you have ever created a CNTLIN dataset for PROC FORMAT, then you are halfway to understanding
how attribute maps work with ODS GRAPHICS. In order to use an attribute map with ODS GRAPHICS,

http://www.google.com/

11

you need to make a SAS dataset with variable names that conform to a specific naming convention. The
ODS GRAPHICS documentation outlines all the possible variables that you could specify. In our fake
data, we need to ensure that the value for the TYPE variable is illustrated with the right colors based on
the corporate color specification. The PinkLady brand is always shown on charts with the approved shade
of pink (CXd98cb3) and the VerdantIvy brand has an approved shade of green (CX2e852e). In this case,
an attribute map will ensure the correct colors:

data myattrmap;

 length linecolor $ 9 fillcolor $ 9 value $15;

 input ID $ value $ linecolor $ fillcolor $;

datalines;

myid PinkLady CXd98cb3 CXd98cb3

myid VerdantIvy CX2e852e CX2e852e

;

run;

As with the CNTLIN dataset, the ID, VALUE, LINECOLOR and FILLCOLOR variables are required
variable names for discrete attribute maps. The values for the variables in the attribute map, however, are
specific to the data. The value for ID is the way to give a name to a particular set of group values. The ID
value, in this case, “myid” will be used as a link when specified in the ATTRID= option in a plot statement.

You will notice that the VALUE variable holds the name of the two possible values for TYPE: PinkLady
and VerdantIvy. FILLCOLOR and LINECOLOR are the attributes that are being linked to the group
variable and their values are the colors to use. In this case, the fill color and line color are being set to the
same values, but they could be created separately.

But, like a user-defined format, the program above only makes a dataset, with the attribute information,
which has to be used. The code below shows how this dataset is used with the SGPLOT procedure:

proc sgplot data=attrbar dattrmap=myattrmap;

 title 'Brands Displayed With Correct Colors';

 vbar date / group=type groupdisplay=cluster response=value

 stat=sum attrid=myid;

 format date monyy5.;

run;

In the PROC SGPLOT procedure, the attribute dataset is specified in the DATTRMAP= option. In the
VBAR statement, the ATTRID= option specifies MYID as the link to value of the TYPE variable so that the
correct color values will be used. Output from the above program is shown in PDF results in Output 7.

Output 7. PDF Results SGPLOT using Attribute Map

12

And, with the SGPANEL procedure, the DATTRMAP= and ATTRID= options can also be used to produce
paneled output, using the code below:

proc sgpanel data=attrbar dattrmap=myattrmap;

 title 'Brands Displayed With Correct Colors';

 panelby year / layout=columnlattice;

 vbar date / group=type groupdisplay=cluster response=value

 stat=sum attrid=myid;

 format date monyy5.;

run;

The PDF results, with the correct colors, are shown in Output 8.

Output 8. PDF Results SGPANEL using Attribute Map

Attribute maps can also be used with the SGSCATTER procedure. In addition, be aware that not all plot
statements in SGPLOT, SGPANEL, and SGSCATTER support the use of discrete attribute maps. You’ll
have to refer to the documentation to see the complete list of statements. Generally, the plot statements
that support the use of grouping also support discrete attribute maps.

COMPLEX EXAMPLE 4: WISE MEN SAY USE WIDTH

In my 2014 SAS Global Forum paper with Scott Huntley, there is an extensive discussion about how to
deal with reports that have many columns and might not fit on a PDF or RTF page. This type of report is
not really an issue with HTML output, since HTML output can be as wide as it needs to be. Similarly,
when you create output files for Excel, wide reports are not an issue because a spreadsheet can be very
wide (based on your version of Excel). However, one question I frequently get asked about concerning
width on reports is how to make cells higher so that the text in the cell will “flow” or “wrap” in a more
pleasing way in all of these destinations.

The usual reason behind this question is that the report writer has tried to make a cell higher as a means
to control long text. But, with SAS procedures like PRINT and REPORT, the way to control text flow or
wrapping is through adjustment of the column width. For example, if you drag a spreadsheet column
wider, the text will flow wider and the height on that row will decrease; conversely, if you drag a column
narrower, the row height will increase and the text will flow into the new, narrower, area. For reports
created with SAS, making a cell higher does not cause the text to flow differently.

For purposes of this example, a long variable (named, LONGVAR) was created to hold a very long text
string. Some other variables were created that contain strings of differing lengths. The variable
SHORTVAR, for example, contains a string of 26 characters. The variable SHORTVAR_NL contains the

13

same 26 characters, but with an ESCAPECHAR function to insert a line break at a specific break points in
the variable:

 shortvar = 'abcdefghijklmnopqrstuvwxyz';

 shortvar_nl = 'abcdefg~{newline 1}hijklmnop~{newline 1}qrstuvwxyz';

As you can see in Output 9, PDF (and RTF) will work within the limitations set by the destination, as
determined by the current margin option settings that were in effect when the output was created.

Output 9. PDF Results Created with Default Cellwidth

ODS ESCAPECHAR capability has been around ever since Version 8 of SAS. The ESCAPECHAR
syntax changed to more like a function invocation starting in Version 9.2 of SAS. But when control over
wrapping and cell width are important, the use of WIDTH= and ESCAPECHAR provides you with the
control you need.

Let’s see what happens when using just the HEIGHT= override, because this is usually the first thing that
most folks try. This code uses the same variables and the following code to specify the HEIGHT= style
override for all the columns on the report:

 proc report data=longtxt nowd style(column)={height=2in};

As shown in Output 10, the new report looks the same as Output 9, except that the rows are higher.

Output 10. PDF Results Created with Changed Value for Cell Height

14

Taking the width approach is as easy as using the CELLWIDTH= or WIDTH= option on an override for
the particular cell, based on the code below. In this example, using PROC REPORT’s alias feature, the
LONGVAR variable is shown in the report two times, once with a width of 2 inches and once with a width
of 4 inches. Also note, the unreasonable attempt to make the SHORTVAR column very, very narrow:

 proc report data=longtxt nowd;

 column name shortvar shortvar_nl longvar longvar=longvar2;

 title '3) notice how width impacts text wrapping and height';

 define name / display style(column)={just=c};

 define shortvar/ display

 style(column)={cellwidth=.10in};

 define shortvar_nl/display;

 define longvar/ display

 style(column)={cellwidth=2in};

 define longvar2/display "Longvar Diff Width"

 style(column)={cellwidth=4in};

 run;

Output 11. PDF Results Created with Changed Value for Cell Width

The neat thing about changing cell width is that the width is respected by most of the ODS destinations
(except for LISTING and the CSV-based destinations). Notice how the “impossible” width of .10 for
SHORTVAR was ignored by ODS PDF. Some destinations have a width that they deem impossible to
implement and, in this case, the “impossible” width is ignored by ODS PDF. And, also notice how the line
break ESCAPECHAR function was respected for SHORTVAR_NL. In the code below, the rest of the
report stayed the same, but SHORTVAR had cell width adjusted:

 proc report data=longtxt nowd;

 column name shortvar shortvar=svar2

 shortvar_nl shortvar_nl=snl2 longvar ;

 title '4) notice how ESCAPECHAR works in narrower and wider cells';

 define name / display style(column)={just=c};

 define shortvar/ display "Default Width";

 define svar2 / display

 style(column)={cellwidth=.5in};

 define shortvar_nl/display

 style(column)={cellwidth=.5in};

 define snl2/display

 style(column)={cellwidth=1.5in};

 define longvar/ display

 style(column)={cellwidth=3in};

 run;

15

The results would be as shown in Output 12.

Output 12. PDF Results Created with Changed Value for Cell Width

And, although the Excel-based destinations do have alternate methods to control cell width, my
recommendation is that you try the WIDTH= style override first, because it is a technique that enables you
to send your output to other destinations without code changes. The previous code, when submitted for
ODS EXCEL, is shown in Output 13.

Output 13. ODS EXCEL Results Created with Same WIDTH= Values as Output 12

Another question, related to wide reports is how to create a reports that are a mixture of paragraphs that
span the entire page and other report objects, possibly graphs or tables, which take up less space.

Prior to ODS LAYOUT and the ODS Report Writing Interface, the choices for creating this kind of output
were somewhat limited to ODS TEXT and PROC REPORT. For example, the PDF file shown, annotated,
in Output 14, was created from a combination of PROC REPORT for large blocks of text with a poem
(also produced with PROC REPORT) and some PROC FREQ output.

The full text for each paragraph is stored in a very large character variable. You can look at the program
in the ZIP file. Each PROC REPORT step produces a block of text from a different dataset. Because the
ODS invocation uses the STARTPAGE=NO option, the normal page break before each procedure is
suppressed. A regular SAS TITLE statement makes the top title line (in black), but the two lines that

16

appear as subtitles in a smaller font are actually part of the paragraph data. Using a similar technique, the
red text that ends the page is not from a FOOTNOTE statement. Instead, it is part of the last paragraph
about Piet Mondrian.

Output 14. ODS PDF Results and the Procedures That Placed Output on the Page

Although this type of text-based report is possible using Base SAS and ODS techniques, a better way to
produce this or a similar report would be to move into the newest features of ODS, which are the topics of
the final sections in this paper.

COMPLEX EXAMPLE 5: FOUND A NEW PLACE TO DWELL IN REPORT WRITING

One of the newest features of ODS is the Report Writing Interface, which you use in a DATA step
program to create output. For example, two simple tables that use the SASHELP.IRIS data, are shown in
Output 15:

Output 15. ODS HTML Results Using the Report Writing Interface

17

One report is a detail report, showing every observation, created with a DATA step program and the
Report Writing Interface and the other report is a summary report created with a DATA step program. The
code that produced this report is much more verbose than what might be needed in a report generated
with PROC PRINT or PROC REPORT.

But although you can create basic tabular reports quite easily with PROC REPORT and PROC PRINT,
you do not have full control over row and column spanning in those two procedures. But before getting
into more complex topics like row spanning or column spanning, let’s look at the things that have to
happen for one table:

 Table creation starts

o Row with column headers starts

 One or more than one column header is written out

o End of column header row(s)

o Beginning of data rows starts

 Write one row for each observation (in a simple report) and keep writing data
rows based on program logic

o End of all data rows

 End of table creation

Some of these actions happen only once. For example, starting the table usually happens only 1 time
conceptually at the top of your program (or when _N_ = 1). Then the table ends at the bottom of the
program (or when the last observation is reached). SAS programs have a way to detect the last
observation through the use of the END= option.

The code that created the detail report follows the above pattern. A skeleton of this code is shown:

title '1) Partial Detail Report';

data _null_;

 set SASHELP.IRIS(obs=10) end=last;

 if _N_ = 1 then do;

 dcl odsout obj();

 obj.table_start();

 obj.head_start();

 ** Header row 1;

 obj.row_start(type:"Header");

 ** statements for header cells;

 obj.row_end();

 ** Repeat similar pattern for other header rows;

 obj.head_end();

 end;

 ** row for every obs;

 newvar = sum(of _numeric_);

 obj.row_start();

 obj.format_cell(data: varname);

 ** repeat for every variable column;

 obj.row_end();

 if last then do;

 obj.table_end();

 end;

run;

18

The basic program, as far as writing the headers and report rows will not change much if you want to
switch from a detail report to a summarized report. The part of the program that has to change is the part
that summarizes the data. BY group processing needs to be turned on if the summarization will take
place in the program, so FIRST.byvar and LAST.byvar can be used:

data _null_;

 set IRIS end=last;

 by species;

 retain spc_cnt;

 if first.species then do;

 spc_cnt = 0;

 sl_tot = 0;

 sw_tot = 0;

 pl_tot = 0;

 pw_tot = 0;

 end;

 spc_cnt + 1;

 sl_tot + SepalLength;

 sw_tot + sepalwidth;

 pl_tot + PetalLength;

 pw_tot + PetalWidth;

 if last.species then do;

 sl_avg = sl_tot / spc_cnt;

 sw_avg = sw_tot / spc_cnt;

 pl_avg = pl_tot / spc_cnt;

 pw_avg = pw_tot / spc_cnt;

 newvar = round(sw_avg/pw_avg,.01);

 end;

 if _N_ = 1 then do;

 dcl odsout obj();

 obj.table_start();

 *** RWI code to write out headers and report rows;

 if last then do;

 obj.table_end();

 end;

run;

ods _all_ close;

The logic to summarize and calculate the average is just standard DATA step code. The variables are
initialized to 0 and retained, the total is calculated and at the end of a BY group, the averages and
NEWVAR are calculated. Results for the Summary Report are shown in Output 16.

Output 16. Summary Report Results Using the Report Writing Interface

19

So far, the summary report is close to the type of report that could be created with PROC REPORT.
However, the advantage of the Report Writing Interface comes when you need to do either more
complicated column spanning or more complicated row spanning, particularly in the body of the table. For
example, consider Output 17, which shows the CSS (Corrected Sum of Squares) statistic in the last
column on the report.

Output 17. ODS RTF Summary Report With Row Spanning using the Report Writing Interface

The CSS statistic was written to a SAS dataset by a PROC MEANS step. However, this is just an
arbitrary example of using two datasets in one DATA step program with the Report Writing Interface. The
overall structure of the program, with only the relevant syntax, is shown below:

data _null_;

 ** SET, BY, LENGTH, RETAIN statements;

 ** same code for accumulating total and calculating averages;

 if _N_ = 1 then do;

 set allcss;

 longvar = catx(' ', 'SepalLength:',round(cssl,.01),

 '*SepalWidth:',round(cssw,.01),

 '*PetalLength:',round(cspl,.01),

 '*PetalWidth:',round(cspw,.01));

 dcl odsout obj();

 obj.table_start();

 obj.head_start();

 ** Header row 1;

 obj.row_start(type:"Header");

 obj.format_cell(text: "Averages by Species", column_span:5, . . .);

 obj.format_cell(text: "Overall*CSS",

 split:'*',row_span:2,

 style_attr:"vjust=m color=black backgroundcolor=CXd98cb3");

 obj.row_end();

 ** 2nd Header row;

 obj.head_end();

 end;

 ** row for every obs;

 if species='Setosa' then do;

 obj.format_cell(data: longvar,split:'*',

 row_span:3, style_attr:"just=r vjust=m");

 end;

 ** rest of program same as detail report;

run;

20

The LONGVAR variable is created when _N_ = 1 because the CSS statistics only need to be written out
one time. You could use any other procedure or process to get the data from two or more datasets ready
for report writing. Notice that the header cell for “Overall CSS” spans 2 header rows, and the CSS values
held in the LONGVAR variable span 3 data rows. Because the Report Writing Interface provides a way to
“split” text based on a split character, the header cell for CSS and the data cell for CSS use the same split
character of * (asterisk). Notice how the SPLIT: argument is specified in the FORMAT_CELL method.

The IF statement that tests the value of SPECIES then writes the LONGVAR value and spans 3 rows
(when Species = Setosa). The first species value is Setosa, so that was chosen for the row_span:3
instruction as a result of the IF statement.

To see the full code, download the ZIP file from support.sas.com at the URL listed at the end of the
paper.

Another interesting use of the Report Writing Interface involves creating a table and a long paragraph
somewhat similar to Output 14. Consider this report, completely written using a DATA _NULL_ step and
the Report Writing Interface. Results and notes are shown in Output 18.

Output 18. ODS PDF Table and Text Report using the Report Writing Interface

Both tables in this report were created in one DATA step program. The top report is a table of 4 rows and
4 columns without a header. Because this is an homage to Piet Mondrian, the top report specified row
heights in the approximate proportions of one of Mondrian’s compositions. If you do not specify row
heights, then each row height is based on the contents of the cell. If you don’t know about Piet Mondrian,
he was a modernist artist. After he moved to Paris, Piet Mondrian started painting in an abstract style. His
most famous paintings showed a grid of black lines on a primarily white canvas. When I started thinking

21

of row spanning and column spanning, I was faced with either creating a completely arbitrary example or
taking an example from the art world and Mondrian’s famous color arrangements inspired dresses, shoes
and now, a SAS program.

The first challenge I had, however, was deciding how many rows and how many columns were in the
whole table. The final decision was that there were 4 rows and 4 columns. At first, I wanted to say there
were just 3 rows and 4 columns, but in the end, decided that there really were 4 rows, with that pesky
white cell underneath the blue cell being the only cell with borders on row #4.

There is no border between row 3 and row 4 on columns 1, 2 and 4, because of the INHIBIT attribute:

 obj.row_start(style_attr:"bordercolor=black borderwidth=2");

 obj.format_cell(data: col1, height:"1.125in", width:".4375in",

 inhibit:'B', style_attr:"color=yellow backgroundcolor=yellow");

 obj.format_cell(data: col2, height:"1.125in", width:"1.3125in",

 inhibit:'B', style_attr:"color=white backgroundcolor=white");

 obj.format_cell(data: col3, height:"1.125in", width:"1.1875in",

 style_attr:"color=cx0000ff backgroundcolor=cx0000ff");

 obj.format_cell(data: col4, height:"1.125in", width:".9375in",

 inhibit:'B', style_attr:"color=white backgroundcolor=white");

 obj.row_end();

On row 3, the bottom border is inhibited (or turned off) with INHIBIT:’B’. Then on row 4, the INHIBIT
attribute is set to ‘T’ to suppress the top border for row 4, columns 1, 2 and 4. As you can see in the code
above, the COL3 variable does not use the INHIBIT attribute, so the bottom border from row 3 and the
top border from row 4 for column 3 is dividing the blue area from the white area.

The code to produce this report is quite lengthy and you can see it in its entirety in the ZIP archive of
programs. But if you need extensive control over row spanning and/or column spanning and you are
comfortable with the DATA step, the additional effort to learn the Report Writing Interface syntax will be
well worth the time you spend. Even though the methods and “object-dot” syntax are new, the way to
write out a table is very straightforward and will add a very valuable skill to your report writing toolbox.

COMPLEX EXAMPLE 6: ALL SHOOK UP OVER LAYOUT

So where else is there to go with complex reports? Sometimes you need to produce tri-fold brochures or
annual reports or dashboards that need the kind of pixel-perfect placement for text and images that you
can get with either the SAS/GRAPH or ODS GRAPHICS ANNOTATE capability. There are two ways to
accomplish this type of output. Depending on what you need to do, you can use absolute layout and
region control with a DATA step program and you can also use ODS LAYOUT and ODS REGION to
control placement of output objects.

A lot has been written about ODS LAYOUT and ODS REGION statements. Actually, there are a lot of
people who have blazed the trail for you in the area of arranging output objects using ODS LAYOUT and
ODS REGION statements. Look for links to their papers in the Reference section at the end of this paper.
And for many, many more hits, search on www.lexjansen.com for other user group papers.

Within the DATA step, however, you can also use the LAYOUT_ABSOLUTE method as part of the
Report Writing Interface. This feature gives you complete control to write output where you want on a
page. Absolute layout is best used, in my opinion, for one page report production, where the layout of the
page (perhaps a title page, or a handout with text and graphics) is fixed and will never exceed the
boundaries of the physical page

The basic outline for starting the DATA step program and declaring the ODS object is the same as those
previous syntax snippets, where the “housekeeping” steps happens when _N_ = 1. But you only need to
test for _N_ if you are looping through data with a SET statement. In the program that produced Output
19, the DATA step program is not reading any data. So the statements in the program will only be
executed one time to produce the output.

http://www.lexjansen.com/

22

Output 19. Partial ODS PDF Table and Text Report using Absolute Layout in a DATA Step Program

The full code that produced this output is shown below:

title 'Homage to Piet Mondrian';

options leftmargin=.001in rightmargin=.001in

 topmargin=.001in bottommargin=.001in nodate nonumber;

ods pdf file="&mypath.\complex_6_piet.pdf";

data _null_;

 length pietpara $1500;

 pietpara="&p1.&p2.&p3.&p4.&p5";

 dcl odsout o();

 o.layout_absolute();

 /* where is x=0, y=0 given the above margins and title */

 o.region(x:"0in", y:"0in",width:"1in", height:"1in");

 o.format_text(data: '0,0', style_attr:". . .");

 ** Repeat o.region and o.format for every box in the homage;

 ** paragraph at bottom;

 o.region(x: "2in", y:"4.25in", width: "3.9475in");

 o.format_text(data: "Modernist Mondrian", just: "c",

 style_attr: ". . .");

 o.region(x: "2in", y:"4.75in", width: "4.5in");

 o.format_text(data: pietpara, style_attr:". . .");

 o.region(x: "2in", y: "6.5in", width: "4.5in");

 o.format_text(data: "This is the End. This is the End, My Friend.",

 just: "c", style_attr: ". . .");

 o.layout_end();

23

run;

ods pdf close;

With absolute layout, every region has to be defined. The boxes all had to line up on the Y value and the
X value. It was easy to calculate, but tedious to do the coding, according to the following table for every
box on the page:

o.region(x:"?in", y:"?in", width:"?in", height:"?in" , style_attr:". . .");

o.format_text(data: '???',style_attr:". . .");

Box/Region Row/col color X (in) Y (in) Width(in) Height (in)

1 r1/c1 red 2.0725 0.045 1.725 1.75
2 r1/c2 white 3.8225 0.045 2.09125 1.75
3 r2/c1 white 2.0725 1.845 1.725 0.675
4 r2/c2 white 3.8225 1.845 2.09125 0.675
5 r3/c1 yellow 2.0725 2.5725 0.4175 1.355
6 r3/c2 white 2.52 2.5725 1.2825 1.355
7 r3/c3 blue 3.8225 2.5725 1.15 1.095
8 r4/c3 white 3.8225 3.6875 1.15 0.24
9 r3/c4 white 5 2.5725 0.9255 1.355

Table 1. Absolute Layout X, Y, WIDTH and HEIGHT values

A 1 inch by 1 inch gray box was placed at x=0 and y=0; x=0 and y=5; and x=0 and y=10 to illustrate the
point that the 0 value for Y starts at the upper left corner of the layout area. Then, Y increases from top to
bottom, just as X increases from left to right. This may prove slightly disconcerting for SAS/GRAPH
programmers, since the usual location of x=0 and y=0 is the bottom left of the graph area.

But, your choices with Report Writing Interface, LAYOUT options and the new method and object syntax
will allow you to get creative with your reports.

COMPLEX EXAMPLE 7: SOME THINGS ARE MEANT TO BE

The last example brings you back to a “real world” example, using several of the techniques used in other
examples in the paper, and showing ODS LAYOUT and ODS REGION statements too. This example is a
reworking of the demographic example from my 2008 paper, as shown in Output 20.

24

Output 20. ODS PDF Table, Graph and Text Report using Different Techniques

The report is composed of multiple regions. The top region is created by a PROC REPORT program
based on the 2008 paper, but only for 3 of the categories, AGE, GENDER and LVEF. Then 4 of the
variables are grouped into 2 rows of side-by-side graphs. Finally, a closing paragraph (in this case, a
nonsense paragraph) is written to the bottom of the page.

The graphs were all produced with PROC SGPLOT. In this instance, instead of using an attribute map to
control the colors, a STYLEATTRS statement is used in each SGPLOT to control the fill colors and outline
colors for each graph using a color scheme for each graph (gold, blue, green, and purple).

Rather than use the Report Writing Interface, this report uses ODS LAYOUT and ODS REGION
statements to structure the report. The report starts with 1 column that spans the entire page. Then, there
is a layout area composed of 2 columns and 2 rows. This means that 4 SGPLOT steps will populate
these 4 areas. Of course, that means you have to plan ahead of time for the number of regions on the
report and the number of rows/columns that you will need.

After this layout area for the graphs is ended, there is still a one-column layout area for the final
paragraphs. The final paragraph used a PROC REPORT step to write out a paragraph, as shown in the
example in Output 14. The basic outline of the program is shown below:

** run the program from 2008 to make the finaldata file;

** complex2008_demog_data_macro.sas ;

** create data files used by program;

options leftmargin=.25in rightmargin=.25in

 topmargin=.25in bottommargin=.25in nonumber nodate;

ods pdf file="&mypath.\sgplot_complex.pdf" notoc

 startpage=no style=journal;

title font=Helvetica bold h=14pt 'Using PROC REPORT and ODS LAYOUT';

ods escapechar='^';

25

ods layout gridded columns=1 column_widths=(8.00in);

ods region;

** First PROC REPORT;

ods layout end;

title; footnote;

ods layout gridded rows=2 columns=2 column_widths=(3.75in 3.75in);

 ods region;

 ods graphics / height=3in width=3.5in;;

** SGPLOT for Coronary Artery Disease;

 ods region;

 ods graphics / height=3in width=3.5in;;

** SGPLOT for Myocardial Infarction;

 ods region;

 ods graphics / height=3in width=3.5in;;

** SGPLOT for Hypertension;

 ods region;

 ods graphics / height=3in width=3.5in;;

** SGPLOT for NYHA Status;

ods layout end;

ods layout absolute y=8.75in x=.25in width=7.5in;

 ods region;

** now write out the last paragraph using PROC REPORT;

ods layout end;

ods _all_ close;

Notice how both gridded and absolute layout were used in the ODS LAYOUT statements in the code. If
the final paragraph were dynamic and might vary in the amount of text, then GRIDDED would have been
a better choice or possibly the Report Writing Interface for the final paragraph. In fact, the Report Writing
Interface could also have been used for the top report too. However, one of the goals of this last example
is to show that you don’t have to abandon existing code or data that you already have working.

You can combine the very new ODS features with older ODS techniques to produce your reports. This
will give you a little breathing room to learn and experiment.

CONCLUSION

Some people say that rock ‘n roll never forgets and that data never sleeps. Other people say that there’s
always more than one way to accomplish report writing tasks using SAS. I hope this paper has showed
you that there are many new and different ways to write complex reports. From new destinations to new
capabilities, ODS doesn’t disappoint.

You will be able to find this paper and the zip file of programs by going to
http://support.sas.com/resources/papers/proceedings16/ and search for the paper number. Papers and
zip files should be available after the conference.

http://support.sas.com/resources/papers/proceedings16/

26

REFERENCES

Dorinski, S.M. 2008. “Using ODS Object Oriented Features To Produce a Formatted Record Layout”
Proceedings of North East SAS Users Group, 2008. SAS Institute Inc., Cary, NC.
Available at http://www.lexjansen.com/nesug/nesug08/bb/bb02.pdf

Feder, Steven. 2010. "Integrating Tables and Graphs with ODS LAYOUT." Proceedings of the SAS
Global Forum 2010 Conference. SAS Institute Inc., Cary, NC.
http://support.sas.com/resources/papers/proceedings10/230-2010.pdf

Herbison, R. 2010. “Using the Data Step to Create Bar Charts: The ODS Report Writing Interface”
Proceedings of North East SAS Users Group, 2010. Baltimore, MD.
Available at http://www.lexjansen.com/nesug/nesug10/bb/bb05.pdf

Huff, Gina, Helbig Ph.D., Tuesdi, and James, Chris. 2011. "Absolutely Fabulous: Tips on Creating a
Publication-Ready Report using ODS Absolute Layout Functionality." Proceedings of the SAS Global
Forum 2011 Conference. SAS Institute Inc., Cary, NC.
Available at http://support.sas.com/resources/papers/proceedings11/293-2011.pdf

Huntley, Scott, and Lawhorn, Bari. 2010. "Getting the Right Report (Again): Your Compatibility Guide for
ODS PDF 9.2." Proceedings of the SAS Global Forum 2010 Conference. Cary, NC: SAS Institute Inc.
Available at http://support.sas.com/resources/papers/proceedings10/035-2010.pdf

Huntley, Scott. 2015."An Insider’s Guide to ODS LAYOUT Using SAS® 9.4." Proceedings of the SAS
Global 2015 Conference. SAS Institute Inc., Cary, NC
http://support.sas.com/resources/papers/proceedings15/SAS1836-2015.pdf

Ladan, Annette I. 2006. "The Absolute Nitty-griddy of ODS Layout: Part I." Proceedings of the South East
SAS Users Group 2006. SAS Institute Inc., Cary, NC.
http://analytics.ncsu.edu/sesug/2006/PO02_06.PDF

Lund, Pete. 2011. "You Did That Report in SAS®!?: The Power of the ODS PDF Destination.”
Proceedings of the SAS Global Forum 2011 Conference. SAS Institute Inc., Cary, NC.
http://support.sas.com/resources/papers/proceedings11/247-2011.pdf

Koopmann Jr., Richard. 2007. "Experimenting with the ODS DATA Step Object (Part I)". Proceedings of
the Pacific Northwest SAS Users Group 2007. SAS Institute Inc., Cary, NC.
Available at http://www.lexjansen.com/pnwsug/2007/Richard%20Koopmann%20-
%20Experimenting%20with%20the%20ODS%20DATA%20Step%20Object.pdf

Koopmann, Jr. Richard. 2008. "Experimenting with the ODS DATA Step Object (Part II)" Proceedings of
the SAS Global Forum 2008 Conference. SAS Institute Inc., Cary, NC.
Available at http://www2.sas.com/proceedings/forum2008/261-2008.pdf

Kummer, Daniel. 2014. "Toe to Toe: Comparing ODS LAYOUT and the ODS Report Writing Interface."
Proceedings of the SAS Global Forum 2014 Conference. SAS Institute Inc., Cary, NC.
Available at https://support.sas.com/resources/papers/proceedings14/SAS330-2014.pdf

Lund, Pete. 2006. "PDF Can be Pretty Darn Fancy - Tips and Tricks for the ODS PDF Destination".
Proceedings of the 31st SAS Users Group International Conference. SAS Institute Inc., Cary, NC.
Available at http://www2.sas.com/proceedings/sugi31/092-31.pdf

Lund, Pete. 2010. "More to it than Meets the Eye: Creating Custom Legends that Really Tell a Story."
Proceedings of the Midwest SAS Users Group 2010.
Available at http://www.mwsug.org/proceedings/2010/dataviz/MWSUG-2010-60.pdf

Lund, Pete. 2013. "Have it Your Way: Creating Reports with the Data Step Report Writing Interface."
Proceedings of the SAS Global Forum 2013 Conference. SAS Institute Inc., Cary, NC.
Available at http://support.sas.com/resources/papers/proceedings13/040-2013.pdf

Lund, Pete. 2015. "Something Old, Something New...Flexible Reporting with DATA Step-based Tools."
Proceedings of the SAS Global Forum 2015 Conference. SAS Institute Inc., Cary, NC.
Available at http://support.sas.com/resources/papers/proceedings15/3496-2015.pdf

http://www.lexjansen.com/nesug/nesug08/bb/bb02.pdf
http://support.sas.com/resources/papers/proceedings10/230-2010.pdf
http://www.lexjansen.com/nesug/nesug10/bb/bb05.pdf
http://support.sas.com/resources/papers/proceedings11/293-2011.pdf
http://support.sas.com/resources/papers/proceedings10/035-2010.pdf
http://support.sas.com/resources/papers/proceedings15/SAS1836-2015.pdf
http://analytics.ncsu.edu/sesug/2006/PO02_06.PDF
http://support.sas.com/resources/papers/proceedings11/247-2011.pdf
http://www.lexjansen.com/pnwsug/2007/Richard%20Koopmann%20-%20Experimenting%20with%20the%20ODS%20DATA%20Step%20Object.pdf
http://www.lexjansen.com/pnwsug/2007/Richard%20Koopmann%20-%20Experimenting%20with%20the%20ODS%20DATA%20Step%20Object.pdf
http://www2.sas.com/proceedings/forum2008/261-2008.pdf
https://support.sas.com/resources/papers/proceedings14/SAS330-2014.pdf
http://www2.sas.com/proceedings/sugi31/092-31.pdf
http://www.mwsug.org/proceedings/2010/dataviz/MWSUG-2010-60.pdf
http://support.sas.com/resources/papers/proceedings13/040-2013.pdf
http://support.sas.com/resources/papers/proceedings15/3496-2015.pdf

27

Mays, Rich. 2007. “ODS LAYOUT is Like an Onion.” Proceedings of the 31st SAS Users Group
International Conference. SAS Institute Inc., Cary, NC. Available at
http://www2.sas.com/proceedings/sugi31/159-31.pdf

Nelson, Rob. 2010. “ODS LAYOUT to Create Publication-Quality PDF Reports of STD Surveillance Data.”
Proceedings of the SAS Global Forum 2010 Conference. SAS Institute Inc., Cary, NC.
Available at http://support.sas.com/resources/papers/proceedings10/216-2010.pdf

O’Connor, Daniel and Huntley, Scott. 2009. “Breaking New Ground with SAS® 9.2 ODS Layout
Enhancements.”, Proceedings of the SAS Global Forum 2009 Conference. SAS Institute Inc., Cary, NC.
Available at https://support.sas.com/resources/papers/proceedings09/043-2009.pdf

O’Connor, Daniel. 2003. “Next Generation Data _NULL_ Report Writing Using ODS OO Features”.
Proceedings of the Twenty-Eighth SAS Users Group International 2003. SAS Institute Inc., Cary, NC.
Available at http://www2.sas.com/proceedings/sugi28/022-28.pdf

O’Connor, Daniel. 2008. “SAS Graphics on ODS 9.2 Performance-Enhancing Steriods”. Proceedings of
SAS Global Forum 2008. SAS Institute Inc., Cary, NC.
Available at http://www2.sas.com/proceedings/forum2008/254-2008.pdf

O’Connor, Daniel. and Huntley, Scott. 2009. “Breaking New Ground with SAS 9.2 ODS Layout
Enhancements.” Proceedings of SAS Global Forum 2009. SAS Institute Inc., Cary, NC.
Available at http://support.sas.com/resources/papers/proceedings09/043-2009.pdf

O’Connor, Daniel. 2009. “The Power to Show: Ad Hoc Reporting, Custom Invoices, and Form Letters.”
Proceedings of the SAS Global Forum 2009. SAS Institute Inc., Cary, NC.
Available at http://support.sas.com/resources/papers/proceedings09/313-2009.pdf

O'Connor, Daniel. 2013. "Take Home the ODS Crown Jewels: Master the New Production Features of
ODS LAYOUT and Report Writing Interface Techniques." Proceedings of the SAS Global 2013
Conference. SAS Institute Inc., Cary, NC.
Available at https://support.sas.com/resources/papers/proceedings13/015-2013.pdf

Okerson, Barbara B. 2008. Combining Text and Graphics with ODS LAYOUT and ODS REGION".
Proceedings of the Southeast SAS Users Group 2008.
Available at http://analytics.ncsu.edu/sesug/2008/SIB-097.pdf

Okerson, Barbara B. 2009. "Pleasing the Client: Creating Custom Reports with SAS® ODS LAYOUT and
Proc REPORT." Proceedings of the Southeast SAS Users Group 2009.
Available at http://analytics.ncsu.edu/sesug/2009/RV008.Okerson.pdf

Zender, Cynthia L. 2008. "Creating Complex Reports." Proceedings of the SAS Global Forum 2008
Conference. Cary, NC: SAS Institute Inc.
Available at http://www2.sas.com/proceedings/forum2008/173-2008.pdf

Zender, Cynthia L. 2010. “SAS® Style Templates: Always in Fashion.” Proceedings of the SAS Global
Forum 2010 Conference. Cary, NC: SAS Institute Inc.
Available at http://support.sas.com/resources/papers/proceedings10/033-2010.pdf

Zender, Cynthia L. 2009. “Tiptoe through the Templates.” Proceedings of the SAS Global Forum 2009
Conference. Cary, NC: SAS Institute Inc.
Available at http://support.sas.com/resources/papers/proceedings09/227-2009.pdf

Zender, Cynthia L. 2011. “Don’t Gamble with Your Output: How to Use Microsoft Formats with ODS.”
Proceedings of the SAS Global Forum 2011 Conference. Cary, NC: SAS Institute Inc.
Available at https://support.sas.com/resources/papers/proceedings11/266-2011.pdf

SAS Institute Inc. 2008. "Using Style Elements in the REPORT and TABULATE Procedures."
Available at http://support.sas.com/resources/papers/stylesinprocs.pdf

ACKNOWLEDGMENTS

http://www2.sas.com/proceedings/sugi31/159-31.pdf
http://support.sas.com/resources/papers/proceedings10/216-2010.pdf
https://support.sas.com/resources/papers/proceedings09/043-2009.pdf
http://www2.sas.com/proceedings/sugi28/022-28.pdf
http://www2.sas.com/proceedings/forum2008/254-2008.pdf
http://support.sas.com/resources/papers/proceedings09/043-2009.pdf
http://support.sas.com/resources/papers/proceedings09/313-2009.pdf
https://support.sas.com/resources/papers/proceedings13/015-2013.pdf
http://analytics.ncsu.edu/sesug/2008/SIB-097.pdf
http://analytics.ncsu.edu/sesug/2009/RV008.Okerson.pdf
http://www2.sas.com/proceedings/forum2008/173-2008.pdf
http://support.sas.com/resources/papers/proceedings10/033-2010.pdf
http://support.sas.com/resources/papers/proceedings09/227-2009.pdf
https://support.sas.com/resources/papers/proceedings11/266-2011.pdf
http://support.sas.com/resources/papers/stylesinprocs.pdf

28

The author would like to thank paper reviewers, Chevell Parker, Bari Lawhorn, Jane Eslinger, Linda
Jolley, Dan O’Connor, and Michele Ensor for their review and comments. Many thanks to my editor,
Jeanette Bottitta, whose help and expertise have improved this paper and made it easier to read.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Cynthia L. Zender
100 SAS Campus Drive
Cary, NC 27513
SAS Institute, Inc.
Email: Cynthia.Zender@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Cynthia.Zender@sas.com

