
1

Paper SAS4381-2016

Create Web-Based SAS® Reports Without Having to Be a Web Developer
Marie Dexter, Kris Kiser, Amy Peters, and Christie Corcoran, SAS Institute Inc., Cary, NC

ABSTRACT
You might already know that SAS® Studio tasks provide you with prompts to “fill in the blanks” in SAS®
code and help you navigate SAS syntax. But did you know that SAS Studio tasks are not only designed to
allow you to modify them, but that there’s an entire common task model (CTM) provided for you to build
your own? You can build basic utilities or complex reports. You can just run SAS code or you can have
elaborate prompts to dynamically generate code. And since SAS Studio runs in a web browser, your
tasks are browser-based and can be easily shared with others. In this paper you will learn how to take a
typical SAS program and create a SAS Studio task from it. When the task is run, you’ll see web-based
prompts for the dynamic portions of the program and HTML output delivered to your browser.

INTRODUCTION
As a SAS programmer, you are often asked to run reports that rank items according to sales, invoice
values, and so on. Using the Sashelp.Cars data set as the input data source, you recently wrote the
following SAS program to rank the top 5 models of Audi cars by their invoice value.

To generate the report in SAS Studio, copy and paste the following code into the code editor:

%let rankNumber=5;
proc rank data=sashelp.cars(where=(make="Audi"))descending ties=mean
out=work.rank(where=(rank<=&rankNumber));
 var invoice;
 ranks rank;
run;
proc sql ;
 create table work.toprank as
 select model, invoice
 from work.rank
 where rank<=&rankNumber
 order by rank;
quit;
title "Top &rankNumber Invoice Model for Audi";
proc print data=work.toprank noobs label;
run;
proc sgplot data=work.toprank;
 vbar model / response=invoice;
run;

Click to run the SAS program. The results appear on the RESULTS tab in SAS Studio.

2

Display 1. Tabular and Graphical Results for the Top 5 Models of Audi Ranked by Invoice Value

Other users at your site are asking you to customize this report to meet their needs. For example, one
user wants a report that contains 10 ranked values. Another user wants to rank the data based on the
car’s make rather than the model.

By converting your SAS program into a SAS Studio task, other users (who might not be SAS
programmers) can use a point-and-click interface to create the report they want without asking for your
help.

WHAT IS A SAS STUDIO TASK?
SAS Studio is shipped with several predefined tasks, which are point-and-click user interfaces that guide
a user through an analytical process. Because of the flexibility of the task framework, you can create
tasks for your site. In SAS Studio, all tasks use the same common task model (CTM) and the Velocity
Template Language. No Java programming or ActionScript programming is required to build a task.

The common task model defines the XML template for the task. In the CTM file, you define how the task
appears to the SAS Studio user and specify the code that is needed to run the task. A task is defined by
its input data and the options that are available to the user. (Some tasks might not require an input data
source.) In addition, the task has metadata so that it is recognized by SAS Studio.

3

CREATE YOUR CUSTOM TASK

STEP 1: OPEN A BLANK TASK

Open SAS Studio. In the navigation pane, click Tasks and Utilities. To open a blank task, click and
select New Task.

A blank task opens in the SAS Studio workspace.

Display 2. Template for a Blank Task

STEP 2: COPY YOUR CODE INTO THE CODE TEMPLATE

Scroll to the end of the blank task and locate the CodeTemplate element. This element contains the
SAS code required to generate the HTML results.

Here is the default code in the CodeTemplate element:

<CodeTemplate>
 <![CDATA[
 proc print data=sashelp.cars;run;
]]>
</CodeTemplate>

If you ran this task now, the HTML results would show the contents of the Sashelp.Cars data set.

4

Replace the PROC PRINT statement with your SAS program. Here is the CodeTemplate element with
your SAS program:

<CodeTemplate>
 <![CDATA[

%let rankNumber=5;
proc rank data=sashelp.cars(where=(make="Audi"))descending ties=mean
 out=work.rank(where=(rank<=&rankNumber));
 var invoice;
 ranks rank;
run;
proc sql ;
 create table work.toprank as
 select model, invoice
 from work.rank
 where rank<=&rankNumber
 order by rank;
quit;
title "Top &rankNumber Invoice Model for Audi";
proc print data=work.toprank noobs label;
run;
proc sgplot data=work.toprank;
 vbar model / response=invoice;
run;

]]>
</CodeTemplate>

Click to generate the task interface. A New Task tab appears in the workspace. On the left, you see
an INFORMATION tab. (You can ignore this for now.) On the right, the CODE tab shows the SAS code
that you entered into the CodeTemplate element.

5

Display 3. Your SAS Program as the Basis for a SAS Studio Task

Click again to run the task. The HTML results appear on the RESULTS tab. Because you are using
the same SAS code, the results are identical to when you ran the SAS program in the code editor. Close
the New Task 1 tab.

To save your new SAS Studio task, open the tab that contains your task code and click . In the Save
As window, select My Tasks. For the task name, enter Rank_Cars. Verify that the Save as type is SAS
Studio Task (*.CTM) and click Save.

STEP 3: REPLACE THE RANK MACRO VARIABLE WITH AN OPTION IN THE TASK INTERFACE

In your SAS program, you use a macro variable, rankNumber, to specify the number of values to rank in
the HTML results. Currently to change the value of rankNumber, you must edit the SAS code.

However, everyone at your site isn’t familiar with SAS programming. Wouldn’t it be nice if you could
create a point-and-click option instead? In this step, you will add the Rank Number option to your task.

Before you can include them in the task interface, all tabs, headings, and options must first be defined in
the Metadata element. In this step, you want to create a Top Rank tab (which acts as the container), an
OPTIONS group on this tab, and an option called Rank Number in this group.

6

In the Rank_Cars task, add the highlighted code to the Options element:

<Metadata>

 <DataSources>
 </DataSources>

 <Options>
 <Option name="topRankTab" inputType="string">Top Rank</Option>
 <Option name="optionsGroup" inputType="string">OPTIONS</Option>
 <Option name="topRankNumber" inputType="numstepper" minValue="0"
 maxValue="10" required="true" defaultValue="5">Rank Number</Option>
 </Options>

</Metadata>

Let us examine this code:

1. The first Option element defines the Top Rank tab. The name, topRankTab, is used to reference
this tab throughout the task code.

2. The second Option element defines the OPTIONS group on the Top Rank tab. The name,
optionsGroup, is used to reference this heading throughout the task code.

3. The third Option element defines the Rank Number option.

• The name, topRankNumber, is used to reference this option throughout the task code.

• The inputType parameter specifies the type of control for the user interface. This example
uses a numstepper control. (For more information about the types of controls, see SAS
Studio: Developer’s Guide for Writing Custom Tasks
at http://support.sas.com/documentation/onlinedoc/sasstudio.)

• The defaultValue parameter specifies the option’s initial value. In this case, the default
value is 5.

• The minValue and maxValue parameters specify the range of valid values. For this
example, the minimum value is 0 and the maximum value is 10.

• Because the required parameter is set to true, you must enter a value for the Rank
Number option to run the task.

After defining the Top Rank tab, the OPTIONS group, and the Rank Number option in the metadata, you
must add these items to the UI element so that they will appear in the task interface.

In the Rank_Cars task, add the highlighted code to the UI element:

<UI>
 <Container option="topRankTab" open="true">
 <Group option="optionsGroup" open="true">
 <OptionItem option="topRankNumber"/>
 </Group>
 </Container>
</UI>

http://support.sas.com/documentation/onlinedoc/sasstudio

7

Here is an explanation of this code:

1. The Container element creates the user interface for the Top Rank tab. Note that the option
parameter is set to topRanktab. Because the open parameter is set to true, the Top Rank tab is
visible when you open the task interface.

2. The Group element creates the OPTIONS group heading on the Top Rank tab. The option
parameter is set to optionsGroup. Because the open parameter is set to true, this group is open
when you open the task interface. You can expand and collapse group headings.

3. The OptionItem element specifies the placement of the Rank Number option. In the task interface,
this option appears on the Top Rank tab (the container) in the OPTIONS group. The option
parameter is set to topRankNumber.

The last step is to update the macro code in the CodeTemplate element to refer to the new
topRankNumber option. In the %LET statement, replace 5 with $topRankNumber. This Velocity
variable contains the value that the user selected for the topRankNumber option (which is the Rank
Number option in the task interface).

<CodeTemplate>
 %let rankNumber = $topRankNumber;
 proc rank data=sashelp.cars(where=(make="Audi"))descending ties=mean
 out=work.rank(where=(rank<=&rankNumber));
 var invoice;
 …
 run;
<CodeTemplate>

Click to generate the task interface. You should see a Top Rank tab that contains the OPTIONS
group heading and the Rank Number option.

On the Top Rank tab, change the Rank Number option to 10. On the CODE tab, you see that %let
rankNumber now equals 10.

8

Display 4. Change the Value of the Rank Number Option

Click again to run the task. The RESULTS tab shows an HTML report that contains 10 ranked
values.

9

Display 5. Top 10 Invoice Report in SAS Studio

STEP 4: ADDING A SUBSET VARIABLE AND A FILTER

Currently, the report ranks the invoice values for the Audi model. However, you’d like to enable the task
user to select a different make (such as BMW) or type (such as hybrid or sedan) of vehicle. You can do
this by adding a subset variable to the task.

To allow users to select a subset variable, you must define a role for the subset variable in the metadata.
In the Rank_Cars task, locate the DataSources element and add the highlighted code:

<DataSources>
 <DataSource name="dataset">
 <Roles>
 <Role name="subsetRole" type="C" minVars="1" maxVars="1"
 required="true">Subset by:</Role>
 </Roles>
 </DataSource>
</DataSources>

Here is an explanation of this code:

• The DataSource element defines the name of the input data source. This name is referenced in
the CodeTemplate element.

10

In this paper, the input data source is always Sashelp.Cars. Changing the input data source is
beyond the scope of this paper. For more information about data sources, see SAS Studio 3.5:
Developer’s Guide for Writing Custom Tasks.

• The Role element enables you to select a variable from the input data source. The ranked
report is created using the character variable (type=C) assigned to this role. The minVars
parameter is set to 1, so you must assign one variable to this role. The maxVars parameter is set
to 1, so you cannot assign more than one variable.

Next, you need to define an option, so the task user can select the specific make or type of vehicle.

In the Options element, add the highlighted code:

<Options>
 <Option name="topRankTab" inputType="string">Top Rank</Option>
 <Option name="dataGroup" inputType="string">DATA</Option>
 <Option name="optionsGroup" inputType="string">OPTIONS</Option>
 <Option name="topRankNumber" inputType="numstepper" minValue="0"
 maxValue="10" required="true" defaultValue="5">Rank Number:</Option>
 <Option name="filterValue" inputType="distinct" required="true"
 source="subsetRole">Where value equals:</Option>
</Options>

Here is an explanation of this code:

1. In the second Option element, you are defining a DATA group.

2. In the fifth Option element, you are defining the Where value equals option. You will use this
option to select the value of interest for the variable assigned to the Subset by role. Because
inputType=distinct, the Where value equals option is a drop-down list that contains only
unique values. (No duplicate values appear in the drop-down list.) Because
source=subsetRole, the subsetRole option (or Subset by role in the task interface)
contains the values for this drop-down list.

Now, you must add the new DATA group, the Subset by role, and the Where value equals option to the
UI element:

<UI>
 <Container option="topRankTab" open="true">
 <Group option="dataGroup" open="true">
 <DataItem data="dataset"/>
 <RoleItem role="subsetRole"/>
 <OptionItem option="filterValue"/>
 </Group>
 <Group option="optionsGroup" open="true">
 <OptionItem option="topRankNumber"/>
 </Group>
 </Container>
</UI>

 Here is an explanation of this code:

1. The Group element creates the new DATA group heading on the Top Rank tab.

2. The DataItem element displays the name of the input data source. This paper uses
Sashelp.Cars as the input data set.

3. The RoleItem element displays the Subset by role.

4. The OptionItem element displays the Where value equals option.

11

Only one more step! Now, you must update the code in the CodeTemplate element. The names that you
defined in the Role and Option elements are used in the Velocity code.

Make the highlighted changes to the CodeTemplate element:

<CodeTemplate>
 %let rankNumber = $topRankNumber;
 proc rank data=$dataset (where=($subsetRole[0]="$filterValue"))descending
 ties=mean
 out=work.rank(where=(rank<=&rankNumber));
 var invoice;
 ranks rank;
 run;
 proc sql ;
 create table work.toprank as
 select model, invoice
 from work.rank
 where rank<=&rankNumber
 Order by rank;
 quit;
 title "Top &rankNumber Invoice Model for $filterValue";
 proc print data=work.toprank noobs label;
 run;
 proc sgplot data=work.toprank;
 vbar model / response=invoice;
 run;
</CodeTemplate>

Here are the changes to the PROC RANK statement:

1. The DATA option needs to refer to the $dataset Velocity variable. The value of the $dataset
Velocity variable depends on what data source is selected in the task interface. Remember for
this paper select Sashelp.Cars as the data source.

2. In the original SAS program, where=(make=”Audi”). With the addition of the Subset by role
and the Where value equals option, the task user can now change the values for the report, so
you need to replace the code in parenthesis with Velocity variables.

• The $subsetRole Velocity variable is an array that contains the variable selected for
the Subset by role. The Role element uses the minVars and maxVars parameters to
specify how many variables can be assigned to a role. Because roles can have 1 to n
number of variables, the corresponding Velocity variable is an array and must be followed
by [0] in the CodeTemplate element.

• The $filterValue Velocity variable contains the value selected from the Where value
equals drop-down list.

You can also use the $filterValue Velocity variable in the TITLE statement, so the value you are
filtering by appears in the title of the results.

Click to generate the task interface. On the Top Rank tab, you see the new DATA group, a data set
selector (which should be set to Sashelp.Cars), the Subset by role, and the Where value equals option.

12

Display 6. Subset by Role and Where value equals Option in the Task Interface

Initially, a message (rather than code) appears on the CODE tab. The red asterisks in the task interface
indicate that you must assign a variable to the Subset by role and select a value from the Where value
equals drop-down list before you can run the task.

For the Subset by role, click and select Make. The values in the Where value equals drop-down
list now contain all the distinct values of Make. From the Where value equals drop-down list, select
BMW. Leave 5 as the default value for the Rank Number option.

Click to run the task. The results show a report of the top 5 makes of BMW based on their invoice
value.

13

Display 6. Top 5 Invoice Models for BMW

Let us change these options to generate a report that subsets by type. On the Top Rank tab, select the

Subset by role and click . The Make variable is deleted from this role. Next, click and select
Type. The values in the Where value equals drop-down list now contain the values for the Type variable.
From this drop-down list, select Sedan.

Click to run the task. The results show a report of the top 5 sedans ranked by their invoice value.

14

Display 7. Top 5 Invoice Models for Sedans

Congratulations! You’ve successfully converted your SAS program into a SAS Studio task.

CONCLUSION
SAS Studio tasks provide a point-and-click interface to help you run analyses. Using the tools of the
common task model (CTM) in SAS Studio, you can create custom tasks based on the needs of your site.
You can use your existing SAS programs as the starting point and build from there. The SAS Studio task
can be simple or very complex depending on your needs. Now that you know the basics, you can learn
more about SAS Studio tasks and all of the tools that you can use from the SAS Studio: Developer’s
Guide to Writing Custom Tasks. Have fun!

RECOMMENDED READING
• SAS Studio: Developer’s Guide for Writing Custom Tasks

• SAS Studio: Getting Started Writing Your First Custom Task

All SAS Studio documentation is available at http://support.sas.com/documentation/online/sasstudio.

http://support.sas.com/documentation/onlinedoc/sasstudio

15

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors:

Marie Dexter
SAS Institute Inc.
919-677-8000
marie.dexter@sas.com
www.sas.com

Kris Kiser
SAS Institute Inc.
919-677-8000
kris.kiser@sas.com
www.sas.com

Amy Peters
SAS Institute Inc.
919-677-8000
amy.peters@sas.com
www.sas.com

Christie Corcoran
SAS Institute Inc.
919-677-8000
Christie.corcoran@sas.com
www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:marie.dexter@sas.com
http://www.sas.com/
http://www.sas.com/
http://www.sas.com/

	Abstract
	Introduction
	WHAT IS A SAS STUDIO TAsk?
	Create Your CUSTOm TAsk
	Step 1: Open a BLANK TASK
	Step 2: COPY YoUR CODE into the Code Template
	Step 3: replace the Rank Macro Variable with an OPtion in the task Interface
	STEP 4: Adding a SuBSET Variable and a Filter

	Conclusion
	Recommended Reading
	Contact Information

