Paper SAS4201-2016

Writing Packages: A New Way to Distribute and Use SAS/IML® Programs

Rick Wicklin, SAS Institute Inc.

ABSTRACT

SAS/IML® 14.1 enables you to author, install, and call packages. A package consists of SAS/IML source code,
documentation, data sets, and sample programs.

Packages provide a simple way to share SAS/IML functions. An expert who writes a statistical analysis in SAS/IML
can create a package and upload it to the SAS/IML File Exchange. A nonexpert can download the package, install it,
and immediately start using it. Packages provide a standard and uniform mechanism for sharing programs, which
benefits both experts and nonexperts.

Packages are very popular with users of other statistical software, such as R. This paper describes how SAS/IML
programmers can construct, upload, download, and install packages. They’re not wrapped in brown paper or tied up
with strings, but they’ll soon be a few of your favorite things!

INTRODUCTION

After weeks of work, you finally have completed that complicated SAS/IML project. It was challenging to write all those
functions, and finding that last bug was frustrating, but now your program works beautifully. You beam with pride
when your boss compliments you in front of the whole team and suggests that you post your library of functions to the
SAS/IML File Exchange so that other programmers can benefit from your hard work.

Now you face a whole new problem: what is the best way to disseminate your work? Your project has dozens of files.
There are module definitions, sample data sets, documentation, programs that verify the numerical computations, and
programs that demonstrate how to use the function library.

There is a solution to your dilemma. Beginning with SAS/IML 14.1, you can create a package to distribute your project.
A SAS/IML package is a ZIP file that contains everything that relates to a project. Source files? Yes. Documentation?
Yes. Sample programs and data sets? Yes and yes.

After you create a package, other programmers can easily download and install the package and use your work. As a
bonus, authoring a package is a great to way to show the wider SAS® community what your boss already knows: you
are a fantastic programmer!

INSTALL A PACKAGE

Packages enable SAS/IML programmers to use and build on the work of others. Probably the best way to see the
power of packages is to download and install one yourself. Hopefully, that experience will inspire you to create your
own package.

To demonstrate packages, | wrote the polygon package. This package is a collection of functions that compute
properties of planar polygons. For example, the package contains a function that computes the perimeter of a
polygon, another that computes the area, and another that computes the centroid. The package also contains a
function that can solve the point-in-polygon problem (Hormann and Agathos 2001). In addition, the package includes
documentation files, example programs, and data sets that contain example polygons.

The following steps show how to download and install the polygon package:

1. Download the polygon. zip file from the SAS/IML File Exchange: https://communities.sas.com/
sas-iml-exchange. Save the ZIP file to your local network. This paper assumes that the ZIP file is saved to
C:\Packages\polygon. zip on a Windows PC.

2. Use the PACKAGE INSTALL statement to install the package. Specify the location of the ZIP file, as follows:

https://communities.sas.com/sas-iml-exchange
https://communities.sas.com/sas-iml-exchange

proc iml;
package install "C:\Packages\polygon.zip";
quit;

The PACKAGE INSTALL statement unzips the package files to a system-specific location. In most situations, you only
need to install the package one time.

USE A PACKAGE

The standard SAS programming interfaces (the SAS windowing environment, SAS® Enterprise Guide®, and SAS®
Studio) all load packages from the same location. Therefore, you can use any of these programming interfaces to call
a package that is installed on a local SAS server.

Use the PACKAGE LOAD statement to load the function modules in the package, as follows:

proc iml;
package load polygon;
The SAS log displays a note for each module that is loaded. After the modules are loaded, you can call them. If you

can’t remember the calling syntax, you can use the PACKAGE HELP statement to see a brief overview of the package,
as follows:

package help polygon;

In PROC IML, the PACKAGE HELP statement displays the help file in the SAS log. Part of the output is shown in
Figure 1. The polygon package also contains documentation in PDF format. The PDF documentation is more
extensive and provides a working example for each function in the package.

Figure 1 Partial Output for Help for Polygon Package

Polygon Package
Description: Computational geometry for polygons

A polygon is represented as an n x 2 matrix, where the rows represent
adjacent vertices for the polygon. The polygon should be "open,"
which means that the last row does not equal the first row.

Multiple polygons are represented by an n x 3 matrix. The third
column is an ID variable, and the unique values of the column identify
different polygons.

PolyArea (P);
returns the areas of simple polygons.

PolyIsConvex (P);
returns 1 if a simple polygon is convex. Otherwise, returns 0.

PolyPerimeter (P);
returns the perimeter of a polygon.

PolyPtInside (P, pts);
determines whether points are inside a polygon.
A point is "inside" if the winding number at that point is odd.

" The SAS/IML® Studio application installs a package on the client PC, rather than on the SAS server. Therefore, you need to install a
package from within SAS/IML Studio before you can call the package from an IMLPlus program.

2

With the help of the documentation, you can write a short program that computes the perimeter and area of a polygon
and determines whether it is convex:

Pp=4{(00, 10, 12, 0 2};
Perimeter = PolyPerimeter (P);
Area = PolyArea(P);

IsConvex = PolyIsConvex (P);
print Perimeter Area IsConvex;

/* vertices of rectangle *x/

Figure 2 shows the results for a rectangle that has a width of 1 unit and a height of 2 units.

Figure 2 Properties of a Rectangle

Perimeter Area IsConvex
6 2 1

In a similar way, you can test whether a specified point is inside, outside, or on the boundary of a polygon. The
following statements test whether each of five ordered pairs (each of which represents a point) is inside the rectangle.
Figure 3 shows that the first and fifth points are outside, the second point is on the boundary, and the third and fourth
points are inside.

pts = {-11, 01, 0.51, 0.8 1.5, 2 1};
inRect = PolyPtInside (P, pts);
print pts[colname={X Y}] inRect;

/* five points */
/* test whether points are in rectangle x/

Figure 3 Five Points and Whether Each Is Inside the Polygon

pts
X Y inRect
11 0
0 1
05 1 1
08 1.5 1
2 1 0

The polygon package has other functions that are not shown in this paper. The package also includes sample data
sets and programs that demonstrate features of the package.

THE PACKAGE STATEMENT

Packages are managed by using the PACKAGE statement. The PACKAGE statement has seven keywords that help
you manage and use packages. Three of these were used in the previous section:
e The PACKAGE INSTALL statement installs a package.

e The PACKAGE HELP statement displays documentation for the package. Figure 1 shows part of the help file
for the polygon package.

e The PACKAGE LOAD statement loads the modules that are defined by a package.

The following are the remaining PACKAGE statements:

e The PACKAGE LIST statement lists the installed packages.
e The PACKAGE UNINSTALL statement uninstalls a package.

e The PACKAGE INFO statement displays information about an installed package. For example, the following
statement displays a table of information about the polygon package:

package info polygon;

Figure 4 displays information about the package. The table summarizes information that is contained in the
info.txt file. It also displays the directory in which the package is installed.

Figure 4 Information about a Package

Package Information
Name polygon
Description Computational geometry for polygons
Author Rick Wicklin <Rick.Wicklin@sas.com>
Collection Private
Version 1.0
Requires IML 14.1
Directory C:\Users\frwick\Documents\My SAS Files\IML\Packages\polygon

e The PACKAGE LIBNAME statement creates a SAS libref that points to the data directory. For example, the
following statements assign the libref POLYDATA:

package libname PolyData polygon;

use PolyData.Simple;

read all var {u v ID} into P; /x 3rd column is ID variable */
close PolyData.Simple;

run PolyDraw (P);
The USE statement opens the Simple data set, which is distributed with the package. The READ statement

reads variables into the matrix P. The PolyDraw function is used to visualize four convex and two nonconvex
polygons, as shown in Figure 5.

Figure 5 Plot of Polygons

HOW TO CREATE A PACKAGE

The purpose of this paper is not to describe the polygon package but to describe how you can create your own
package. Hopefully the previous section has convinced you that packages are convenient and useful.

You create a package by creating a ZIP file that contains certain files in certain directories. This section assumes that
you have already generated the package content, which is usually a collection of functions. (This is often the hardest
part of creating a package.) It is also assumed that you have written documentation and example programs.

Before you create your package, choose its name. The name of a package should be concise but informative. The
name must be a valid SAS name, which means it must contain 32 characters or less, begin with a letter or underscore,
and contain only letters, underscores, and digits.

THE STRUCTURE OF A PACKAGE

The SAS/IML 14.1 documentation provides detailed instructions about how to create a package. This section
summarizes the main steps.

To create a package, first create the root directory, which should have the same name as the package. For this
example, create a root directory named polygon. Inside the root directory, create the following:

e A plain text (ASCII) file named info.txt. The contents of the info.txt file are described in the next section.
e A subdirectory named source. Copy the source files that define the SAS/IML modules into this directory.

e A subdirectory named help. Put the documentation into this directory. The documentation should contain a
plain text file that has the same name as the package and has a .txt extension. The text file should contain the
basic syntax for calling functions. The contents of this file are displayed in the SAS log when a user submits
the PACKAGE HELP statement. The help directory can also contain a PDF or HTML file that provides more
complete documentation.

e A subdirectory named programs. Put the example programs into this directory.

e A subdirectory named data. Copy SAS data sets into this directory. Example data are especially useful if your
package analyzes data that must be in a certain format or have certain properties. You can also distribute data
in other forms, such as in a CSV file or an Excel spreadsheet, but be sure to include a sample program that
shows how to read data that are not in SAS data sets.

The info.txt file and source directory are required. The other directories are recommended, but be aware that some
compression utilities do not allow you to include empty directories. A package can contain additional subdirectories,
such as directories for macro code, templates, image files, and so on.

For this paper, the root directory was created on a Windows PC in the location C: $HOMEPATH%\My Documents\
My SAS Files\polygon. (In Windows 7, $HOMEPATHS resolves to C: \Users\username.) You can type the
following statements into a command prompt to see the directories and files in a hierarchical structure:

C:> tree "C:%HOMEPATH%\My Documents\My SAS Files\polygon" /A /F

Figure 6 shows the output of this t ree command:

Figure 6 Directory Structure for Polygon Package

C:\Users\frwick\My Documents\My SAS Files\polygon

| info.txt

I

+-——data

| simple.sas7bdat

| states48.sas7bdat

I

+——-help

| polygon.docx

| polygon.pdf

| polygon.txt

I

+-——programs

| Example.sas

| TestNonSimplePoly.sas

| TestPolyDraw. sas

| TestPolyPtInside. sas

I

\-—-source
PolyArea.iml
PolyBoundingBox.iml
PolyCentroid.iml
PolyDraw.iml
PolyDrawImpl.iml
PolyInstallDir.iml
PolyIsConvex.iml
PolyPerimeter.iml
PolyPtInside.iml
PolyRandom. iml
PolyRegular.iml
PolyStack.iml

The source files in the polygon package have a .im/ extension, but you can use a .sas extension if you prefer. The
contents of these files are read into a SAS/IML session. These files should contain only valid SAS/IML statements,
but should not contain the PROC IML or QUIT statements.

THE PACKAGE INFORMATION FILE

The info.txt file provides information to the PACKAGE INSTALL and PACKAGE LOAD statements. The file contains
some header information, followed by keyword-value pairs.

The first line in the file specifies the format for the file. Future enhancements of the PACKAGE statement might support
additional formats, but for SAS/IML 14.1 the first line must be as follows:

SAS/IML Package Information File Format 1.0

Subsequent lines define keyword-value pairs. If a value requires more than one line of text (such as the SOURCEFILES
keyword), subsequent lines must be indented by at least one space or tab character.

The following keyword-value pairs are recommended:
NAME: Specify the name of the package. The case (uppercase, lowercase, or mixed case) of this keyword
value is important. Even through SAS is a case-insensitive language, some operating systems

(such as Linux) are case-sensitive. The package name and the filenames in the help directory
should have the same case.

DESCRIPTION: Specify a brief description of the package.
AUTHOR: Specify the authors of the package and their contact information.

6

VERSION: Specify the version of the package. The version can have up to four levels, separated by decimal
points. For example, valid values are 1.0, 2.7.1, and 3.1.4.1.

REQUIRESIML: Specify the version of SAS/IML software that is required to run the package.

NOTES: Specify other information. You can acknowledge a collaborator or cite a journal article that
provides additional information about the package.

SOURCEFILES: Specify the source files for the package, one filename on each line. The case (uppercase,
lowercase, or mixed case) of this keyword value is important because certain file systems (such
as Linux) are case-sensitive. The source files usually have a .im/ extension.

The info.txt file supports other keywords; see the SAS/IML Studio User’s Guide.

The following statements show the info.txt file for the polygon package. For most packages, all files in the source
directory are listed after the SourceFiles keyword.

Figure 7 Information File for a Package

SAS/IML Package Information File Format 1.0

Name: polygon

Description: Computational geometry for polygons
Author: Rick Wicklin <Rick.Wicklin@sas.com>
Version: 1.0

RequiresIML: 14.1
Notes: This package accompanies Wicklin (2016) "Writing Packages:
A New Way to Distribute and Use SAS/IML Programs,"
Proceedings of the SAS Global Forum 2016 Conference.
SourceFiles: PolyInstallDir.iml
PolyArea.iml
PolyBoundingBox.iml
PolyCentroid.iml
PolyDraw.iml
PolyIsConvex.iml
PolyPerimeter.iml
PolyPtInside.iml
PolyRandom. iml
PolyRegular.iml
PolyStack.iml

CREATE THE PACKAGE

A package is a ZIP file that contains certain files and a specified directory structure. The filename of the ZIP file must
be the name of the package followed by the .zip extension.

You can use a standard compression utility program to create the ZIP file. This paper uses WinZip software. Figure 8
shows how to create a ZIP file by using WinZip. With WinZip and most other Windows compression utilities, you can
open a Windows Explorer window and navigate to the root directory where you have stored all your package files. To
create a ZIP file, select all the files and subdirectories, right-click on the selected files, and choose WinZip »Add to
packagename. zip from the pop-up menu.

Figure 8 Creating a ZIP File by Using WinZip

=NRCN X)
@_/‘;‘l » Libraries » Documents » My SASFiles » polygon » - ‘&,l | Search polygon 2|
Eile Edit Yiew Tools Help
Organize + = Open Share with + E-mail Burn New folder ==+ i Fé'-
T Favarites Documents library Pl s
Bl Desktop pelygen .
% Downloads Name Date modified Type Size

=1 Recent Places
2015 442 P File falde

2015 425 PM File

data Open

help Open in new window
programs 2015 4:4i PM File falde
saurce Eharsh 15 443D File falder

20
o infope @ WinZip @ AddtoZipfile. [
k= Pictures =i .

- Libraries

| Documents

& Music

B videos Scan for Viruses... D Addto polygonzip
D Addto recently used Zip file 3
18 Computer is DTBA! S @ zip andE-Mail palyganzip
£ winTusd (C) Cut @ Zip ahalE-r-Aannlgs...
58 My Metwork Driv Copy @ Configure
= i ;

The program creates the file packagename.zip. So that the ZIP file can be correctly unzipped by the SAS/IML PACKAGE
statement, make sure that the ZIP file uses relative paths and preserves the directory hierarchy when the files are
unzipped. In WinZip 18.0, click the Settings tab and select Use Folder Names from the Unzip Settings menu.

Now you can send the ZIP file to a colleague, put it in a shared folder on your company’s network, or upload it to the
SAS/IML File Exchange for the whole world to see.

ADVANTAGES OF USING PACKAGES

Packages are a new way to distribute SAS/IML functionality. You might wonder how packages compare to older
methods for sharing SAS programs. In particular, longtime SAS programmers are familiar with the %INCLUDE
statement, and SAS/IML has provided the STORE and LOAD statements for modules for decades. In what ways are
packages an improvement?

The short answer is that packages are more portable, more convenient, and more robust. Furthermore, if you upload
your package to the SAS/IML File Exchange, there are additional advantages. The following list describes specific
advantages that packages provide over previous techniques for sharing SAS/IML functions:

e Packages are self-contained. They contain functions, programs, documentation, data, and related materials.

e Package promote standards. Authors know how to structure the directories and the ZIP file. Consumers know
how to install, load, and use the package.

e Packages are manageable. The PACKAGE statement provides a programmatic way to manage packages.
For example, the PACKAGE LIST statement lists all installed packages. The PACKAGE HELP and PACKAGE
INFO statements display information about a particular package. And of course the PACKAGE INSTALL and
PACKAGE UNINSTALL statements control which packages are installed.

e Packages are transparent. After installing a package, you do not need to specify any directories when you use
the package. The PACKAGE LOAD statement loads the modules. The PACKAGE LIBNAME statement defines
a libref to the data directory. Neither statement requires a directory.

e Packages make it easy for a group of programmers to use a common library of functions. A SAS administrator
can install the packages in the PUBLIC collection for all programmers to use.

e Packages persist across SAS releases. Assuming that your SAS administrator does not change the location of
the PRIVATE and PUBLIC collections, any packages that you installed in a previous release of SAS are still
available when you upgrade to a new release.

e Packages enable a programmer to build on previous work. You can write a package that calls functions in
other packages. Your package merely has to use the PACKAGE LOAD statement to load the functions. (The
DEPENDENCIES keyword in the info.txt file tells users of your package that they need to install those other
packages.)

e Packages on the SAS/IML File Exchange are highly visible. The SAS/IML File Exchange is part of the popular
SAS Support Communities, which gets a lot of traffic. Consequently, Internet searches are more likely to locate
packages on the File Exchange than packages on less-visible websites.

e Packages promote feedback. When an author uploads a package to the SAS/IML File Exchange, other
programmers can post comments about the package. They can ask questions, point out deficiencies, and
suggest improvements. This results in better and more robust packages.

e Packages have a versioning feature. You might decide to update your package if you find a bug or if a future
SAS/IML release contains a feature that you want to incorporate. When you update your package, you can
update the value of the VERSION keyword in the info.txt file. You can also use the REQUIRESIML keyword to
specify that the package requires a recent version of SAS/IML software.

CONCLUSION

This paper shows how to create packages in SAS/IML 14.1. A package is distributed as a ZIP file. After a programmer
downloads and installs a package, he or she has immediate access to the functions, data, and documentation in the
package. Programmers of all abilities can use packages to extend the functionality of SAS/IML software and to share
their expertise with others.

REFERENCES

Hormann, K., and Agathos, A. (2001). “The Point in Polygon Problem for Arbitrary Polygons.” Computational Geometry
20:131-144.

ACKNOWLEDGMENTS

The author is grateful to Simon Smith for reading an early draft of this paper.

APPENDIX: FREQUENTLY ASKED QUESTIONS ABOUT SAS/IML PACKAGES

Q: | have not yet upgraded to SAS/IML 14.1. Can | install packages in earlier releases?

A: No. The PACKAGE statement was introduced in SAS/IML 14.1. You cannot install packages in a previous release.

Q: | wrote a paper for a journal that includes a long SAS/IML program. Can | use a package to distribute my program?

A: Yes, but more people are likely to use your program if you encapsulate the main functionality into a set of modules.

Q: Does someone at SAS verify that packages give correct answers? Will SAS Technical Support help me if a
package does not work correctly?

A: No. The accuracy of the package is the sole responsibility of the package author. Contact the author if you have
problems using the package or if you think a computation is incorrect.

Q: What is the best way to contact the author of a package?

A: Authors should include contact information as part of the package documentation. If a package resides on the
SAS/IML File Exchange, you can communicate with the author by posting comments.

Q: The author of the package is ignoring me! Please help!

A: Sorry to hear that. Post a question to the SAS/IML Support Community at https://communities.sas.com/
sas—1iml. There are many helpful people there.

Q: Where are packages installed?

A: A package is installed in a collection. A package can belong to the PRIVATE, PUBLIC, or SYSTEM collection.
The collection determines the directory in which a package is installed. The following statements display the root
directories for each collection:

proc options value
option=(imlpackageprivate imlpackagepublic imlpackagesystem) ;
run;

You can also use the PACKAGE INFO statement to display the installation directory for an installed package.

Q: | run SAS/IML programs from SAS Studio. Can | install packages from that environment?

A: Yes. SAS Studio can access directories on your local computer. Put the ZIP file for the package in a location that is
visible from SAS Studio. Then run the PACKAGE INSTALL statement as usual.

Q: Can | install and use packages from the free SAS® University Edition?

A: Yes. The installation guide for SAS University Edition tells you how to create a shared folder on your local machine.
SAS University Edition runs in a virtual machine that can access that folder by using the alias /folders/myfolders.
Put the ZIP file in that shared folder. Then use the following statements to install a package:

proc iml;
package install "/folders/myfolders/polygon.zip"; /* SAS University Edition x/

Q: | noticed that packages are experimental in SAS/IML 14.1. Are there any known limitations?

A: There are two known issues, which have been fixed in preparation for the next release. The issues in SAS/IML
14.1 are as follows:

e You cannot use the SUBMIT statement in a file that gets loaded by a package.

e The PACKAGE INSTALL statement cannot read ZIP files that are created by using the Windows built-in
compression program (RMB»Send to» Compressed (zipped) Folders).

Q: What compression utilities can | use to create a package ZIP file?

A: In a Linux environment, the PACKAGE statement works with ZIP files that were created by using the zip -r
command. In a Windows environment, the PACKAGE statement has been tested with 64-bit versions of 7-Zip 15.11,
PeaZip 5.8.1, PKZip 14.40, WinRAR 4.20, and WinZip 18.0. With PeaZip, you need to set the option Extract all to
»No paths.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Rick Wicklin

SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

10

https://communities.sas.com/sas-iml
https://communities.sas.com/sas-iml

