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ABSTRACT  

In cooperation with the Joint Research Centre (JRC) of the European Commission, we have implemented 
a number of innovative techniques to detect outliers. In this paper, we show the power of SAS/IML® 
Studio as an interactive tool for exploring and detecting outliers using customized algorithms that were 
built from scratch. The JRC uses this for detecting abnormal trade transactions on a large scale. The 
outliers are detected using the Forward Search, which starts from a (small) central subset in the data and 
subsequently adds observations that are close to the current subset based on regression (R-student) or 
multivariate (Mahalanobis distance) output statistics. The implementation of this algorithm and its 
applications were done in SAS/IML® Studio and converted to a macro for use in PROC IML in Base 
SAS®.  

INTRODUCTION  

Detection of outliers is an important part of any data mining or predictive modeling exercise to make sure 
the model fits the population well. Outliers skew the estimated effect size and model parameters. Most 
modelers agree that having a good model for the majority of the population is better than having a worse 
model for the whole population. Outliers are often inherently unpredictable and can cause 
misinterpretation of effect estimates as well as a significant loss of accuracy. An overview of techniques 
and discussion can be found in the literature about robust statistics, e.g. Robust Statistics – Theory and 
Methods (Maronna, Martin, and Yohai – 2006). 

Next to improving model fit, robust outlier detection is also used as the end-result in industries like fraud 
detection, predictive asset maintenance or server monitoring. Here, finding abnormal patterns is the goal 
of the analysis.  

Special thanks go to Marco Riani, Domenico Perrotta, and Francesca Torti for supporting a larger 
implementation of which the code presented here is a small part. Additional thanks goes to the JRC, 
which has made possible this work under its Institutional Research Program. 

THE MASKING EFFECT 

Traditional approaches for detecting outliers use residual analysis on a model that was fit on all data. 
Influential observations can have a drastic impact on the parameter estimates of the fitted model. In 
certain cases, this causes the estimated error variance to increase by a large margin as well as skew the 
parameter estimates. That in turn causes the responsible outliers to fall within the prediction limits, 
effectively masking them from detection. 

In Figure 1 we see an example of the masking effect. Here, there are 5 observations in the upper left 
quadrant that are clearly outlying. They skew the regression line to be a lot more horizontal and increase 
the estimated variability. The traditional way of using studentized residuals fails here since the influential 
point is in fact spread out over 5 observations. The Forward Search aims to solve these problems and 
offers a rigorous framework to detect outliers. 
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Figure 1: Example of the Masking Effect 

 

INTRODUCTION TO THE FORWARD SEARCH 

The forward search algorithm starts from a central subset in the data containing  observations out of 

the  original observations. In each step of the forward search, the model parameters are estimated using 

the  (with ) observations that are currently in the subset. The new subset consists of the 

 values that have the lowest likelihood contribution, and hence are the most central to the current 

model. Usually, one new observation enters the subset, but it is possible that one or more observations 
leave the subset and two or more observations enter. This is called an interchange. Fit statistics are 
monitored at every step, and allow us to define which subsets are homogenous and at which step an 
outlier enters the subset. Because we monitor the parameter estimates and residuals at every step, we 
have an way to avoid the masking effect.  

For more details and rigor we refer to Atkinson and Riani (2010) and Atkinson, Riani and Cerioli (2013). 

OTHER APPROACHES 

Statisticians often use a manual backward elimination process for removing outliers by looking at 
influence statistics and fit statistics like studentized residuals, Cook’s distance, DFFits, and DFBeta. 
Automated approaches using dynamic thresholds for decision making exist as well and are sometimes 
called the backward search for outliers. These methods typically suffer from the masking effect.  

Robust regression and robust statistics are an extensive part of statistical literature. PROC ROBUSTREG 

supports M-estimation, least trimmed squares (LTS), S-estimation and MM-estimation. Furthermore, the 
least median of squares (LMS) and least trimmed squares (LTS) subroutines in the SAS IML language 
perform robust regression. These subroutines can detect outliers and perform a least squares regression 
on the remaining observations. The minimum volume ellipsoid estimation (MVE) and minimum covariance 
determinant estimation (MCD) subroutines can be used to find a robust location and a robust covariance 
matrix, respectively, that can be used for detecting multivariate outliers and leverage points as well.  

DATA SET USED IN THIS PAPER 

The data set we will analyze in this paper is SASHELP.CARS, which is available by default in all modern 
SAS distributions. To read the data into memory, you can use the following code: 

independent_varnames = {'EngineSize' 'horsepower' 'weight' 'wheelbase' 

'length'}; 

http://support.sas.com/documentation/cdl/en/imlug/63541/HTML/default/viewer.htm#imlug_langref_sect174.htm
http://support.sas.com/documentation/cdl/en/imlug/63541/HTML/default/viewer.htm#imlug_langref_sect179.htm
http://support.sas.com/documentation/cdl/en/imlug/63541/HTML/default/viewer.htm#imlug_langref_sect193.htm
http://support.sas.com/documentation/cdl/en/imlug/63541/HTML/default/viewer.htm#imlug_langref_sect186.htm
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dependent_varname = 'mpg_highway'; 

use ("sashelp.cars");   

 read all var independent_varnames into x; 

 read all var dependent_varname into y; 

 read all var "model" into model; 

close ("sashelp.cars");  

 

This produces a  matrix  containing the data of all explanatory variables, a  vector  containing the 

response variable, and a vector model which we will use as a unique identifier in the plots. Here,  is the number of 

explanatory variables in the model. 

FORWARD SEARCH FOR OUTLIERS – REGRESSION 

INITIAL SUBSET SELECTION 

In general there are two strategies for selecting the initial subset to start the forward search, depending 
on the assumption that is made about the homogeneity of the data. Typically, the initial subset consists of 

 observations. In linear regression, the design matrix should be of full rank, so we need at least  

observations to build a model using the initial subset. 

Homogenous Data 

If the data is assumed to be homogenous, the initial subset is selected using a robust regression 
algorithm to find the subset that is the most likely to be central to the data. We can use LMS to find the 
initial observations as follows: 

 

lxs_options = j(8,1,.); 

lxs_options[5] = 10000;  

  

CALL LMS(sc,coef,wgt,lxs_options,y,x); 

 

initial_obs = coef[2,]; 

 

The code for using LTS is similar. 

Non-homogenous Data 

When the data is known or suspected to contain multiple clusters, the Forward Search is started with a 
random sample: 

initial_obs = sample(1:nrow(y), p+1, "NoReplace"); 

 

The Forward Search can be repeated multiple times with different seeds to ensure the whole range of 
clustering is captured. See the chapter about clustering in Atkinson and Riani (2013) for more information 
about this process. 

INCREASING THE SIZE OF THE SUBSET 

At each step , we fit a linear regression model using the 𝑚 observations that are currently in scope. We 

calculate the parameter estimates  and simple residuals for this model by using the matrix inversion 

capabilities of SAS IML: 

idx_in = selected[1:m];  

idx_out = setdif((1:n),idx_in);   

 

Xin  = x[idx_in,]; 

Yin  = y[idx_in,]; 

 

beta = SOLVE(Xin`*Xin,Xin`*Yin); 
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resid  = y - x * beta;    /* simple residuals */ 

 

Be mindful that if an intercept is desired, it has to be added manually to the design matrix 𝑋 in a 
preprocessing step. If you have categorical variables, these should be dummy encoded before being 

added to the design matrix. It can sometimes be useful or insightful to monitor the changes of  as 𝑚 

increases as well.  

The  observations with the smallest absolute residual are selected as the subset for the next step. 
To do that, we use the sort function: 

 if m + 1 <= n then do;  

  

  /***  Calculate next subset of size m + 1 at step i ***/ 

  

  call sortndx(idx_sorted, abs(resid)); 

 

  if n > m + 1 then  

   selected[i+1,] = (idx_sorted[1:(m+1)])` || j(1,n-m-1,.);  

  else  

   selected[i+1,] = 1:n;    

    

  entered_search = rowvec(setdif(selected[i+1,], selected[i,])); 

 

  if ncol(entered_search) > ncol(Un) then do; 

   Un = Un || j(nrow(Un), ncol(entered_search) - ncol(Un), .); 

  end; 

   

  if m > init then  

   Un[i,1:ncol(entered_search)]=entered_search;  

    

 end; 

 

We store the observations that have entered the search in a  matrix called Un for later analysis 
and plotting purposes. Typically, one observation enters the search at each step and a row in Un contains 
only 1 index value and missing values otherwise. It can however happen that observations that were 
previously selected are not selected anymore and are swapped for other observations. The code shown 
here is abbreviated for clarity and does not deal with the special case where more than 10 observations 
enter the search. 

MONITORING RESIDUALS 

To detect if adding additional observations would change the homogeneity of the cluster, we monitor the 

deletion residual at each step. The deletion residuals of observations not currently in scope at step 

 are given by 

 

where  is the leverage of observation  at step  and  is the estimated error variance of the 

model at step  

We can calculate the deletion residual using the following code: 

ssr = ssq(resid[idx_in]);    

 

if (nrow(Xin)-p)=0 then  

 s2=ssr/1;  

else  

 s2=ssr/(m-p); 
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iXpX = inv(Xin`*Xin); 

 

Hi = j(n,1,.); 

do k = 1 to n; 

z = x[k,]; 

Hi[k,] = z * iXpX * z`;  /* external leverage */ 

end; 

 

DR  = abs(resid/sqrt(s2#(1+Hi))); /* Deletion Residuals */ 

 

We are interested in monitoring the smallest deletion residuals of the observations that are outside of the 
current subset, denoted as the Minimum Deletion Residual or MDR. When the MDR is large, this means 
that all observations would significantly alter the model when added, which is an indicator that you are 
adding an outlier to the current set. We calculate the MDR using the convenient >< subscript reduction 
operator that returns the minimum of a vector: 

if m < n & ncol(idx_out) > 0 then  

mdr[m,1] = (DR[idx_out])[><];  

 

Rules for determining what constitutes and what does not constitute an outlier are out of scope for this 
paper but are described extensively in Torti (2009). 

INTERACTIVE EXPLORATION 

After the algorithm has finished, we can plot the monitored statistics for every step in the search. Since 
we have stored the observation indices that have entered the search at each step, we can link the 
monitored statistics at each step with the observations that were responsible for it. Since multiple 
observations can enter, and hence will collide on some plots it does require some wizardry to get right. 

We use a DataObject to store our results data since it allows automatic brushing and selection of plots: 

 

n_axis = floor((loc(Un)-1)/ncol(Un))+1; 

obs_nr = Un[loc(Un)]`; 

 

first_obs = setdif(1:n, obs_nr); /* included before FS began */ 

if ncol(first_obs) > 0 then 

 n_axis = n_axis || j(1,ncol(first_obs), 1); /* pretend these 

observations were added in the first step */ 

obs_nr = obs_nr || first_obs; 

 

declare DataObject dobj;  

dobj = DataObject.Create("Forward search data object"); 

dobj.AddVar("m", "Number of observations in the subset", mm[n_axis]); 

dobj.AddVar("model", "Car model", model[n_axis]); 

dobj.SetRoleVar(ROLE_LABEL, 'model'); 

dobj.AddVar("original_obs_nr", "Observation number", obs_nr); 

dobj.AddVar("outlier_classification", "Outlier classification", 

outlier_classification[obs_nr]); 

dobj.AddVar("mdr", "Minimum deletion residual",mdr[mm[n_axis]]); 

dobj.SetMarkerShape(loc(outlier_classification[obs_nr]), MARKER_X ); 

 

/* Add x and y information of observations that were once MDR */ 

dobj.AddVar(dependent_varname, dependent_varname, y[obs_nr]);    

do k = 1 to ncol(independent_varnames); 

 dobj.AddVar(independent_varnames[k], independent_varnames[k],  

x[obs_nr,k]);  

end; 
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Now that we have all data in one DataObject, it is easy to plot the desired statistics. Let’s plot the 
Minimum Deletion Residual at each step. For reference, we calculated the distributional order statistics 
and stored these in a matrix ENV using a separate IML module called FSRenvmdr.  

 

run FSRenvmdr(env_quantiles`, init, n, p, ENV); 

 

declare LinePlot plot; 

plot = LinePlot.Create( dobj, "m", "mdr", 0); 

 

call FSRmdrplot( dobj, ENV, init, n, md, plot, output_string); 

plot.SetWindowPosition( 50, 0, 50, 50 ); 

 

To investigate the observations that might potentially be outliers, we can plot scatter plots of each 
explanatory variable with the target variable as well. To do this, we used a slightly modified version of the 
CreateFullScatterMatrix1 module that is standardly available in SAS/IML STUDIO®: 

call CreateScatterRow(dobj, independent_varnames, dependent_varname); 

 

A screenshot of the consolidated resulting plots can be seen in Figure 2, where we clearly see a number 
of outliers have been identified. 

 

 

                                                           

1 
https://support.sas.com/documentation/onlinedoc/imlstudio/WebHelp141/imlplus_module_reference/grap
hics/modules/createfullscattermatrix.htm 

https://support.sas.com/documentation/onlinedoc/imlstudio/WebHelp141/imlplus_module_reference/graphics/modules/createfullscattermatrix.htm
https://support.sas.com/documentation/onlinedoc/imlstudio/WebHelp141/imlplus_module_reference/graphics/modules/createfullscattermatrix.htm
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Figure 2. Interactive Plotting with Brushing for Better Exploratory Data Analysis. 

 

FORWARD SEARCH FOR OUTLIERS – OTHER TOPICS 

MULTIVARIATE CONTEXT 

Similar to the regression context, the forward search can be implemented when there is no target 
variable. The initial subset selection can be done using Minimum Volume Ellipsoid (MVE) or Minimum 
Covariance Determinant (MCD) methods that are available in SAS/IML®. Instead of monitoring the 
residuals at each step, we monitor the Mahalanobis distance, which is a robust and normalized measure 
of distance. 

EXTENSIONS 

A comprehensive suite of tools has been programmed in SAS/IML® Studio for the Joint Research Centre 
in Ispra, Italy. These tools can deal with special cases like mass point contaminations, missing values, 
singular design matrices, fit problems, and so on. They also provide additional functionality to export data 
sets, monitor different statistics, use the Forward Search on big (>10,000 observations) data sets, model 
selection, optimization of the Box-Cox power transformation parameter, repeating the Forward Search 
from different start points to find clusters, additional methods for selecting the initial subset, and additional 
plots.  

CONCLUSION 

We have shown how you can use the Forward Search to detect outliers. The results are more robust and 
do not suffer from the masking effect that traditional methods have. SAS/IML® Studio is well suited for 
implementing algorithms, as was shown in the minimal working example of a Forward Search 
implementation. With modules, it is easy to create structure in your program for complex algorithms. 
Using the interactive plotting capabilities, detecting outliers and understanding the structure of your data 
is made easier.  

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author: 

 

 Jos Polfliet 

 100 SAS Campus Drive 

 Cary, NC 27513 

 SAS Institute Inc. 

 Jos.Polfliet@sas.com 

 http://www.sas.com 

 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. 

  

mailto:Jos.Polfliet@sas.com
http://www.sas.com/
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APPENDIX A: CODE 

The full code is also downloadable on GitHub https://github.com/JosPolfliet/FSDA-SAS. The following 
modules are used in the code but are not strictly necessary 

 FSSignalDetection: This module is a collection of rules to classify observations as outliers in the 
Forward Search. 

 FSRmdrplot: A preconfigured plot containing the Minimum Deletion Residual at each step, as well 
as the estimated bounds. 

 FSRenvrmdr: Module to calculate the envelopes of the Minimum Deletion Residual. 

 CreateScatterRow: Module to create a scatter plot for each combination of  and where   

are the independent variables. This is heavily based on the standard SAS/IML® module 
CreateFullScatterMatrix. See 
https://support.sas.com/documentation/onlinedoc/imlstudio/WebHelp141/imlplus_module_referen
ce/graphics/modules/createfullscattermatrix.htm. 

 

/********************/ 

/***  Load data   ***/ 

/********************/ 

 

independent_varnames = {'EngineSize' 'horsepower' 'weight' 'wheelbase' 

'length'}; 

dependent_varname = 'mpg_highway'; 

use ("sashelp.cars");   

 read all var independent_varnames into x; 

 read all var dependent_varname into y; 

 read all var "model" into model; 

close ("sashelp.cars");  

 

 

/**************************************/ 

/***  Initial subset selection   ***/ 

/**************************************/ 

 

ncomb = comb(nrow(x),ncol(x)); 

if ncomb < 10000 then ncomb = -1; /* use all subsets if the number of 

combinations < 10000*/ 

else ncomb = 10000; 

https://github.com/JosPolfliet/FSDA-SAS
https://support.sas.com/documentation/onlinedoc/imlstudio/WebHelp141/imlplus_module_reference/graphics/modules/createfullscattermatrix.htm
https://support.sas.com/documentation/onlinedoc/imlstudio/WebHelp141/imlplus_module_reference/graphics/modules/createfullscattermatrix.htm
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lxs_options = j(8,1,.); 

lxs_options[5] = ncomb;  

  

CALL LMS(sc,coef,wgt,lxs_options,y,x); 

 

initial_obs = coef[2,]; 

 

/***********************/ 

/***  Initalization  ***/ 

/***********************/ 

 

x    = x || j(nrow(x),1,1);   /* add intercept */ 

   

 

n    = nrow(x);  

p    = ncol(x);   

m0    = ncol(initial_obs); 

selected  = j((n-m0)+1,n,.);  

selected[1,]=  initial_obs || j(1,n-m0,.); 

 

/*  MDR:    Minimum deletion residuals at each step*/ 

MDR   = j(n,1,.);       

 

mm    = do(m0, n, 1); 

 

/*  Un:        n x ? Matrix which contains the unit(s) included 

     in the subset at each step of the search. */ 

Un    = j((n-m0)+1, 2, .); 

 

/*  init:   Number of observations in subset when the search 

   is started */ 

if n<40 then init=p+1; 

else init=min(3*p+1,floor(0.5*(n+p+1))); 

 

 

env_quantiles = {0.99999 0.9999 0.999 0.99 0.50 0.01 }; 

 

 

/*******************************/ 

/***   Forward search loop   ***/ 

/*******************************/ 

 

DO i= 1 TO (n-m0)+1; 

 m = m0+(i-1);      /* Number of 

observations in the current set */ 

 

 idx_in  = selected[i,1:m];  

 idx_out = setdif((1:n),idx_in);  /* Indices of current not 

selected observations */ 

 

 Xin  = x[idx_in,]; 

 Yin  = y[idx_in,]; 

 

 beta = SOLVE(Xin`*Xin,Xin`*Yin); 
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 iXpX = inv(Xin`*Xin); 

 resid  = y - x * beta;    /* simple residuals */ 

  

 if m >= init then do;     

  

  /***  Do the search: monitor MDR and other statistics  ***/ 

   

  ssr = ssq(resid[idx_in]);    

   

  if (nrow(Xin)-p)=0 then  

   s2=ssr/1;  

  else  

   s2=ssr/(m-p); 

   

  Hi = j(n,1,.); 

  do k = 1 to n; 

   z = x[k,]; 

   Hi[k,] = z * iXpX * z`;      

   /* External leverage */ 

  end; 

   

  DR  = abs(resid/sqrt(s2#(1+Hi)));     

  /* Deletion residuals */ 

  if m < n then 

   if ncol(idx_out) > 0 & m<n then do; 

    mdr_idx = (DR[idx_out])[>:<]; 

    mdr[m,1] = (DR[idx_out])[mdr_idx];   

  /* Minimal deletion residual of observations not in the 

subset */ 

    idx_out = setdif(idx_out,idx_out[mdr_idx]); 

   end; 

 end; 

  

 if n >= m + 1 then do;  

  

  /***  Calculate next subset of size m + 1  ***/ 

  

  call sortndx(idx_sorted, abs(resid)); 

 

  if n > m + 1 then  

   selected[i+1,] =  (idx_sorted[1:(m+1)])` || j(1,n-m-

1,.);  /* Select observations */ 

  else  

   selected[i+1,] =  (idx_sorted[1:(min(m+1,n))])`;  

  /* Last step */ 

    

  entered_search = rowvec(setdif(selected[i+1,], 

selected[i,])); 

 

  if ncol(entered_search) > ncol(Un) then do; 

   Un = Un || j(nrow(Un), ncol(entered_search) - 

ncol(Un), .); 

  end; 

   

  if m > init then  

   Un[i,1:ncol(entered_search)]=entered_search;  
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 end; 

 

end; 

 

 

/*******************************/ 

/***   Check for signal      ***/ 

/*******************************/ 

 

CALL FSSignalDetection( 

  mdr    /* output */, 

  n    /* number of observations not 

removed */, 

  init   /* size of subset when search starts */, 

  p    /* number of variables */, 

  0    /* debug flag */, 

  10    /* h_min */,  

  "DELETION"   /* method*/, 

  output_string  /* output */, 

  md     /* output */, 

  ""     /* output data set name */, 

  x    /* data */, 

  y     /* data */, 

  "x"    /* independent varnames */,  

  last_env   /* output */,  

  ""     /* output data set name */,  

  "CLASSIFY"   /* options */,  

  m0     /* size of initial subset */, 

  1    /* number of observations added at 

each step */, 

  selected  /* matrix of which observations where in 

subset at each step */, 

  1:n    /* valid_observations_index */, 

  ""     /* id_varname */,  

  1:n    /* ID to be printed */, 

  n    /* original number of observations 

*/, 

  outlier_classification /* output */, 

  merged_obs_nr /* point mass contaminations */, 

  .     /* Bonferonni level, use 

default*/); 

  

  

/*******************************/ 

/***   Plots        ***/ 

/*******************************/ 

 

n_axis = floor((loc(Un)-1)/ncol(Un))+1; 

obs_nr = Un[loc(Un)]`; 

 

first_obs = setdif(1:n, obs_nr); /* included before FS began */ 

if ncol(first_obs) > 0 then 

 n_axis = n_axis || j(1,ncol(first_obs), 1); /* pretend these 

observations were added in the first step */ 

obs_nr = obs_nr || first_obs; 

 

declare DataObject dobj;  
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dobj = DataObject.Create("Forward search data object"); 

dobj.AddVar("m", "Number of observations in the subset", mm[n_axis]); 

dobj.AddVar("model", "Car model", model[n_axis]); 

dobj.SetRoleVar(ROLE_LABEL, 'model'); 

dobj.AddVar("original_obs_nr", "Observation number", obs_nr); 

dobj.AddVar("outlier_classification", "Outlier classification", 

outlier_classification[obs_nr]); 

dobj.AddVar("mdr", "Minimum deletion residual",mdr[mm[n_axis]]); 

dobj.SetMarkerShape(loc(outlier_classification[obs_nr]), MARKER_X ); 

 

/* Add x and y information of observations that were once MDR */ 

dobj.AddVar(dependent_varname, dependent_varname, y[obs_nr]);    

do k = 1 to ncol(independent_varnames); 

 dobj.AddVar(independent_varnames[k], independent_varnames[k],  

x[obs_nr,k]);  

end; 

 

/***   Forward plot fo the minimum deletion residuals of observations 

not in the subset   ***/ 

run FSRenvmdr(env_quantiles`, init, n, p, ENV); 

 

declare LinePlot plot; 

plot = LinePlot.Create( dobj, "m", "mdr", 0); 

 

call FSRmdrplot( dobj, ENV, init, n, md, plot, output_string); 

plot.SetWindowPosition( 50, 0, 50, 50 ); 

 

/***   Scatter Row plot   ***/ 

call CreateScatterRow(dobj, independent_varnames, dependent_varname); 

   


