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Abstract
Coronal mass ejections (CMEs) are massive explosions of magnetic field and plasma from the Sun. While 
responsible for the northern lights, these eruptions can cause geomagnetic storms and cataclysmic damage to 
Earth’s telecommunications systems and power grid infrastructures. Hence, it is imperative to construct highly 
accurate predictive processes to determine whether an incoming CME will produce devastating effects on 
Earth. One such process, called “stacked generalization,” trains a variety of models, or base-learners, on a data 
set. Then, using the predictions from the base-learners, another model is trained to learn from the metadata. 
The goal of this meta-learner is to deduce information about the biases from the base-learners to make more 
accurate predictions. Studies have shown success in using linear methods, especially within regularization 
frameworks, at the meta-level to combine the base-level predictions. Here, SAS® Enterprise Miner™ 13.1 is 
used to reinforce the advantages of regularization via the Least Absolute Shrinkage and Selection Operator 
(LASSO) on this type of metadata. This work compares the LASSO model selection method to other regression 
approaches when predicting the occurrence of strong geomagnetic storms caused by CMEs.

Motivation
Typically, Earth’s magnetic field is able to guard against the harmful components of a CME.  However, when a 
CME contains a strong southward-directed magnetic field component, energy is transferred from the CME to 
Earth's magnetic field through a process called magnetic reconnection (Howard, 2011) (animated in figure 1).  
This compresses the Earth’s magnetic field towards the equator, leaving greater proportions of Earth to be 
exposed.  Given that these phenomena can contain 220 billion pounds of solar material expelled with a force 
equaled to a billion hydrogen bombs (“Coronal Mass Ejections”, 2012), the resulting amassed power in the 
upper atmosphere can lead to over-saturation of power transformers and failures of telecommunications 
systems (Board, 2008).  On September 1, 1859, Richard Carrington and Richard Hodgson observed a solar 
storm outside of the city of London which disrupted telegraph communications worldwide (Boteler, 2006).  
Noted as the “Carrington Event,” this event precipitated the most powerful geomagnetic disturbance on 
record. It was estimated that if such an event were to occur in today's society, it would result in a financial 
impact of tens of billions of US dollars due to damages of commercial satellite structures (Odenwald et al., 
2006).  On July 23, 2012, Earth narrowly avoided a extraordinarily powerful CME (Bridgman, 2014)(shown in 
figure 5).  If Earth had been in its direct path, the ensuing impact would have been far more detrimental than 
the Carrington Event of 1859 (Baker et al., 2013).

Figure 1: Animation of the magnetic reconnection. Credit listed in acknowledgments section.  
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Stacked Generalization and the LASSO
A generalized stacking scheme  (Wolpert, 1992) is utilized to construct an accurate framework for predicting 
the strength of impending CMEs. This process can be simplified into two parts:

• Construct a dataset consisting of class predictions from a set of level 0 (or base) learners using a training and 
a test set.  Typically, this is done by k-fold cross-validation (CV).

• Train a level 1 (or meta) learner that utilizes the predictions made at the previous level as inputs

The level 1 learner's purpose is to gain information about the generalization behavior of each learner trained at 
the base-level.  Popular choices for meta-learners have been linear models such as Ting & Witten (1999).  
While this ensemble strategy leverages the strengths and weaknesses of the base-learners, it can be prone to 
over-fitting (Caruana et al., 2004).  Therefore, in order to combat this issue,  employing regularized linear 
methods can perform better than their non-regularized counterparts (Reid & Grudic, 2009).  One such 
regularization method called Least Absolute Shrinkage and Selection Operator (LASSO) seeks to correct for the 
traditional high variance problems of regression by sacrificing bias to greatly reduce variance through use of a 
penalty constraint (Tibshirani, 1996; Hastie et al. 2009).  In other words, instead of the traditional, 
unconstrained parameterization of the ordinary least squares (OLS) solution,

the following constraint is imposed on the betas.

Increasing the LASSO parameter t in discrete steps facilitates a set of variables to be defined at each value of t
(Cohen, 2006) where a greater number of variables are allowed to enter and exit the model in a continuous 
fashion. Enabling this penalty allows some of the regression coefficients to be exactly zero, provided t is small 
enough.  Thus, it is possible to obtain sparse solutions which encourages the idea of parsimony.  Sparsity is 
especially important when p > N.  Efficient methods have been developed to calculate the entire LASSO 
coefficient path such as with the least angle regression (LAR) algorithm.

I. Original Data – a set of 18 standardized variables characterizing 182 near-Earth CMEs.  This is comprised of 
interplanetary measurements (Cane & Richardson, 2003) (Richardson & Cane, 2010), initial CME 
characteristics at the Sun given by the Large Angle and Spectrometric Coronagraph (LASCO) located on the 
Solar and Heliospheric Observatory (SOHO) satellite (Gopalswamy et al., 2009), and some solar phenomena 
recorded by the National Oceanic and Atmospheric Administration (NOAA) (Space Weather Prediction 
Center, September 2015).   In addition, the NOAA database is used to create a binary variable signifying 
whether a CME produced a strong geomagnetic storm.  This will serve as the response variable for the 
predictors.

II. Metadata - a set of 320 class probability predictions on the original data from 20 different models created 
via 10-fold CV from the caret package in R (Kuhn, 2008)(R Core Team, 2015).  As with the StackingC
approach (Seewald, 2002), only the probabilities of generating a strong geomagnetic storm are used.  Each 
model is trained across 16 different tuning parameters. The models implemented as base-learners are 
listed in table 1.

The Datasets

Classification and 
Regression Trees (CART)

C5.0 Decision Trees and 
Rule-Based Models (C50)

Ripper Rule Learners (JRIP)
Generalized Additive 
Models using Splines 

(GAM)

Flexible Discriminant 
Analysis (FDA)

LASSO and Elastic Net 
Regularization Linear 

Models (GLMNET)
Random Forests (RF)

Conditional Inference 
Random Forests (CIRF)

Stochastic Gradient 
Boosting (GBM)

Penalized Multinomial 
Regression (PMR)

Neural Networks (NN)
Partial Least Squares 

Regression (PLS)

Nearest Shrunken 
Centroids (NSC)

Support Vector Machines 
with Radial Basis Function 

Kernel (SVM)

Neural Networks with 
Feature Extraction 

(PCANN)

Sparse Distance Weighted 
Discrimination (SDWD)

Tree Models from Genetic 
Algorithms (ET)

Boosted Logistic 
Regression (BL)

Boosted Classification 
Trees (ADA)

Rotation Forests (ROTF)

Table 1: List of base-learner models generated from the caret package in R



Leveraging SAS Enterprise Miner for Predicting Geomagnetic Storms
Taylor K. Larkin and Denise J. McManus

The University of Alabama

Objectives

• Examine whether LASSO will lead to better predictive performance compared to traditional regression 
methods on the metadata

• Investigate if exploiting the metadata  yields better predictions compared to the original data

CONCLUSIONS

Experimental Procedure

Notes

• Partition the data into a training and a test set 3 times at 3 different percentages (60/40, 70/30, 80/20) with 
3 different random seeds as demonstrated in figure 2.

For the metadata

• Using the LARS node, train a regression model using the LASSO variable selection method

• For comparison, also train other regression models with traditional variable selection methods (stepwise, 
backward, and forward) as well as a full regression model

• Aggregate the average area under the ROC curve (ROC) and misclassification rate across all 3 test sets for 
each model

For the original data

• Train a diverse set of models (gradient boosting, partial least squares, neural network, memory based 
reasoning, decision tree, rule induction) along with LASSO and stepwise regression.

• Aggregate the ROC and misclassification rate across all 3 test sets for each model

• Selecting the best t for this model is conducted using 10-fold CV as is usually done for LASSO. That is, CV is 
conducted for each step in the variable selection process as t increases.  The step in which the set of 
regression coefficients delivers the lowest CV error is selected as the stopping point.

• For a fair comparison, model selection criteria for the regression models are set to cross-validation 
misclassification.  For each step in the model selection process (based on p-values), the leave-one-out CV 
scheme is implemented (Sarma, 2013). The step which yields the lowest misclassification rate on the held 
out observations is chosen as the best model.

• All non-regression approaches are left at their default settings

• The SAS node is used to compute the mean across the 3 test sets for each model using PROC SQL code for 
the ROC and misclassification rate. Figure 2: Diagram of metadata modeling in Enterprise Miner
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Visualizations Performance Metrics

Table 3:  Averaged results on the 3 test sets from the original data analysis

Table 2:  Averaged results on the 3 test sets from the metadata analysis

Figure 3:  Coefficient paths for 80/20 data partition in metadata modeling

Figure 4:  Selected variables for 80/20 data partition in metadata modeling

Partition LASSO Stepwise Forward Backward

60/40 47 3 3 26

70/30 30 10 11 27

80/20 30 8 19 44

Average 35.7 7.0 11.0 32.3

Table 4:  Number of variables selected from the metadata
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Discussion

Figure 5: Animation of CME shown through a coronagraph.  Credit listed in acknowledgments section

Figure 3 shows an example of coefficient paths for the LASSO for one of the data partitions as parameter t is 
increased with each step with the stopping point denoted by the vertical line.  Figure 4 demonstrates an 
example of the chosen base-learners given by LASSO from one of the data partitions.  Tables 2 and 3 report the 
averaged performance metrics for the models for the metadata and the original data, respectively.  Table 4 
displays the average number of chosen base-learners used for prediction by each of the variable selection 
techniques.  The results show that inducing regression with LASSO variable selection on the metadata yields a 
2.33% increase in ROC and 10.58% decrease in misclassification rate compared to the best model (via ROC) on 
the original data.  This provides strong evidence that the stacked generalization delivers a more productive 
learning framework.  In addition, while the LASSO chooses more base-learners for prediction than traditional 
variable selection techniques, it still performs favorably as a meta-learner, especially compared to when the 
LASSO is executed on the original data.  Furthermore, it is no surprise that the full regression model produces 
the worst results, since it is unable to estimate all the parameters in a p > N situation. 

Conclusion
In this work, a regularized regression approach, the LASSO, is examined as a meta-learner against traditional 
regression methods for predicting dangerous CMEs using metadata from a stacked generalization framework. 
LASSO enjoys both being able to penalize the regression coefficients while also promoting sparse solutions, 
which is important in cases where p > N. Using the power of SAS Enterprise Miner, LASSO solutions are 
computed through the use of the SAS LARS node. Two main questions are addressed: 

1) Does using LASSO variable selection perform better than traditional regression variable selection 
methodologies? 

2) Does implementing stacked generalization produce better predictive outcomes?

The results exhibit evidence that the answer to both of these questions is yes. The results show that using 
LASSO variable selection not only yields the best averaged performance in terms of ROC and misclassification 
rate on the metadata, but also outperforms the best model executed on the original data.  Specifically, the 
predictions made on the metadata increase ROC by 2.33% and decrease the misclassification rate by 10.58% 
when compared to those made on the original dataset, even against a diverse set of models.  Given the 
potential cataclysmic damage that CMEs can wreak on telecommunication and power companies, advanced 
techniques for improving classification performance are an absolute necessity for saving these industries 

millions of dollars.
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