Companies that offer subscription-based services (such as telecom and electric utilities) must evaluate the tradeoff between month-to-month (MTM) customers, who yield a high margin at the expense of lower lifetime, and customers who commit to a longer-term contract in return for a lower price. The objective, of course, is to maximize the Customer Lifetime Value (CLV). This tradeoff must be evaluated not only at the time of customer acquisition, but throughout the customer's tenure, particularly for fixed-term contract customers whose contract is due for renewal. In this paper, we present a mathematical model that optimizes the CLV against this tradeoff between margin and lifetime. The model is presented in the context of a cohort of existing customers, some of whom are MTM customers and others who are approaching contract expiration. The model optimizes the number of MTM customers to be swapped to fixed-term contracts, as well as the number of contract renewals that should be pursued, at various term lengths and price points, over a period of time. We estimate customer life using discrete-time survival models with time varying covariates related to contract expiration and product changes. Thereafter, an optimization model is used to find the optimal trade-off between margin and customer lifetime. Although we specifically present the contract expiration case, this model can easily be adapted for customer acquisition scenarios as well.
Atul Thatte, TXU Energy
Goutam Chakraborty, Oklahoma State University
In our management and collection area, there was no methodology that provided the optimal number of collection calls to get the customer to make the minimum payment of his or her financial obligation. We wanted to determine the optimal number of calls using the data envelopment analysis (DEA) optimization methodology. Using this methodology, we obtained results that positively impacted the way our customers were contacted. We can maintain a healthy bank and customer relationship, keep management and collection at an operational level, and obtain a more effective and efficient portfolio recovery. The DEA optimization methodology has been successfully used in various fields of manufacturing production. It has solved multi-criteria optimization problems, but it has not been commonly used in the financial sector, especially in the collection area. This methodology requires specialized software, such as SAS® Enterprise Guide® and its robust optimization. In this presentation, we present the PROC OPTMODEL and show how to formulate the optimization problem, create the programming, and process the data available.
Jenny Lancheros, Banco Colpatria Of ScotiaBank Group
Ana Nieto, Banco Colpatria of Scotiabank Group
SAS® University Edition is a great addition to the world of freely available analytic software, and this 'how-to' presentation shows you how to implement a discrete event simulation using Base SAS® to model future US Veterans population distributions. Features include generating a slideshow using ODS output to PowerPoint.
Michael Grierson
Walt Disney World Resort is home to four theme parks, two water parks, five golf courses, 26 owned-and-operated resorts, and hundreds of merchandise and dining experiences. Every year millions of guests stay at Disney resorts to enjoy the Disney Experience. Assigning physical rooms to resort and hotel reservations is a key component to maximizing operational efficiency and guest satisfaction. Solutions can range from automation to optimization programs. The volume of reservations and the variety and uniqueness of guest preferences across the Walt Disney World Resort campus pose an opportunity to solve a number of reasonably difficult room assignment problems by leveraging operations research techniques. For example, a guest might prefer a room with specific bedding and adjacent to certain facilities or amenities. When large groups, families, and friends travel together, they often want to stay near each other using specific room configurations. Rooms might be assigned to reservations in advance and upon request at check-in. Using mathematical programming techniques, the Disney Decision Science team has partnered with the SAS® Advanced Analytics R&D team to create a room assignment optimization model prototype and implement it in SAS/OR®. We describe how this collaborative effort has progressed over the course of several months, discuss some of the approaches that have proven to be productive for modeling and solving this problem, and review selected results.
HAINING YU, Walt Disney Parks & Resorts
Hai Chu, Walt Disney Parks & Resorts
Tianke Feng, Walt Disney Parks & Resorts
Matthew Galati, SAS
Ed Hughes, SAS
Ludwig Kuznia, Walt Disney Parks & Resorts
Rob Pratt, SAS
Investment portfolios and investable indexes determine their holdings according to stated mandate and methodology. Part of that process involves compliance with certain allocation constraints. These constraints are developed internally by portfolio managers and index providers, imposed externally by regulations, or both. An example of the latter is the U.S. Internal Revenue Code (25/50) concentration constraint, which relates to a regulated investment company (RIC). These codes state that at the end of each quarter of a RIC's tax year, the following constraints should be met: 1) No more than 25 percent of the value of the RIC's assets might be invested in a single issuer. 2) The sum of the weights of all issuers representing more than 5 percent of the total assets should not exceed 50 percent of the fund's total assets. While these constraints result in a non-continuous model, compliance with concentration constraints can be formalized by reformulating the model as a series of continuous non-linear optimization problems solved using PROC OPTMODEL. The model and solution are presented in this paper. The approach discussed has been used in constructing investable equity indexes.
Taras Zlupko, CRSP, University of Chicago
Robert Spatz
SAS® Simulation Studio, a component of SAS/OR® software for Microsoft Windows environments, provides powerful and versatile capabilities for building, executing, and analyzing discrete-event simulation models in a graphical environment. Its object-oriented, drag-and-drop modeling makes building and working with simulation models accessible to novice users, and its broad range of model configuration options and advanced capabilities makes SAS Simulation Studio suitable also for sophisticated, detailed simulation modeling and analysis. Although the number of modeling blocks in SAS Simulation Studio is small enough to be manageable, the number of ways in which they can be combined and connected is almost limitless. This paper explores some of the modeling methods and constructs that have proven most useful in practical modeling with SAS Simulation Studio. SAS has worked with customers who have applied SAS Simulation Studio to measure, predict, and improve system performance in many different industries, including banking, public utilities, pharmaceuticals, manufacturing, prisons, hospitals, and insurance. This paper looks at some discrete-event simulation modeling needs that arise in specific settings and some that have broader applicability, and it considers the ways in which SAS Simulation Studio modeling can meet those needs.
Ed Hughes, SAS
Emily Lada, SAS
This paper presents a methodology developed to define and prioritize feeders with the least satisfactory performances for continuity of energy supply, in order to obtain an efficiency ranking that supports a decision-making process regarding investments to be implemented. Data Envelopment Analysis (DEA) was the basis for the development of this methodology, in which the input-oriented model with variable returns to scale was adopted. To perform the analysis of the feeders, data from the utility geographic information system (GIS) and from the interruption control system was exported to SAS® Enterprise Guide®, where data manipulation was possible. Different continuity variables and physical-electrical parameters were consolidated for each feeder for the years 2011 to 2013. They were separated according to the geographical regions of the concession area, according to their location (urban or rural), and then grouped by physical similarity. Results showed that 56.8% of the feeders could be considered as efficient, based on the continuity of the service. Furthermore, the results enable identification of the assets with the most critical performance and their benchmarks, and the definition of preliminary goals to reach efficiency.
Victor Henrique de Oliveira, Cemig
Iguatinan Monteiro, CEMIG
Dynamic pricing is a real-time strategy where corporations attempt to alter prices based on varying market demand. The hospitality industry has been doing this for quite a while, altering prices significantly during the summer months or weekends when demand for rooms is at a premium. In recent years, the sports industry has started to catch on to this trend, especially within Major League Baseball (MLB). The purpose of this paper is to explore the methodology of applying this type of pricing to the hockey ticketing arena.
Christopher Jones, Deloitte Consulting
Sabah Sadiq, Deloitte Consulting
Jing Zhao, Deloitte Consulting LLP
A Chinese wind energy company designs several hundred wind farms each year. An important step in its design process is micrositing, in which it creates a layout of turbines for a wind farm. The amount of energy that a wind farm generates is affected by geographical factors (such as elevation of the farm), wind speed, and wind direction. The types of turbines and their positions relative to each other also play a critical role in energy production. Currently the company is using an open-source software package to help with its micrositing. As the size of wind farms increases and the pace of their construction speeds up, the open-source software is no longer able to support the design requirements. The company wants to work with a commercial software vendor that can help resolve scalability and performance issues. This paper describes the use of the OPTMODEL and OPTLSO procedures on the SAS® High-Performance Analytics infrastructure together with the FCMP procedure to model and solve this highly nonlinear optimization problem. Experimental results show that the proposed solution can meet the company's requirements for scalability and performance. A Chinese wind energy company designs several hundred wind farms each year. An important step of their design process is micro-siting, which creates a layout of turbines for a wind farm. The amount of energy generated from a wind farm is affected by geographical factors (such as elevation of the farm), wind speed, and wind direction. The types of turbines and their positions relative to each other also play critical roles in the energy production. Currently the company is using an open-source software package to help them with their micro-siting. As the size of wind farms increases and the pace of their construction speeds up, the open-source software is no longer able to support their design requirements. The company wants to work with a commercial software vendor that can help them resolve scalability and performance issues. This pap
er describes the use of the FCMP, OPTMODEL, and OPTLSO procedures on the SAS® High-Performance Analytics infrastructure to model and solve this highly nonlinear optimization problem. Experimental results show that the proposed solution can meet the company's requirements for scalability and performance.
Sherry (Wei) Xu, SAS
Steven Gardner, SAS
Joshua Griffin, SAS
Baris Kacar, SAS
Jinxin Yi, SAS
Mathematical optimization is a powerful paradigm for modeling and solving business problems that involve interrelated decisions about resource allocation, pricing, routing, scheduling, and similar issues. The OPTMODEL procedure in SAS/OR® software provides unified access to a wide range of optimization solvers and supports both standard and customized optimization algorithms. This paper illustrates PROC OPTMODEL's power and versatility in building and solving optimization models and describes the significant improvements that result from PROC OPTMODEL's many new features. Highlights include the recently added support for the network solver, the constraint programming solver, and the COFOR statement, which allows parallel execution of independent solver calls. Best practices for solving complex problems that require access to more than one solver are also demonstrated.
Rob Pratt, SAS