Data Mining / Predictive Modeling / Data Science Papers A-Z

A
Paper 3282-2015:
A Case Study: Improve Classification of Rare Events with SAS® Enterprise Miner™
Imbalanced data are frequently seen in fraud detection, direct marketing, disease prediction, and many other areas. Rare events are sometimes of primary interest. Classifying them correctly is the challenge that many predictive modelers face today. In this paper, we use SAS® Enterprise Miner™ on a marketing data set to demonstrate and compare several approaches that are commonly used to handle imbalanced data problems in classification models. The approaches are based on cost-sensitive measures and sampling measures. A rather novel technique called SMOTE (Synthetic Minority Over-sampling TEchnique), which has achieved the best result in our comparison, will be discussed.
Read the paper (PDF). | Download the data file (ZIP).
Ruizhe Wang, GuideWell Connect
Novik Lee, Guidewell Connect
Yun Wei, Guidewell Connect
Paper 3103-2015:
A Macro for Computing the Best Transformation
This session is intended to assist analysts in generating the best variables, such as monthly amount paid, daily number of received customer service calls, weekly worked hours on a project, or annual number total sales for a specific product, by using simple arithmetic operators (square root, log, loglog, exp, and rcp). During a statistical data modeling process, analysts are often confronted with the task of computing derived variables using the existing variables. The advantage of this methodology is that the new variables might be more significant than the original ones. This paper provides a new way to compute all the possible variables using a set of math transformations. The code includes many SAS® features that are very useful tools for SAS programmers to incorporate in their future code such as %SYSFUNC, SQL, %INCLUDE, CALL SYMPUT, %MACRO, SORT, CONTENTS, MERGE, MACRO _NULL_, as well as %DO &%TO & and many more
Read the paper (PDF). | Download the data file (ZIP).
Nancy Hu, Discover
Paper 2641-2015:
A New Method of Using Polytomous Independent Variables with Many Levels for the Binary Outcome of Big Data Analysis
In big data, many variables are polytomous with many levels. The common method to deal with polytomous independent variables is to use a series of design variables, which correspond to the option class or by in the polytomous independent variable in PROC LOGISTIC, if the outcome is binary. If big data has many polytomous independent variables with many levels, using design variables makes the analysis processing very complicated in both computation time and result, which might provide little help on the prediction of outcome. This paper presents a new simple method for logistic regression with polytomous independent variables in big data analysis when analysis of big data is required. In the proposed method, the first step is to conduct an iteration statistical analysis from a SAS® macro program. Similar to an algorithm in the creation of spline variables, this analysis searches for the proper aggregation groups with a statistical significant difference from all levels in a polytomous independent variable. In the SAS macro program for an iteration, processing of searching new level groups with statistical significant differences has been developed. The first is from level 1 with the smallest value of the outcome means. Then we can conduct a statistical test for the level 1 group with the level 2 group with the second smallest value of outcome mean. If these two groups have a statistical significant difference, we can start to test the level 2 group with the level 3 group. If level 1 and level 2 do not have a statistical significant difference, we can combine them into a new level group 1. Then we are going to test the new level group 1 with level 3. The processing continues until all the levels have been tested. Then we can replace the original level values of the polytomous variable by the new level values with the statistical significant difference. In this situation, the polytomous variable with new levels can be described by these means of all new levels because of the 1 to 1 equivalence relationship of a piecewise function in logit from the polytomous's levels to outcome means. It is very easy to approve that the conditional mean of an outcome y given a polytomous variable x is a very good approximation based on the maximum likelihood analysis. Compared with design variables, the new piecewise variable based on the information of all levels as a single independent variable can capture the impact of all levels in a much simpler way. We have used this method in the predictive models of customer attrition on the polytomous variables: state, business type, customer claim type, and so on. All of these polytomous variables show significant improvement on the prediction of customer attrition than without using them or using design variables in the model development.
Read the paper (PDF).
jian gao, constant contact
jesse harriot, constant contact
lisa Pimentel, constant contact
Paper 3140-2015:
An Application of the Cox Proportional Hazards Model to the Construction of Objective Vintages for Credit in Financial Institutions, Using PROC PHREG
In Scotia - Colpatria Bank, the retail segment is very important. The quantity of lending applications makes it necessary to use statistical models and analytic tools in order to do an initial selection of good customers, who our credit analyst will study in depth to finally approve or deny a credit application. The construction of target vintages using the Cox model will generate past-due alerts in a shorter time, so the mitigation measures can be applied one or two months earlier than currently. This can reduce the losses by 100 bps in the new vintages. This paper makes the estimation of a proportional hazard model of Cox and compares the results with a logit model for a specific product of the bank. Additionally, we will estimate the objective vintage for the product.
Read the paper (PDF). | Download the data file (ZIP).
Ivan Atehortua Rojas, Scotia - Colpatria Bank
Paper 3439-2015:
An Innovative Method of Customer Clustering
This session will describe an innovative way to identify groupings of customer offerings using SAS® software. The authors investigated the customer enrollments in nine different programs offered by a large energy utility. These programs included levelized billing plans, electronic payment options, renewable energy, energy efficiency programs, a home protection plan, and a home energy report for managing usage. Of the 640,788 residential customers, 374,441 had been solicited for a program and had adequate data for analysis. Nearly half of these eligible customers (49.8%) enrolled in some type of program. To examine the commonality among programs based on characteristics of customers who enroll, cluster analysis procedures and correlation matrices are often used. However, the value of these procedures was greatly limited by the binary nature of enrollments (enroll or no enroll), as well as the fact that some programs are mutually exclusive (limiting cross-enrollments for correlation measures). To overcome these limitations, PROC LOGISTIC was used to generate predicted scores for each customer for a given program. Then, using the same predictor variables, PROC LOGISTIC was used on each program to generate predictive scores for all customers. This provided a broad range of scores for each program, under the assumption that customers who are likely to join similar programs would have similar predicted scores for these programs. PROC FASTCLUS was used to build k-means cluster models based on these predicted logistic scores. Two distinct clusters were identified from the nine programs. These clusters not only aligned with the hypothesized model, but were generally supported by correlations (using PROC CORR) among program predicted scores as well as program enrollments.
Read the paper (PDF).
Brian Borchers, PhD, Direct Options
Ashlie Ossege, Direct Options
Paper 3293-2015:
Analyzing Direct Marketing Campaign Performance Using Weight of Evidence Coding and Information Value through SAS® Enterprise Miner™ Incremental Response
Data mining and predictive models are extensively used to find the optimal customer targets in order to maximize the return on investment. Direct marketing techniques target all the customers who are likely to buy regardless of the customer classification. In a real sense, this mechanism couldn't classify the customers who are going to buy even without a marketing contact, thereby resulting in a loss on investment. This paper focuses on the Incremental Lift modeling approach using Weight of Evidence Coding and Information Value followed by Incremental Response and Outcome model Diagnostics. This model identifies the additional purchases that would not have taken place without a marketing campaign. Modeling work was conducted using a combined model. The research work is carried out on Travel Center data. This data identifies the increase in average response rate by 2.8% and the number of fuel gallons by 244 when compared with the results from the traditional campaign, which targeted everyone. This paper discusses in detail the implementation of the 'Incremental Response' node to direct the marketing campaigns and its Incremental Revenue and Profit analysis.
Read the paper (PDF). | Download the data file (ZIP).
Sravan Vadigepalli, Best Buy
Paper 3449-2015:
Applied Analytics in Festival Tourism: A Case Study of Intention-to-Revisit Prediction in an Annual Local Food Festival in Thailand
Improving tourists' satisfaction and intention to revisit the festival is an ongoing area of interest to the tourism industry. Many organizers at the festival site strive very hard to attract and retain attendees by investing heavily in their marketing and promotion strategies for the festival. To meet this challenge, the advanced analytical model though data mining approach is proposed to answer the following research question: What are the most important factors that influence tourists' intentions to revisit the festival site? Cluster analysis, neural network, decision tree, stepwise regression, polynomial regression, and support vector machine are applied in this study. The main goal is to determine what it takes not only to retain the loyalty attendees, but also attract and encourage new attendees to be back at the site.
Read the paper (PDF).
Jongsawas Chongwatpol, NIDA Business School, National Institute of Development Administration
Thanathorn Vajirakachorn, Dept. of Tourism Management, School of Business, University of the Thai Chamber of Commerce
Paper 3401-2015:
Assessing the Impact of Communication Channel on Behavior Changes in Energy Efficiency
With the increase in government and commissions incentivizing electric utilities to get consumers to save energy, there has been a large increase in the number of energy saving programs. Some are structural, incentivizing consumers to make improvements to their home that result in energy savings. Some, called behavioral programs, are designed to get consumers to change their behavior to save energy. Within behavioral programs, Home Energy Reports are a good method to achieve behavioral savings as well as to educate consumers on structural energy savings. This paper examines the different Home Energy Report communication channels (direct mail and e-mail) and the marketing channel effect on energy savings, using SAS® for linear models. For consumer behavioral change, we often hear the questions: 1) Are the people that responded via direct mail solicitation saving at a higher rate than people who responded via an e-mail solicitation? 1a) Hypothesis: Because e-mail is easy to respond to, the type of customers that enroll through this channel will exert less effort for the behavior changes that require more time and investment toward energy efficiency changes and thus will save less. 2) Does the mode of that ongoing dialog (mail versus e-mail) impact the amount of consumer savings? 2a) Hypothesis: E-mail is more likely to be ignored and thus these recipients will save less. As savings is most often calculated by comparing the treatment group to a control group (to account for weather and economic impact over time), and by definition you cannot have a dialog with a control group, the answers are not a simple PROC FREQ away. Also, people who responded to mail look very different demographically than people who responded to e-mail. So, is the driver of savings differences the channel, or is it the demographics of the customers that happen to use those chosen channels? This study used clustering (PROC FASTCLUS) to segment the consumers by mail versus e-mail and append cluster assignment s to the respective control group. This study also used DID (Difference-in-Differences) as well as Billing Analysis (PROC GLM) to calculate the savings of these groups.
Read the paper (PDF).
Angela Wells, Direct Options
Ashlie Ossege, Direct Options
B
Paper SPON4000-2015:
Bringing Order to the Wild World of Big Data and Analytics
To bring order to the wild world of big data, EMC and its partners have joined forces to meet customer challenges and deliver a modern analytic architecture. This unified approach encompasses big data management, analytics discovery and deployment via end-to-end solutions that solve your big data problems. They are also designed to free up more time for innovation, deliver faster deployments, and help you find new insights from secure and properly managed data. The EMC Business Data Lake is a fully-engineered, enterprise-grade data lake built on a foundation of core data technologies. It provides pre-configured building blocks that enable self-service, end-to-end integration, management and provisioning of the entire big data environment. Major benefits include the ability to make more timely and informed business decisions and realize the vision of analytics in weeks instead of months.SAS enhances the Federation Business Data Lake by providing superior breadth and depth of analytics to tackle any big data analytics problem an organization might have, whether it's fraud detection, risk management, customer intelligence, predictive assets maintenance and others. SAS and EMC work together to deliver a robust and comprehensive big data solution with reduced risk, automated provisioning and configuration and is purpose-built for big data analytics workloads.
Casey James, EMC
Paper SAS4645-2015:
Build Super Models Quickly with SAS® Factory Miner
Learn how a new product from SAS enables you to easily build and compare multiple candidate models for all your business segments.
Steve Sparano, SAS
C
Paper 1329-2015:
Causal Analytics: Testing, Targeting, and Tweaking to Improve Outcomes
This session is an introduction to predictive analytics and causal analytics in the context of improving outcomes. The session covers the following topics: 1) Basic predictive analytics vs. causal analytics; 2) The causal analytics framework; 3) Testing whether the outcomes improve because of an intervention; 4) Targeting the cases that have the best improvement in outcomes because of an intervention; and 5) Tweaking an intervention in a way that improves outcomes further.
Read the paper (PDF).
Jason Pieratt, Humana
Paper 3511-2015:
Credit Scorecard Generation Using the Credit Scoring Node in SAS® Enterprise Miner™
In today's competitive world, acquiring new customers is crucial for businesses but what if most of the acquired customers turn out to be defaulters? This decision would backfire on the business and might lead to losses. The extant statistical methods have enabled businesses to identify good risk customers rather than intuitively judging them. The objective of this paper is to build a credit risk scorecard using the Credit Risk Node inside SAS® Enterprise Miner™ 12.3, which can be used by a manager to make an instant decision on whether to accept or reject a customer's credit application. The data set used for credit scoring was extracted from UCI Machine Learning repository and consisted of 15 variables that capture details such as status of customer's existing checking account, purpose of the credit, credit amount, employment status, and property. To ensure generalization of the model, the data set has been partitioned using the data partition node in two groups of 70:30 as training and validation respectively. The target is a binary variable, which categorizes customers into good risk and bad risk group. After identifying the key variables required to generate the credit scorecard, a particular score was assigned to each of its sub groups. The final model generating the scorecard has a prediction accuracy of about 75%. A cumulative cut-off score of 120 was generated by SAS to make the demarcation between good and bad risk customers. Even in case of future variations in the data, model refinement is easy as the whole process is already defined and does not need to be rebuilt from scratch.
Read the paper (PDF).
Ayush Priyadarshi, Oklahoma State University
Kushal Kathed, Oklahoma State University
Shilpi Prasad, Oklahoma State University
D
Paper 3483-2015:
Data Sampling Improvement by Developing the SMOTE Technique in SAS®
A common problem when developing classifications models is the imbalance of classes in the classification variable. This imbalance means that a class is represented by a large number of cases while the other class is represented by very few. When this happens, the predictive power of the developed model could be biased. This is the case because classification methods tend to favor the majority class. And the classification methods are designed to minimize the error on the total data set regardless of the proportions or balance of the classes. Due to this problem, there are several techniques used to balance the distribution of the classification variable. One method is to reduce the size of the majority class (under-sampling), another is to increase the number of cases in the minority class (over-sampling); or a third method is to combine these two methods. There is also a more complex technique called SMOTE (Synthetic Minority Over-sampling Technique) that consists of intelligently generating new synthetic registers of the minority class using a closest-neighbors approach. In this paper, we present the development in SAS® of a combination of SMOTE and under-sampling techniques as applied to a churn model. Then, we compare the predictive power of the model using this proposed balancing technique against other models developed with different data sampling techniques.
Read the paper (PDF).
Lina Maria Guzman Cartagena, DIRECTV
Paper SAS4647-2015:
De-Mystifying Deep Learning
Deep Learning is one of the most exciting research areas in machine learning today. While Deep Learning algorithms are typically very sophisticated, you may be surprised how much you can understand about the field with just a basic knowledge of neural networks. Come learn the fundamentals of this exciting new area and see some of SAS' newest technologies for neural networks.
Patrick Hall, SAS
Paper 3368-2015:
Determining the Key Success Factors for Hit Songs in the Billboard Music Charts
Analyzing the key success factors for hit songs in the Billboard music charts is an ongoing area of interest to the music industry. Although there have been many studies over the past decades on predicting whether a song has the potential to become a hit song, the following research question remains, Can hit songs be predicted? And, if the answer is yes, what are the characteristics of those hit songs? This study applies data mining techniques using SAS® Enterprise Miner™ to understand why some music is more popular than other music. In particular, certain songs are considered one-hit wonders, which are in the Billboard music charts only once. Meanwhile, other songs are acknowledged as masterpieces. With 2,139 data records, the results demonstrate the practical validity of our approach.
Read the paper (PDF).
Piboon Banpotsakun, National Institute of Development Administration
Jongsawas Chongwatpol, NIDA Business School, National Institute of Development Administration
Paper SAS1865-2015:
Drilling for Deepwater Data: A Forensic Analysis of the Gulf of Mexico Deepwater Horizon Disaster
During the cementing and pumps-off phase of oil drilling, drilling operations need to know, in real time, about any loss of hydrostatic or mechanical well integrity. This phase involves not only big data, but also high-velocity data. Today's state-of-the-art drilling rigs have tens of thousands of sensors. These sensors and their data output must be correlated and analyzed in real time. This paper shows you how to leverage SAS® Asset Performance Analytics and SAS® Enterprise Miner™ to build a model for drilling and well control anomalies, fingerprint key well control measures of the transienct fluid properties, and how to operationalize these analytics on the drilling assets with SAS® event stream processing. We cover the implementation and results from the Deepwater Horizon case study, demonstrating how SAS analytics enables the rapid differentiation between safe and unsafe modes of operation.
Read the paper (PDF).
Jim Duarte, SAS
Keith Holdaway, SAS
Moray Laing, SAS
G
Paper SAS4122-2015:
Getting Started with SAS ® Contextual Analysis: Easily build models from unstructured data
Text data constitutes more than half of the unstructured data held in organizations. Buried within the narrative of customer inquiries, the pages of research reports, and the notes in servicing transactions are the details that describe concerns, ideas and opportunities. The historical manual effort needed to develop a training corpus is now no longer required, making it simpler to gain insight buried in unstructured text. With the ease of machine learning refined with the specificity of linguistic rules, SAS Contextual Analysis helps analysts identify and evaluate the meaning of the electronic written word. From a single, point-and-click GUI interface the process of developing text models is guided and visually intuitive. This presentation will walk through the text model development process with SAS Contextual Analysis. The results are in SAS format, ready for text-based insights to be used in any other SAS application.
George Fernandez, SAS
H
Paper 3446-2015:
How to Implement Two-Phase Regression Analysis to Predict Profitable Revenue Units
Is it a better business decision to determine profitability of all business units/kiosks and then decide to prune the nonprofitable ones? Or does model performance improve if we decide to first find the units that meet the break-even point and then try to calculate their profits? In our project, we did a two-stage regression process due to highly skewed distribution of the variables. First, we performed logistic regression to predict which kiosks would be profitable. Then, we used linear regression to predict the average monthly revenue at each kiosk. We used SAS® Enterprise Guide® and SAS® Enterprise Miner™ for the modeling process. The effectiveness of the linear regression model is much more for predicting the target variable at profitable kiosks as compared to unprofitable kiosks. The two-phase regression model seemed to perform better than simply performing a linear regression, particularly when the target variable has too many levels. In real-life situations, the dependent and independent variables can have highly skewed distributions, and two-phase regression can help improve model performance and accuracy. Some results: The logistic regression model has an overall accuracy of 82.9%, sensitivity of 92.6%, and specificity of 61.1% with comparable figures for the training data set at 81.8%, 90.7%, and 63.8% respectively. This indicates that the regression model seems to be consistently predicting the profitable kiosks at a reasonably good level. Linear regression model: For the training data set, the MAPE (mean absolute percentage errors in prediction) is 7.2% for the kiosks that earn more than $350 whereas the MAPE (mean absolute percentage errors in prediction) for kiosks that earn less than $350 is -102% for the predicted values (not log-transformed) of the target versus the actual value of the target respectively. For the validation data set, the MAPE (mean absolute percentage errors in prediction) is 7.6% for the kiosks that earn more than $350 whereas the MAPE (mean absolute percentage errors in prediction) for kiosks that earn less than $350 is -142% for the predicted values (not log-transformed) of the target versus the actual value of the target respectively. This means that the average monthly revenue figures seem to be better predicted for the model where the kiosks were earning higher than the threshold value of $350--that is, for those kiosk variables with a flag variable of 1. The model seems to be predicting the target variable with lower APE for higher values of the target variable for both the training data set above and the entire data set below. In fact, if the threshold value for the kiosks is moved to even say $500, the predictive power of the model in terms of APE will substantially increase. The validation data set (Selection Indicator=0) has fewer data points, and, therefore, the contrast in APEs is higher and more varied.
Read the paper (PDF).
Shrey Tandon, Sobeys West
I
Paper SAS1965-2015:
Improving the Performance of Data Mining Models with Data Preparation Using SAS® Enterprise Miner™
In data mining modelling, data preparation is the most crucial, most difficult, and longest part of the mining process. A lot of steps are involved. Consider the simple distribution analysis of the variables, the diagnosis and reduction of the influence of variables' multicollinearity, the imputation of missing values, and the construction of categories in variables. In this presentation, we use data mining models in different areas like marketing, insurance, retail and credit risk. We show how to implement data preparation through SAS® Enterprise Miner™, using different approaches. We use simple code routines and complex processes involving statistical insights, cluster variables, transform variables, graphical analysis, decision trees, and more.
Read the paper (PDF).
Ricardo Galante, SAS
Paper 3356-2015:
Improving the Performance of Two-Stage Modeling Using the Association Node of SAS® Enterprise Miner™ 12.3
Over the years, very few published studies have discussed ways to improve the performance of two-stage predictive models. This study, based on 10 years (1999-2008) of data from 130 US hospitals and integrated delivery networks, is an attempt to demonstrate how we can leverage the Association node in SAS® Enterprise Miner™ to improve the classification accuracy of the two-stage model. We prepared the data with imputation operations and data cleaning procedures. Variable selection methods and domain knowledge were used to choose 43 key variables for the analysis. The prominent association rules revealed interesting relationships between prescribed medications and patient readmission/no-readmission. The rules with lift values greater than 1.6 were used to create dummy variables for use in the subsequent predictive modeling. Next, we used two-stage sequential modeling, where the first stage predicted if the diabetic patient was readmitted and the second stage predicted whether the readmission happened within 30 days. The backward logistic regression model outperformed competing models for the first stage. After including dummy variables from an association analysis, many fit indices improved, such as the validation ASE to 0.228 from 0.238, cumulative lift to 1.56 from 1.40. Likewise, the performance of the second stage was improved after including dummy variables from an association analysis. Fit indices such as the misclassification rate improved to 0.240 from 0.243 and the final prediction error to 0.17 from 0.18.
Read the paper (PDF).
Girish Shirodkar, Oklahoma State University
Goutam Chakraborty, Oklahoma State University
Ankita Chaudhari, Oklahoma State University
M
Paper 2240-2015:
Member-Level Regression Using SAS® Enterprise Guide® and SAS® Forecast Studio
The need to measure slight changes in healthcare costs and utilization patterns over time is vital in predictive modeling, forecasting, and other advanced analytics. At BlueCross BlueShield of Tennessee, a method for developing member-level regression slopes creates a better way of identifying these changes across various time spans. The goal is to create multiple metrics at the member level that will indicate when an individual is seeking more or less medical or pharmacy services. Significant increases or decreases in utilization and cost are used to predict the likelihood of acquiring certain conditions, seeking services at particular facilities, and self-engaging in health and wellness. Data setup and compilation consists of calculating a member's eligibility with the health plan and then aggregating cost and utilization of particular services (for example, primary care visits, Rx costs, ER visits, and so on). A member must have at least six months of eligibility for a valid regression slope to be calculated. Linear regression is used to build single-factor models for 6, 12, 18 and 24 month time spans if the appropriate amount of data is available for the member. Models are built at the member-metric time period resulting in the possibility of over 75 regression coefficients per member per monthly run. The computing power needed to execute such a vast amount of calculations requires in-database processing of various macro processes. SAS® Enterprise Guide® is used to structure the data and SAS® Forecast Studio is used to forecast trends at a member level. Algorithms are run the first of each month. Data is stored so that each metric and corresponding slope is appended on a monthly basis. Because the data is setup up for the member regression algorithm, slopes are interpreted in the following manner: a positive value for -1*slope indicates an increase in utilization/cost; a negative value for -1*slope indicates a decrease in utilization/cost. The ac tual slope value indicates the intensity of the change in cost in utilization. The insight provided by this member-level regression methodology replaces subjective methods that used arbitrary thresholds of change to measure differences in cost and utilization.
Read the paper (PDF).
Leigh McCormack, BCBST
Prudhvidhar Perati, BlueCross BlueShield of TN
Paper 2524-2015:
Methodology of Model Creation
The goal of this session is to describe the whole process of model creation from the business request through model specification, data preparation, iterative model creation, model tuning, implementation, and model servicing. Each mentioned phase consists of several steps in which we describe the main goal of the step, the expected outcome, the tools used, our own SAS codes, useful nodes, and settings in SAS® Enterprise Miner™, procedures in SAS® Enterprise Guide®, measurement criteria, and expected duration in man-days. For three steps, we also present deep insights with examples of practical usage, explanations of used codes, settings, and ways of exploring and interpreting the output. During the actual model creation process, we suggest using Microsoft Excel to keep all input metadata along with information about transformations performed in SAS Enterprise Miner. To get faster information about model results, we combine an automatic SAS® code generator implemented in Excel, and then we input this code to SAS Enterprise Guide and create a specific profile of results directly from the nodes output tables of SAS Enterprise Miner. This paper also focuses on an example of a binary model stability check-in time performed in SAS Enterprise Guide through measuring optimal cut-off percentage and lift. These measurements are visualized and automatized using our own codes. By using this methodology, users would have direct contact with transformed data along with the possibility to analyze and explore any semi-results. Furthermore, the proposed approach could be used for several types of modeling (for example, binary and nominal predictive models or segmentation models). Generally, we have summarized our best practices of combining specific procedures performed in SAS Enterprise Guide, SAS Enterprise Miner, and Microsoft Excel to create and interpret models faster and more effectively.
Read the paper (PDF).
Peter Kertys, VÚB a.s.
Paper 3406-2015:
Modeling to Improve the Customer Unit Target Selection for Inspections of Commercial Losses in the Brazilian Electric Sector: The case of CEMIG
Electricity is an extremely important product for society. In Brazil, the electric sector is regulated by ANEEL (Ag ncia Nacional de Energia El trica), and one of the regulated aspects is power loss in the distribution system. In 2013, 13.99% of all injected energy was lost in the Brazilian system. Commercial loss is one of the power loss classifications, which can be countered by inspections of the electrical installation in a search for irregularities in power meters. CEMIG (Companhia Energ tica de Minas Gerais) currently serves approximately 7.8 million customers, which makes it unfeasible (in financial and logistic terms) to inspect all customer units. Thus, the ability to select potential inspection targets is essential. In this paper, logistic regression models, decision tree models, and the Ensemble model were used to improve the target selection process in CEMIG. The results indicate an improvement in the positive predictive value from 35% to 50%.
Read the paper (PDF).
Sergio Henrique Ribeiro, Cemig
Iguatinan Monteiro, CEMIG
Paper 2720-2015:
Multinomial Logistic Model for Long-Term Value
Customer Long-Term Value (LTV) is a concept that is readily explained at a high level to marketing management of a company, but its analytic development is complex. This complexity involves the need to forecast customer behavior well into the future. This behavior includes the timing, frequency, and profitability of a customer's future purchases of products and services. This paper describes a method for computing LTV. First, a multinomial logistic regression provides probabilities for time-of-first-purchase, time-of-second-purchase, and so on, for each customer. Then the profits for the first purchase, second purchase, and so on, are forecast but only after adjustment for non-purchaser selection bias. Finally, these component models are combined in the LTV formula.
Read the paper (PDF).
Bruce Lund, Marketing Associates, LLC
Paper 3264-2015:
Multiple Product Affinity Makes Much More Sense
Retailers proactively seek a data-driven approach to provide customized product recommendations to guarantee sales increase and customer loyalty. Product affinity models have been recognized as one of the vital tools for this purpose. The algorithm assigns a customer to a product affinity group when the likelihood of purchasing is the highest and the likelihood meets the minimum and absolute requirement. However, in practice, valuable customers, up to 30% of the total universe, who buy across multiple product categories with two or more balanced product affinity likelihoods, are undefined and unable to be effectively product recommended. This paper presents multiple product affinity models that are developed using SAS® macro language to address the problem. In this paper, we demonstrate how the innovative assignment algorithm successfully assigns the undefined customers to appropriate multiple product affinity groups using nationwide retailer transactional data. In addition, the result shows that potential customers establish loyalty through migration from a single to multiple product affinity groups. This comprehensive and insightful business solution will be shared in this paper. Also, this paper provides a clustering algorithm and nonparametric tree model for model building. The customer assignment for using SAS macro code is provided in an appendix.
Read the paper (PDF).
Hsin-Yi Wang, Alliance Data Systems
P
Paper 3254-2015:
Predicting Readmission of Diabetic Patients Using the High-Performance Support Vector Machine Algorithm of SAS® Enterprise Miner™ 13.1
Diabetes is a chronic condition affecting people of all ages and is prevalent in around 25.8 million people in the U.S. The objective of this research is to predict the probability of a diabetic patient being readmitted. The results from this research will help hospitals design a follow-up protocol to ensure that patients having a higher re-admission probability are doing well in order to promote a healthy doctor-patient relationship. The data was obtained from the Center for Machine Learning and Intelligent Systems at University of California, Irvine. The data set contains over 100,000 instances and 55 variables such as insulin and length of stay, and so on. The data set was split into training and validation to provide an honest assessment of models. Various variable selection techniques such as stepwise regression, forward regression, LARS, and LASSO were used. Using LARS, prominent factors were identified in determining the patient readmission rate. Numerous predictive models were built: Decision Tree, Logistic Regression, Gradient Boosting, MBR, SVM, and others. The model comparison algorithm in SAS® Enterprise Miner™ 13.1 recognized that the High-Performance Support Vector Machine outperformed the other models, having the lowest misclassification rate of 0.363. The chosen model has a sensitivity of 49.7% and a specificity of 75.1% in the validation data.
Read the paper (PDF).
Hephzibah Munnangi, Oklahoma State University
Goutam Chakraborty, Oklahoma State University
Paper 3501-2015:
Predicting Transformer Lifetime Using Survival Analysis and Modeling Risk Associated with Overloaded Transformers Using SAS® Enterprise Miner™ 12.1
Utility companies in America are always challenged when it comes to knowing when their infrastructure fails. One of the most critical components of a utility company's infrastructure is the transformer. It is important to assess the remaining lifetime of transformers so that the company can reduce costs, plan expenditures in advance, and largely mitigate the risk of failure. It is also equally important to identify the high-risk transformers in advance and to maintain them accordingly in order to avoid sudden loss of equipment due to overloading. This paper uses SAS® to predict the lifetime of transformers, identify the various factors that contribute to their failure, and model the transformer into High, Medium, and Low risk categories based on load for easy maintenance. The data set from a utility company contains around 18,000 observations and 26 variables from 2006 to 2013, and contains the failure and installation dates of the transformers. The data set comprises many transformers that were installed before 2006 (there are 190,000 transformers on which several regression models are built in this paper to identify their risk of failure), but there is no age-related parameter for them. Survival analysis was performed on this left-truncated and right-censored data. The data set has variables such as Age, Average Temperature, Average Load, and Normal and Overloaded Conditions for residential and commercial transformers. Data creation involved merging 12 different tables. Nonparametric models for failure time data were built so as to explore the lifetime and failure rate of the transformers. By building a Cox's regression model, the important factors contributing to the failure of a transformer are also analyzed in this paper. Several risk- based models are then built to categorize transformers into High, Medium, and Low risk categories based on their loads. This categorization can help the utility companies to better manage the risks associated with transformer failures.
Read the paper (PDF).
Balamurugan Mohan, Oklahoma State University
Goutam Chakraborty, Oklahoma State University
Paper SAS1774-2015:
Predictive Modeling Using SAS® Visual Statistics: Beyond the Prediction
Predictions, including regressions and classifications, are the predominant focus of many statistical and machine-learning models. However, in the era of big data, a predictive modeling process contains more than just making the final predictions. For example, a large collection of data often represents a set of small, heterogeneous populations. Identification of these sub groups is therefore an important step in predictive modeling. In addition, big data data sets are often complex, exhibiting high dimensionality. Consequently, variable selection, transformation, and outlier detection are integral steps. This paper provides working examples of these critical stages using SAS® Visual Statistics, including data segmentation (supervised and unsupervised), variable transformation, outlier detection, and filtering, in addition to building the final predictive model using methodology such as linear regressions, decision trees, and logistic regressions. The illustration data was collected from 2010 to 2014, from vehicle emission testing results.
Read the paper (PDF).
Xiangxiang Meng, SAS
Jennifer Ames, SAS
Wayne Thompson, SAS
R
Paper SAS4284-2015:
Retail 2015 - the landscape, trends, and technology
Retailers, amongst nearly every other consumer business are under more pressure and competition than ever before. Today 's consumer is more connected, informed and empowered and the pace of innovation is rapidly changing the way consumers shop. Retailers are expected to sift through and implement digital technology, make sense of their Big Data with analytics, change processes and cut costs all at the same time. Today 's session, SRetail 2015 the landscape, trends, and technology will cover major issues retailers are facing today as well as both business and technology trends that will shape their future.
Lori Schafer
S
Paper SAS2520-2015:
SAS® Does Data Science: How to Succeed in a Data Science Competition
First introduced in 2013, the Cloudera Data Science Challenge is a rigorous competition in which candidates must provide a solution to a real-world big data problem that surpasses a benchmark specified by some of the world's elite data scientists. The Cloudera Data Science Challenge 2 (in 2014) involved detecting anomalies in the United States Medicare insurance system. Finding anomalous patients, procedures, providers, and regions in the competition's large, complex, and intertwined data sets required industrial-strength tools for data wrangling and machine learning. This paper shows how I did it with SAS®.
Read the paper (PDF). | Download the data file (ZIP).
Patrick Hall, SAS
Paper SAS1921-2015:
SAS® Model Manager: An Easy Method for Deploying SAS® Analytical Models into Relational Databases and Hadoop
SAS® Model Manager provides an easy way to deploy analytical models into various relational databases or into Hadoop using either scoring functions or the SAS® Embedded Process publish methods. This paper gives a brief introduction of both the SAS Model Manager publishing functionality and the SAS® Scoring Accelerator. It describes the major differences between using scoring functions and the SAS Embedded Process publish methods to publish a model. The paper also explains how to perform in-database processing of a published model by using SAS applications as well as SQL code outside of SAS. In addition to Hadoop, SAS also supports these databases: Teradata, Oracle, Netezza, DB2, and SAP HANA. Examples are provided for publishing a model to a Teradata database and to Hadoop. After reading this paper, you should feel comfortable using a published model in your business environment.
Read the paper (PDF).
Jifa Wei, SAS
Kristen Aponte, SAS
Paper 2786-2015:
SAS® Visual Analytics: Supercharging Data Reporting and Analytics
Data visualization can be like a GPS directing us to where in the sea of data we should spend our analytical efforts. In today's big data world, many businesses are still challenged to quickly and accurately distill insights and solutions from ever-expanding information streams. Wells Fargo CEO John Stumpf challenges us with the following: We all work for the customer. Our customers say to us, 'Know me, understand me, appreciate me and reward me.' Everything we need to know about a customer must be available easily, accurately, and securely, as fast as the best Internet search engine. For the Wells Fargo Credit Risk department, we have been focused on delivering more timely, accurate, reliable, and actionable information and analytics to help answer questions posed by internal and external stakeholders. Our group has to measure, analyze, and provide proactive recommendations to support and direct credit policy and strategic business changes, and we were challenged by a high volume of information coming from disparate data sources. This session focuses on how we evaluated potential solutions and created a new go-forward vision using a world-class visual analytics platform with strong data governance to replace manually intensive processes. As a result of this work, our group is on its way to proactively anticipating problems and delivering more dynamic reports.
Read the paper (PDF).
Ryan Marcum, Wells Fargo Home Mortgage
Paper SAS4083-2015:
SAS® Workshop: Data Mining
This workshop provides hands-on experience using SAS® Enterprise Miner. Workshop participants will learn to: open a project, create and explore a data source, build and compare models, and produce and examine score code that can be used for deployment.
Read the paper (PDF).
Chip Wells, SAS
Paper SAS4081-2015:
SAS® Workshop: SAS® Visual Statistics 7.1
This workshop provides hands-on experience with SAS® Visual Statistics. Workshop participants will learn to: move between the Visual Analytics Explorer interface and Visual Statistics, fit automatic statistical models, create exploratory statistical analysis, compare models using a variety of metrics, and create score code.
Read the paper (PDF).
Catherine Truxillo, SAS
Xiangxiang Meng, SAS
Mike Jenista, SAS
Paper SAS4084-2015:
SAS® Workshop: Text Analytics
This workshop provides hands-on experience using SAS® Text Miner. Workshop participants will learn to: read a collection of text documents and convert them for use by SAS Text Miner using the Text Import node, use the simple query language supported by the Text Filter node to extract information from a collection of documents, use the Text Topic node to identify the dominant themes and concepts in a collection of documents, and use the Text Rule Builder node to classify documents having pre-assigned categories.
Read the paper (PDF).
Terry Woodfield, SAS
Paper 2687-2015:
Selection and Transformation of Continuous Predictors for Logistic Regression
This paper discusses the selection and transformation of continuous predictor variables for the fitting of binary logistic models. The paper has two parts: (1) A procedure and associated SAS® macro are presented that can screen hundreds of predictor variables and 10 transformations of these variables to determine their predictive power for a logistic regression. The SAS macro passes the training data set twice to prepare the transformations and one more time through PROC TTEST. (2) The FSP (function selection procedure) and a SAS implementation of FSP are discussed. The FSP tests all transformations from among a class of FSP transformations and finds the one with maximum likelihood when fitting the binary target. In a 2008 book, Patrick Royston and Willi Sauerbrei popularized the FSP.
Read the paper (PDF).
Bruce Lund, Marketing Associates, LLC
T
Paper 3361-2015:
The More Trees, the Better! Scaling Up Performance Using Random Forest in SAS® Enterprise Miner™
Random Forest (RF) is a trademarked term for an ensemble approach to decision trees. RF was introduced by Leo Breiman in 2001.Due to our familiarity with decision trees--one of the intuitive, easily interpretable models that divides the feature space with recursive partitioning and uses sets of binary rules to classify the target--we also know some of its limitations such as over-fitting and high variance. RF uses decision trees, but takes a different approach. Instead of growing one deep tree, it aggregates the output of many shallow trees and makes a strong classifier model. RF significantly improves the accuracy of classification by growing an ensemble of trees and allowing for the selection of the most popular one. Unlike decision trees, RF has a robustness against over-fitting and high variance, since it randomly selects a subset of variables in each split node. This paper demonstrates this simple yet powerful classification algorithm by building an income-level prediction system. Data extracted from the 1994 Census Bureau database was used for this study. The data set comprises information about 14 key attributes for 45,222 individuals. Using SAS® Enterprise Miner™ 13.1, models such as random forest, decision tree, probability decision tree, gradient boosting, and logistic regression were built to classify the income level( >50K or <50k) of the population. The results showed that the random forest model was the best model for this data, based on the misclassification rate criteria. The RF model predicts the income-level group of the individuals with an accuracy of 85.1%, with the predictors capturing specific characteristic patterns. This demonstration using SAS® can lead to useful insights into RF for solving classification problems.
Read the paper (PDF).
Narmada Deve Panneerselvam, OSU
Paper 3423-2015:
To Believe or Not To Believe? The Truth of Data Analytics Results
Drawing on the results from machine learning, exploratory statistics, and a variety of related methodologies, data analytics is becoming one of the hottest areas in a variety of global industries. The utility and application of these analyses have been extremely impressive and have led to successes ranging from business value generation to hospital infection control applications. This presentation examines the philosophical foundations epistemology associated with scientific discovery and shows whether the currently used analytics techniques rest on a rational philosophy of science. Examples are provided to assist in making the concepts more concrete to the business and scientific user.
Read the paper (PDF). | Watch the recording.
Mike Hardin, The University of Alabama
U
Paper 3339-2015:
Using Analytics To Help Win The Presidential Election
In 2012, the Obama campaign used advanced analytics to target voters, especially in social media channels. Millions of voters were scored on models each night to predict their voting patterns. These models were used as the driver for all campaign decisions, including TV ads, budgeting, canvassing, and digital strategies. This presentation covers how the Obama campaign strategies worked, what's in store for analytics in future elections, and how these strategies can be applied in the business world.
Read the paper (PDF). | Watch the recording.
Peter Tanner, Capital One
Paper 3503-2015:
Using SAS® Enterprise Guide®, SAS® Enterprise Miner™, and SAS® Marketing Automation to Make a Collection Campaign Smarter
Companies are increasingly relying on analytics as the right solution to their problems. In order to use analytics and create value for the business, companies first need to store, transform, and structure the data to make it available and functional. This paper shows a successful business case where the extraction and transformation of the data combined with analytical solutions were developed to automate and optimize the management of the collections cycle for a TELCO company (DIRECTV Colombia). SAS® Data Integration Studio is used to extract, process, and store information from a diverse set of sources. SAS Information Map is used to integrate and structure the created databases. SAS® Enterprise Guide® and SAS® Enterprise Miner™ are used to analyze the data, find patterns, create profiles of clients, and develop churn predictive models. SAS® Customer Intelligence Studio is the platform on which the collection campaigns are created, tested, and executed. SAS® Web Report Studio is used to create a set of operational and management reports.
Read the paper (PDF).
Darwin Amezquita, DIRECTV
Paulo Fuentes, Directv Colombia
Andres Felipe Gonzalez, Directv
Paper 3101-2015:
Using SAS® Enterprise Miner™ to Predict Breast Cancer at an Early Stage
Breast cancer is the leading cause of cancer-related deaths among women worldwide, and its early detection can reduce mortality rate. Using a data set containing information about breast screening provided by the Royal Liverpool University Hospital, we constructed a model that can provide early indication of a patient's tendency to develop breast cancer. This data set has information about breast screening from patients who were believed to be at risk of developing breast cancer. The most important aspect of this work is that we excluded variables that are in one way or another associated with breast cancer, while keeping the variables that are less likely to be associated with breast cancer or whose associations with breast cancer are unknown as input predictors. The target variable is a binary variable with two values, 1 (indicating a type of cancer is present) and 0 (indicating a type of cancer is not present). SAS® Enterprise Miner™ 12.1 was used to perform data validation and data cleansing, to identify potentially related predictors, and to build models that can be used to predict at an early stage the likelihood of patients developing breast cancer. We compared two models: the first model was built with an interactive node and a cluster node, and the second was built without an interactive node and a cluster node. Classification performance was compared using a receiver operating characteristic (ROC) curve and average squares error. Interestingly, we found significantly improved model performance by using only variables that have a lesser or unknown association with breast cancer. The result shows that the logistic model with an interactive node and a cluster node has better performance with a lower average squared error (0.059614) than the model without an interactive node and a cluster node. Among other benefits, this model will assist inexperienced oncologists in saving time in disease diagnosis.
Read the paper (PDF).
Gibson Ikoro, Queen Mary University of London
Beatriz de la Iglesia, University of East Anglia, Norwich, UK
Paper 3484-2015:
Using SAS® Enterprise Miner™ to Predict the Number of Rings on an Abalone Shells Using Its Physical Characteristics
Abalone is a common name given to sea snails or mollusks. These creatures are highly iridescent, with shells of strong changeable colors. This characteristic makes the shells attractive to humans as decorative objects and jewelry. The abalone structure is being researched to build body armor. The value of a shell varies by its age and the colors it displays. Determining the number of rings on an abalone is a tedious and cumbersome task and is usually done by cutting the shell through the cone, staining it, and counting the number of rings on it through a microscope. In this poster, I aim to predict the number of any rings on any abalone by using the physical characteristics. This data was obtained from UCI Machine Learning Repository, which consists of 4,177 observations with 8 attributes. I considered the number of rings to be my target variable. The abalone's age can be reasonably approximated as being 1.5 times the number of rings on its shell. Using SAS® Enterprise Miner™, I have built regression models and neural network models to determine the physical measurements responsible for determining the number of rings on the abalone. While I have obtained a coefficient of determination of 54.01%, my aim is to improve and expand the analysis using the power of SAS Enterprise Miner. The current initial results indicate that the height, the shucked weight, and the viscera weight of the shell are the three most influential variables in predicting the number of rings on an abalone.
Ganesh Kumar Gangarajula, Oklahoma State University
Yogananda Domlur Seetharam
Paper 3212-2015:
Using SAS® to Combine Regression and Time Series Analysis on U.S. Financial Data to Predict the Economic Downturn
During the financial crisis of 2007-2009, the U.S. labor market lost 8.4 million jobs, causing the unemployment rate to increase from 5% to 9.5%. One of the indicators for economic recession is negative gross domestic product (GDP) for two consecutive quarters. This poster combines quantitative and qualitative techniques to predict the economic downturn by forecasting recession probabilities. Data was collected from the Board of Governors of the Federal Reserve System and the Federal Reserve Bank of St. Louis, containing 29 variables and quarterly observations from 1976-Q1 to 2013-Q3. Eleven variables were selected as inputs based on their effects on recession and limiting the multicollinearity: long-term treasury yield (5-year and 10-year), mortgage rate, CPI inflation rate, prime rate, market volatility index, Better Business Bureau (BBB) corporate yield, house price index, stock market index, commercial real estate price index, and one calculated variable yield spread (Treasury yield-curve spread). The target variable was a binary variable depicting the economic recession for each quarter (1=Recession). Data was prepared for modeling by applying imputation and transformation on variables. Two-step analysis was used to forecast the recession probabilities for the short-term period. Predicted recession probabilities were first obtained from the Backward Elimination Logistic Regression model that was selected on the basis of misclassification (validation misclassification= 0.115). These probabilities were then forecasted using the Exponential Smoothing method that was selected on the basis of mean average error (MAE= 11.04). Results show the recession periods including the great recession of 2008 and the forecast for eight quarters (up to 2015-Q3).
Read the paper (PDF).
Avinash Kalwani, Oklahoma State University
Nishant Vyas, Oklahoma State University
Paper 3452-2015:
Using SAS® to Increase Profitability through Cluster Analysis and Simplicity: Follow the Money
Developing a quality product or service, while at the same time improving cost management and maximizing profit, are challenging goals for any company. Finding the optimal balance between efficiency and profitability is not easy. The same can be said in regards to the development of a predictive statistical model. On the one hand, the model should predict as accurately as possible. On the other hand, having too many predictors can end up costing company money. One of the purposes of this project is to explore the cost of simplicity. When is it worth having a simpler model, and what are some of the costs of using a more complex one? The answer to that question leads us to another one: How can a predictive statistical model be maximized in order to increase a company's profitability? Using data from the consumer credit risk domain provided from CompuCredit (now Atlanticus), we used logistic regression to build binary classification models to predict the likelihood of default. This project compares two of these models. Although the original data set had several hundred predictor variables and more than a million observations, I chose to use rather simple models. My goal was to develop a model with as few predictors as possible, while not going lower than a concordant level of 80%. Two models were evaluated and compared based on efficiency, simplicity, and profitability. Using the selected model, cluster analysis was then performed in order to maximize the estimated profitability. Finally, the analysis was taken one step further through a supervised segmentation process, in order to target the most profitable segment of the best cluster.
Read the paper (PDF).
Sherrie Rodriguez, Kennesaw State University
V
Paper 3475-2015:
Video Killed the Radio Star
How do you serve 25 million video ads a day to Internet users in 25 countries, while ensuring that you target the right ads to the right people on the right websites at the right time? With a lot of help from math, that's how! Come hear how Videology, an Internet advertising company, combines mathematical programming, predictive modeling, and big data techniques to meet the expectations of advertisers and online publishers, while respecting the privacy of online users and combatting fraudulent Internet traffic.
Kaushik Sinha, Videology
W
Paper 3144-2015:
Why Do People Choose to Drive Over Other Travel Modes? Modelling Driving Motivation with SAS®
We demonstrate a method of using SAS® 9.4 to supplement the interpretation of dimensions of a Multidimensional Scaling (MDS) model, a process that could be difficult without SAS®. In our paper, we examine why do people choose to drive to work (over other means of travel),' a question that transportation researchers need to answer in order to encourage drivers to switch to more environmentally-friendly travel modes. We applied the MDS approach on a travel survey data set because MDS has the advantage of extracting drivers' motivations in multiple dimensions.To overcome the challenges of dimension interpretation with MDS, we used the logistic regression function of SAS 9.4 to identify the variables that are strongly associated with each dimension, thus greatly aiding our interpretation procedure. Our findings are important to transportation researchers, practitioners, and MDS users.
Read the paper (PDF).
Jun Neoh, University of Southampton
Jun Neoh, University of Southampton
back to top