
1

Paper SAS4648-2015

Big Data: Have You Seen It?

Using Graph Theory to Improve Your Analytics

Trevor Kearney and Yue Qi, SAS Institute Inc.

ABSTRACT

Your data analysis projects can use the SAS® LASR™ Analytic Server and its new HYPERGROUP
functionality to mine relationships using graph theory. Discover which data entities are related and,
conversely, which sets of values are disjoint. In cases when the sets of values are not completely disjoint,
HYPERGROUP can identify data that is strongly connected and identify “neighboring” data that is weakly
connected, or data that is a greater distance away. Each record is assigned a hypergroup number and,
within hypergroups, is assigned a color, community, or both. The GROUPBY facility, WHERE clauses, or
both can act on a hypergroup’s number, color, or community to conduct analytics using data that is
“close”, “related”, or more “relevant”. The algorithms that are used to determine hypergroups are based
on graph theory. We show how the results of HYPERGROUP allow equivalent graphs to be displayed
and useful information to be seen, aiding you in controlling what data is required to perform your
analytics.

INTRODUCTION

SAS LASR Analytic Server can handle really big data. It does so by distributing data across a grid, and
using analytical algorithms specially designed to harness the computing power of a grid, executing in
multiple threads on every grid computer. Sometimes data is so big that determining reasonable ways to
reduce its size is necessary to reduce runtimes. Also, breaking apart data is sensible in that analytic tasks
use data that’s related in some way. You make better business decisions, faster. Crucial data structure
can be unearthed and seen. A case study using Facebook data is included in the last section of the
paper.

AN APPLICATION

HYPERGROUP is useful in a wide variety of applications. One that springs to mind is a business that
makes recommendations to customers as to what they should buy. A LASR table can have a variable
containing customer names, and another variable for some commodity they bought, borrowed, or rented,
or an offer to which the customer responded. There might be other variables that can be used to
separate data such as customer traits (for example, location, age, income) or commodity traits such as
model or price. By determining hypergroups, you learn how data has disjoint sets of values for variables,
enabling analyses to be conducted per hypergroup.

Imagine a LASR table that has a column for customer names, and another column for vehicles they
bought. By hypergrouping these two variables, an output LASR table is produced that is usually similar to
original data with the addition of a column called _HypGrp_ that has values 0, 1, 2, ... so that records that
belong to the same hypergroup have the same _HypGrp_ value. You can, for example, see the records of
vehicle buyers who all bought one or more vehicles belonging to the same set of vehicles. If data has two
hypergroups, then there are no records that indicate any of hypergroup 0's customers bought any
hypergroup 1 vehicles, and no hypergroup 1 customers bought any hypergroup 0 vehicles.

You do not supply the sets of values. There might be no way you could. Disjoint sets of values are found
by HYPERGROUP. In the example, you do not know beforehand whether some customer is a
hypergroup 0 customer or a hypergroup 1 customer, nor beforehand whether some vehicle is a
hypergroup 0 vehicle or a hypergroup 1 vehicle.

Once HYPERGROUP has been run, imagine a new customer arrives on the scene; you can determine
whether he is more like existing customers of either hypergroup 0 or 1 and market vehicles we presume
he would prefer to buy belonging to hypergroup 0 or 1 vehicles, respectively. Alternatively, if you

2

manufacture a new vehicle that is similar to either hypergroup 0 or 1 vehicles, you might best expend
marketing effort to customers in hypergroup 0 or 1, respectively.

Hypergroup technology is often used in “Recommender” systems. When you are shopping at an Internet
retailer, they provide you with items they recommend you also consider buying. That’s based on your
previous buying history and, as important, customers like you.

ANOTHER APPLICATION

In customer/campaign/account/insurance policy management applications, and other data
cleansing/standardization of data applications, data may have a column for customer names, and another
column for address. If these columns are hypergrouped then, for example, records that have these values
in the name column: John Smith, J. Smith, John A. Smith, John Smith Jr., Dr. Smith, The Right Honorable
John Archibald Smith, Esq., and have the same value, 123 Main St., for the address column, is
determined by the Hypergroup action to belong to the same hypergroup.

Now imagine this individual (who goes by several names in your data) owns a vacation home at 456
Beach Rd. This becomes known because of a record in the data that has one of the names he goes by
and the value 456 Beach Rd. in the address column, although you’d better check this is not another man
named John Smith. Suppose it’s the same guy. Now all records that have any one of the John Smith
name variations in the Name Column, and either of the two addresses in the Address column are
determined to belong to the same hypergroup.

If that is the extent of the hypergroup, then there are no records that indicate this individual lives
anywhere other than these two addresses. There are no records that indicate any other person lives at
either of these two addresses.

Now imagine the table has a third column whose values are telephone numbers. Hypergroup all three
columns: name, address, and phone number, and interesting associations may be revealed. For instance,
if there is a record in data that has address 456 Beach Rd. and phone number 555-1212, then you can
imply that phone number belongs to John Smith. If there is a record that has the value J. Smith PhD in
the name column and 555-1212 in the phone number column, then that’s another name he has used,…
and whenever a new association is discovered, that in turn may cause yet more associations to be
discovered.

If there is a record with name Harry Smith and phone number 555-1212, then this could reveal a valid
connection, or not, if data was incorrectly entered. In fraud detection applications, such connections are of
interest, possibly suspicious. (The Right Honorable Dr. John Archibald Smith, Esq. is using the
pseudonym Harry Smith to commit a fraud- surely not?)

Similar applications have been used to detect and investigate criminal and terrorist networks. For
managing promotional campaigns, hypergrouping allows you to send offers to only one member of a
household.

THE HYPERGROUP ACTION

The SAS program below puts PROC IMSTAT to work determining hypergroups. In the following data set, variables

varA to varD are the hypergroup variables, and the remaining variables are other variables you need to appear in an

output LASR table.

The varA to varD variable values have values beginning with A and Z, B and Y, C and X, and so on. In our example

that distinguishes different hypergroups. However, in real-world data, hypergroups can rarely have such obvious

distinctiveness, and can rarely be identified by eye, nor can data for hypergroups reside in consecutive records, on

the same LASR server nodes. Hypergroups cannot usually be identified and highlight-colored as in the following

DATA step. It's rare that hypergroups can be indicated by WHERE clauses or as ordinary GROUPBY variables

without hypergroups first being determined.

data arc1;

 input varA $ varB $ varC $ varD $ extra1 extra2 $ extra3 $ extra4 @@;

3

 datalines;
A00 A01 A04 Z05 0 A Z 5 B00 B01 B04 Y06 0 B Y 6 C00 C01 C04 X06 0 C X 6

A00 A02 A04 Z06 0 A Z 6 B00 B02 B04 Y07 0 B Y 7 C00 C02 C04 X07 0 C X 7

A01 A02 A04 Z07 1 A Z 7 B01 B02 Y05 Y07 1 B Y 7 C01 C02 X05 X07 1 C X 7

A01 A04 Z05 Z07 1 A Z 7 B01 B04 Y05 Y08 1 B Y 8 C01 C04 X05 X08 1 C X 8

A02 A03 Z05 Z08 2 A Z 8 B02 B03 Y06 Y07 2 B Y 7 C02 C03 X06 X07 2 C X 7

A02 A04 Z06 Z07 2 A Z 7 B02 B04 Y06 Y09 2 B Y 9 C02 C04 X06 X09 2 C X 9

A02 Z05 Z06 Z09 2 A Z 9 B02 Y05 Y07 Y08 2 B Y 8 C02 X05 X07 X08 2 C X 8

A03 Z05 Z07 Z08 3 A Z 8 B03 Y05 Y07 Y09 3 B Y 9 C03 X05 X07 X09 3 C X 9

A04 Z05 Z07 Z09 4 A Z 9 B04 Y05 Y08 Y09 4 B Y 9 C04 X05 X08 X09 4 C X 9

A04 Z06 Z08 Z09 4 A Z 9

D00 D01 D04 W06 0 D W 6 E00 E01 E04 V06 0 E V 6 F00 F01 F04 U06 0 F U 6

D00 D02 D04 W07 0 D W 7 E00 E02 E04 V07 0 E V 7 F00 F02 F04 U07 0 F U 7

D01 D02 W05 W07 1 D W 7 E01 E02 V05 V07 1 E V 7 F01 F02 U05 U07 1 F U 7

D01 D04 W05 W08 1 D W 8 E01 E04 V05 V08 1 E V 8 F01 F04 U05 U08 1 F U 8

D02 D03 W06 W07 2 D W 7 E02 E03 V06 V07 2 E V 7 F02 F03 U06 U07 2 F U 7

D02 D04 W06 W09 2 D W 9 E02 E04 V06 V09 2 E V 9 F02 F04 U06 U09 2 F U 9

D02 W05 W07 W08 2 D W 8 E02 V05 V07 V08 2 E V 8 F02 U05 U07 U08 2 F U 8

D03 W05 W07 W09 3 D W 9 E03 V05 V07 V09 3 E V 9 F03 U05 U07 U09 3 F U 9

D04 W05 W08 W09 4 D W 9 E04 V05 V08 V09 4 E V 9 F04 U05 U08 U09 4 F U 9

;

proc lasr

 create force port= &pport data=arc1 path="/tmp/";

 performance host= &hhost nodes=3 threads=2; /* you change */

run;

libname mylasr sasiola host=&hhost port= &pport tag=work;

proc imstat data=mylasr.arc1;

 hypergroup VarA varB varC varD / vars=(extra4 extra3 extra2 extra1)

save=hyptable;

run;

OUTPUT TEMPTABLES

The HYPERGROUP statement creates at least three temporary LASR tables that are assigned to SAS
macros _TEMPLAST_ , _TEMPHYPGRP_ , and _TEMPEDGES_:

The _TEMPLAST_ Temptable

In this example, the HYPERGROUP statement was specified as this:

hypergroup VarA varB varC varD / vars=(extra4 extra3 extra2 extra1);

Therefore, the _tempLast_ temp table has these columns:

 a _HypGrp_ column with values that are hypergroup numbers (0, 1, 2, …).

 the variables VarA varB varC varD specified between hypergroup and the slash, or if there is no
slash, the semicolon.

 the VAR=(…) columns--if there are any--extra4 extra3 extra2 extra1. These are columns that are not
hypergroup columns that you want to appear in output tables.

table mylasr.&_templast_;

 fetch / from=1 to=150;

run;

 Selected Records from Table _T_8651BD0F_7F9390521138

HypGrp varA varB varC varD extra4 extra3 extra2 extra1

 0 A00 A01 A04 Z05 5.000000 Z A 0

 0 A00 A02 A04 Z06 6.000000 Z A 0

 0 A01 A02 A04 Z07 7.000000 Z A 1.000000

 0 A01 A04 Z05 Z07 7.000000 Z A 1.000000

 0 A02 A03 Z05 Z08 8.000000 Z A 2.000000

4

 0 A02 A04 Z06 Z07 7.000000 Z A 2.000000

 0 A02 Z05 Z06 Z09 9.000000 Z A 2.000000

 0 A03 Z05 Z07 Z08 8.000000 Z A 3.000000

 0 A04 Z05 Z07 Z09 9.000000 Z A 4.000000

 0 A04 Z06 Z08 Z09 9.000000 Z A 4.000000

1.000000 B00 B01 B04 Y06 6.000000 Y B 0

1.000000 B00 B02 B04 Y07 7.000000 Y B 0

1.000000 B01 B02 Y05 Y07 7.000000 Y B 1.000000

1.000000 B01 B04 Y05 Y08 8.000000 Y B 1.000000

1.000000 B02 B03 Y06 Y07 7.000000 Y B 2.000000

1.000000 B02 B04 Y06 Y09 9.000000 Y B 2.000000

1.000000 B02 Y05 Y07 Y08 8.000000 Y B 2.000000

1.000000 B03 Y05 Y07 Y09 9.000000 Y B 3.000000

1.000000 B04 Y05 Y08 Y09 9.000000 Y B 4.000000

2.000000 C00 C01 C04 X06 6.000000 X C 0

2.000000 C00 C02 C04 X07 7.000000 X C 0

2.000000 C01 C02 X05 X07 7.000000 X C 1.000000

2.000000 C01 C04 X05 X08 8.000000 X C 1.000000

2.000000 C02 C03 X06 X07 7.000000 X C 2.000000

2.000000 C02 C04 X06 X09 9.000000 X C 2.000000

2.000000 C02 X05 X07 X08 8.000000 X C 2.000000

2.000000 C03 X05 X07 X09 9.000000 X C 3.000000

2.000000 C04 X05 X08 X09 9.000000 X C 4.000000

3.000000 D00 D01 D04 W06 6.000000 W D 0

3.000000 D00 D02 D04 W07 7.000000 W D 0

3.000000 D01 D02 W05 W07 7.000000 W D 1.000000

3.000000 D01 D04 W05 W08 8.000000 W D 1.000000

3.000000 D02 D03 W06 W07 7.000000 W D 2.000000

3.000000 D02 D04 W06 W09 9.000000 W D 2.000000

3.000000 D02 W05 W07 W08 8.000000 W D 2.000000

3.000000 D03 W05 W07 W09 9.000000 W D 3.000000

3.000000 D04 W05 W08 W09 9.000000 W D 4.000000

4.000000 E00 E01 E04 V06 6.000000 V E 0

4.000000 E00 E02 E04 V07 7.000000 V E 0

4.000000 E01 E02 V05 V07 7.000000 V E 1.000000

4.000000 E01 E04 V05 V08 8.000000 V E 1.000000

4.000000 E02 E03 V06 V07 7.000000 V E 2.000000

4.000000 E02 E04 V06 V09 9.000000 V E 2.000000

4.000000 E02 V05 V07 V08 8.000000 V E 2.000000

4.000000 E03 V05 V07 V09 9.000000 V E 3.000000

4.000000 E04 V05 V08 V09 9.000000 V E 4.000000

5.000000 F00 F01 F04 U06 6.000000 U F 0

5.000000 F00 F02 F04 U07 7.000000 U F 0

5.000000 F01 F02 U05 U07 7.000000 U F 1.000000

5.000000 F01 F04 U05 U08 8.000000 U F 1.000000

5.000000 F02 F03 U06 U07 7.000000 U F 2.000000

5.000000 F02 F04 U06 U09 9.000000 U F 2.000000

5.000000 F02 U05 U07 U08 8.000000 U F 2.000000

5.000000 F03 U05 U07 U09 9.000000 U F 3.000000

5.000000 F04 U05 U08 U09 9.000000 U F 4.000000

The _TEMPHYPGRP_ Temptable

The _tempHypGrp_ temp table has records pertaining to values of the hypergroup variables. It has at a
minimum these columns:

 _Value_ : values of hypergroup variables. These are graph vertex names.

5

 _Index_ : vertex indices (0, 1, 2, …).

 a _HypGrp_ : hypergroup numbers (0, 1, 2, …).

 _indexH_ : vertex indices (0, 1, 2, …) but only within hypergroup subgraphs.

 _XCoord_ and _YCoord_: the coordinates of vertices.

table mylasr.&_temphypgrp_;

 fetch / from=1 to=60;

run;

 Selected Records from

Table _T_8651BD12_7F9390521158

Value _Index_ _HypGrp_ _IndexH_ _XCoord_ _YCoord_

A00 0 0 0 47.751283 86.484868 …

A01 1.000000 0 1.000000 88.000000 48.243896

A02 2.000000 0 9.000000 65.407182 59.212735

A03 3.000000 0 6.000000 47.026785 67.283859

A04 4.000000 0 2.000000 47.751283 86.484868

B00 5.000000 1.000000 0 69.768578 88.000000

B01 6.000000 1.000000 1.000000 69.768578 88.000000

B02 7.000000 1.000000 9.000000 58.706541 87.376854

B03 8.000000 1.000000 6.000000 70.419826 86.644392

B04 9.000000 1.000000 2.000000 69.768578 88.000000

C00 10.000000 2.000000 0 67.796955 88.000000

C01 11.000000 2.000000 1.000000 67.796955 88.000000

C02 12.000000 2.000000 9.000000 67.485462 86.756084

C03 13.000000 2.000000 6.000000 69.037437 87.019508

C04 14.000000 2.000000 2.000000 67.796955 88.000000

D00 15.000000 3.000000 0 67.613033 88.000000

D01 16.000000 3.000000 1.000000 67.613033 88.000000

D02 17.000000 3.000000 9.000000 71.471194 87.030314

D03 18.000000 3.000000 6.000000 77.220188 86.589432

D04 19.000000 3.000000 2.000000 67.613033 88.000000

E00 20.000000 4.000000 0 82.953739 13.577823

E01 21.000000 4.000000 1.000000 86.255796 14.108228

E02 22.000000 4.000000 9.000000 85.575935 12.750469

E03 23.000000 4.000000 6.000000 83.787772 14.723783

E04 24.000000 4.000000 2.000000 87.366915 12.405042

F00 25.000000 5.000000 0 81.349289 14.107479

F01 26.000000 5.000000 1.000000 82.762365 14.069005

F02 27.000000 5.000000 9.000000 84.532841 13.958093

F03 28.000000 5.000000 6.000000 83.797687 12.575291

F04 29.000000 5.000000 2.000000 84.180868 13.177457

U05 30.000000 5.000000 3.000000 86.281249 13.591267

U06 31.000000 5.000000 7.000000 81.526809 12.205444

U07 32.000000 5.000000 8.000000 85.698858 12.000000

U08 33.000000 5.000000 4.000000 88.000000 13.827690

U09 34.000000 5.000000 5.000000 12.000000 88.000000

V05 35.000000 4.000000 3.000000 85.858098 13.437597

V06 36.000000 4.000000 7.000000 86.547623 12.000000

V07 37.000000 4.000000 8.000000 88.000000 13.256272

V08 38.000000 4.000000 4.000000 85.256010 12.234297

V09 39.000000 4.000000 5.000000 12.000000 88.000000

W05 40.000000 3.000000 3.000000 59.839953 86.752841

W06 41.000000 3.000000 7.000000 88.000000 87.182425

W07 42.000000 3.000000 8.000000 52.710046 86.872934

W08 43.000000 3.000000 4.000000 40.022424 87.408962

6

W09 44.000000 3.000000 5.000000 12.000000 12.000000

X05 45.000000 2.000000 3.000000 88.000000 13.990856

X06 46.000000 2.000000 7.000000 86.964785 13.001636

X07 47.000000 2.000000 8.000000 86.129370 12.000000

X08 48.000000 2.000000 4.000000 12.000000 26.614086

X09 49.000000 2.000000 5.000000 12.000000 26.614086

Y05 50.000000 1.000000 3.000000 60.751506 86.896084

Y06 51.000000 1.000000 7.000000 88.000000 87.200911

Y07 52.000000 1.000000 8.000000 79.896879 86.702814

Y08 53.000000 1.000000 4.000000 44.376003 87.405119

Y09 54.000000 1.000000 5.000000 12.000000 12.000000

Z05 55.000000 0 3.000000 28.623736 60.593559

Z06 56.000000 0 7.000000 17.800663 35.110688

Z07 57.000000 0 8.000000 12.000000 12.000000

Z08 58.000000 0 4.000000 49.976991 88.000000

Z09 59.000000 0 5.000000 49.976991 88.000000

The _TEMPEDGES_ Temptable

Consider the first record in data:

varA varB varC varD

A00 A01 A04 Z05

This record generates three edges: (A00, A01), (A01, A04), and (A04, Z05).

The _TempEdges_ table has all the variables in _tempLast_, except instead of having the hypergroup
variables (in this example, varA, varB, varC, and varD), there are variables: _Source_ and _Target_ that
have values associated with the origin and destination of edges, and index and coordinates variables
associated with the source and target vertices.

The _tempEdges _ temp table has at a minimum these columns:

 a _HypGrp_ : hypergroup numbers (0, 1, 2, …).

 _Source_ and _Target_ : the names of the vertices the edge connects.

 _Sindex_ and _TIndex_: vertex indices (0, 1, 2, …) of _Source_ and _Target_.

 _SindexH_ and _TIndexH_: vertex indices (0, 1, 2, …) of _Source_ and _Target_ but only within
hypergroup subgraphs.

 _XCoordS_ and _YCoordS_: the coordinates of the _Source_ vertex.

 _XCoordT_ and _YCoordT_: the coordinates of the _Target_ vertex.

 Selected Records from Table _T_1E114D6E_7FC4D3FB21A0

HypGrp _Source_ _Target_ _Sindex_ _Tindex_ _SindexH_ _TindexH_

 0 A00 A01 0 1.000000 0 1.000000

 0 A01 A04 1.000000 4.000000 1.000000 2.000000

 0 A04 Z05 4.000000 55.000000 2.000000 3.000000

 0 A00 A02 0 2.000000 0 9.000000

 0 A02 A04 2.000000 4.000000 9.000000 2.000000

 0 A04 Z06 4.000000 56.000000 2.000000 7.000000

 0 A01 A02 1.000000 2.000000 1.000000 9.000000

 0 A02 A04 2.000000 4.000000 9.000000 2.000000

 0 A04 Z07 4.000000 57.000000 2.000000 8.000000

 0 A01 A04 1.000000 4.000000 1.000000 2.000000

 0 A04 Z05 4.000000 55.000000 2.000000 3.000000

7

snip

 SourceX _SourceY_ _TargetX_ _TargetY_ extra4 extra3 extra2 extra1

 47.751283 86.484868 88.000000 48.243896 5.000000 Z A 0

 88.000000 48.243896 47.751283 86.484868 5.000000 Z A 0

 47.751283 86.484868 28.623736 60.593559 5.000000 Z A 0

 47.751283 86.484868 65.407182 59.212735 6.000000 Z A 0

 65.407182 59.212735 47.751283 86.484868 6.000000 Z A 0

 47.751283 86.484868 17.800663 35.110688 6.000000 Z A 0

 88.000000 48.243896 65.407182 59.212735 7.000000 Z A 1.000000

 65.407182 59.212735 47.751283 86.484868 7.000000 Z A 1.000000

 47.751283 86.484868 12.000000 12.000000 7.000000 Z A 1.000000

 88.000000 48.243896 47.751283 86.484868 7.000000 Z A 1.000000

 47.751283 86.484868 28.623736 60.593559 7.000000 Z A 1.000000

snip

STRONG AND WEAK CONNECTIONS

Big data is messy. Consider the data regarding customers who bought vehicles. Suppose some
customers (set C0) usually bought some vehicles (set V0,), and other customers (set C1) usually bought
another set of vehicles (set V1). These are strong links. However, there might be weak links, related to
data that indicates C0 customers who occasionally bought V1 vehicles, and C1 customers who
occasionally bought V0 vehicles. These purchases are outnumbered by the strong link purchases. If it
were not for the weak links, C0 and V0 would be one hypergroup, and C1 and V1 another hypergroup, but
as there are, all data might be one great big hypergroup.

You do not supply the sets of values. There might be no way you could. In this example, HYPERGROUP
determines the C and V sets by two different algorithms, and outputs color number or community number
0 for records for C0 V0, and outputs a color number or community number 1 for records for C1 V1. You do
not know beforehand whether some customer is a C0 or C1 customer, nor beforehand whether some
vehicle is a V0 or V1 vehicle.

The algorithms used to determine hypergroups, and strong and weak links (and therefore colors and
communities) within each hypergroup, are based on graph theory. Vertices have names that are values of
hypergroup variables, and edges that connect vertices (valuea,valueb) are generated if there is any record
in data that has valuea and valueb as values in adjacent hypergroup list variables.

Therefore, HYPERGROUP formulates the underlying graph, and does the following:

 finds whether data can be broken into separate parts--that is, separate hypergroups. In graph theory
terms, HYPERGROUP determines whether the graph has disconnected components.

 within a hypergroup, or the entire graph if there are no separate hypergroups, HYPERGROUP
determines coordinates of the vertices so that the graph can be displayed, and can be used to zoom

Graphs can dramatically visualize strong
and weak connections.

If you zoom into parts of this graph that
have vertices with mostly the same colors,
you can see the strong connections. Weak
connections are usually far fewer in
number that connect vertices of different
colors.

8

into a particular part of the graph, consequently be a part of data, and subsequently perform
analytics.

 determines colors, communities, or both, which can be used to
color vertices and edges when graphs are displayed, or to zoom
into a particular part of the graph and consequently a part of data,
and subsequently perform analytics.

 produces structural graphs, as well as coordinates for them, and
output details about strong subgraphs (for example, number of
vertices strongly connected, and the number of actual edges that
make those connections) and weak links (for example, number of
actual edges that weakly connect strong subgraphs).

 computes various centrality measures, often used within a social
network analysis application, and for other practitioners who wish
to further refine what data is to be used by subsequent analytics.

There are many options you can specify in the HYPERGROUP statement to control how layouts, colors,
communities, structural graphs, and centrality are performed. The output temp tables will have more
columns in them (for example, you’ve seen the _XCoord_ and _YCoord_ column in _TEMPHYPGRP_).
There might also be _Color_, and _Community_, and more. You can also choose to skip some of these
tasks that are ordinarily done.

Structural graphs and centrality are covered later in this paper.

Here are more graphs that have circular, mesh, clover leaf: and later you’ll see tree structures:

Real data is
usually not so
structured,
although we never
cease to be
amazed how
frequently
HYPERGROUP
reveals very
interesting
insights. Consider
this graph:

9

HYPERGROUP allows you considerable control over the way vertex or edge separators are determined,
and the resulting graph partitions:

10

REMOVING NOISE AND CONFUSION

Consider the following graph whose vertices and colors have been determined with HYPERGROUP’s
default algorithms:

While none of the vertices are laid out on top of each other, which is good, some vertices with the same
color are not very close, which is bad. Has HYPERGROUP failed to determine appropriate vertex color
numbers? Is this really a graph that has no exploitable structure? You might think so, given the way it
looks.

When the graph is displayed so that only vertices with the same color are prominently displayed, we see
many subgraphs like these:

11

In this example, if you were to draw a line from the top left to the bottom right, the vertices that
have the same color are all on one side of that line or the other, and there are edges to vertices
with different color that seem to lie on or near that line. These are in the same set of vertices.
Only a small number of clicks in the network displayer are required to identify the vertices that
have value zero in the _Color_ column, and those that form a separator:

When separators are determined, HYPERGROUP strives to keep the number of vertices in the separator
low. However, these vertices can have high degree, and often that is desirable. By the way, the degree of
a vertex is the number of edges that have that vertex as one of the vertices the edge connects.

12

Rerun HYPERGROUP when the separator and edges that are incident onto the separator’s vertices are
removed; this is very easy to program by using a simple WHERE statement. The result is that
HYPERGROUP determines the graph is now many disconnected hypergroup graphs, such as these:

Imagine you are in charge of an Internet retailer. Whenever a customer shows interest in some item of
merchandise, other products are shown to him to tempt him to buy one or more products. These
recommended products were bought by other customers who have similar buying behavior to the
prospective purchaser. However, the least useful data is for customers who seem to have no particular
buying behavior; they buy lots of products that were selected from a wide range of product categories.
Much better recommendations can be made when data for these “noisy” customers is removed.

Now imagine you are in charge of an advertising budget and must decide on which websites you should
advertise. If the vertices in the above graph represent people and websites, then advertising on separator
websites could yield the best results.

Obviously, separators separate data into two or more pieces. There is a wide range of applications when
breaking apart data in a meaningful way is desired (for example, to improve reliability in communications
systems by identifying places where failure would be serious, or to conduct military operations with more
efficient interdiction, or simply because the data is too big to be tackled all at once).

WHEN DATA IS BIGGER

Consider data that has been associated with this graph that has one-quarter million edges, 25 thousand
vertices, and that has a tree-like structure where every subgraph is weakly connected to three
descendant subgraphs and, of course, one parent. The figure on the right shows only the weak edges:

This example illustrates why identifying
separators is useful, and that goes beyond
making the layout and coloring chores of
HYPERGROUP easier.

13

It might be more important to know how strongly connected subgraphs are connected to other strongly
connected subgraphs by weak edges, than how strong edges connect vertices within the strong
subgraph. Indeed, the latter might be unimportant. Therefore, you can indicate to HYPERGROUP that
structural graphs are to be produced. A graph is formed that consists of a vertex for each color (or
community)--that is, for each strong subgraph, and one and only one edge for between ci and cj if there
exists one or more edges in the real graph between any vertex with color (or community) ci and any
vertex with color (or community) cj. You can do the following:

14

 use HYPERGROUP to determine hypergroups and colors (or communities), but not coordinates, and
create the structural=color (or community) graph, and determine the layout of it, and then

 if a particular hypergroup-color (or community) subgraph is of particular interest, use HYPERGROUP
again for that hypergroup-color (or community) fell swoop.

This strategy might save time in
that only what you need is
determined. Also, in effect, only
relevant subgraphs are attacked
by HYPERGROUP, and even
when there are several to be
attacked, the overall time might
be much less than doing
everything all in one ”fell swoop”.
You can drill down into parts of
the data that are of more interest
than other data.

It’s now clear that the structure of
the graph is a tree in which
vertices have three descendants.

Some of the vertices have been
labeled with their colors, and you
can easily rerun HYPERGROUP,
or for that matter any action, to
focus attention onto one or a
subset of records that have a
particular group-by value
combination, hypergroup
number, and color values.

15

FOCUSING UPON DATA FOR PARTICULAR HYPERGROUPS

To identify which hypergroup is associated with a hypergroup variable value, use the WHERE, FETCH,
and STORE statements. For example, if analyses are to focus on the hypergroup in which a hypergroup
variable has value "C04", do this:

table mylasr.&_temphypgrp_;

 where _Value_="C04";

 fetch / save=fetchTab from=1 to=60;

 store fetchTab(1,cols= _HypGrp_)=hgmacro /

 left="(" control="_HypGrp_=%" separator=" or " right=")";

run;

%put &hgmacro;

In this example, the hgmacro expands to (_HypGrp_=2)

Now hgmacro can be used in a WHERE statement that governs how _TEMPLAST_ is read to yield
output for only the hypergroup with "C04”.

table mylasr.&_templast_; /* or many other tables created by Hypergroup

*/

 where &hgmacro ;

 fetch / from=1 to=150;

run;

Selected Records from Table _T_8651BD0F_7F9390521138

HypGrp varA varB varC varD extra4 extra3 extra2 extra1

2.000000 C00 C01 C04 X06 6.000000 X C 0

2.000000 C00 C02 C04 X07 7.000000 X C 0

2.000000 C01 C02 X05 X07 7.000000 X C 1.000000

2.000000 C01 C04 X05 X08 8.000000 X C 1.000000

2.000000 C02 C03 X06 X07 7.000000 X C 2.000000

2.000000 C02 C04 X06 X09 9.000000 X C 2.000000

2.000000 C02 X05 X07 X08 8.000000 X C 2.000000

2.000000 C03 X05 X07 X09 9.000000 X C 3.000000

2.000000 C04 X05 X08 X09 9.000000 X C 4.000000

Notice that some records do not have the C04 value anywhere in them, yet they belong to the same
hypergroup as those that do.

The same techniques can be used to obtain data for even greater granularity; for a particular value
combinations of Group-By/Hypergroup/Color, or Group-By/Hypergroup/Community, or Group-
By/Hypergroup/vertices that have coordinates in a certain region, or Group-By/Hypergroup/being close by
virtue of centrality measures.

We describe the topic of centrality in the next section.

CENTRALITY

The centrality of a vertex quantifies the importance of that vertex among its peers. Centrality can also be
considered a measure of the seriousness of removing a vertex (and edges incident onto it).

There are many ways centrality can be determined, and it’s often the case that one centrality more than
another is better suited to some graphs, but for another graph, another centrality is more useful than the
first.

Of the dozens of centralities, HYPERGROUP determines four centralities in common use based on
shortest paths (Graph Centrality, Stress Centrality, Closeness Centrality, Betweenness Centrality), and
another centrality (Centroid Centrality) based on the layout of a graph.

The shortest path between two vertices is the smallest number of edges in a path from one vertex to the
other.

16

THREE DIMENSIONS

Up until now, we have assumed that only two dimensions are required. If you need to work in three
dimensions, simply specify the HYPERGROUP statement’s THREED option (I tried to name this option
3D but SAS won’t allow it). When in 3-D, whenever there are x and y coordinates, there will now be an
additional z coordinate. Color, community, and the shortest path-based centrality computations remain
much the same as in the 2-D case, but obviously the layout algorithms are different, as are the centroid
centrality results. Graphs are often seen to be more compact as space between vertices is obtained by
using the extra dimension.

At the moment, SAS software products do not have a 3-D graph renderer, but visually appealing and
informative details of 3-D graphs can be realized by the following:

The labels of
vertices of the
following graph are
Closeness
Centrality:

17

 continuing to use 2-D graph renderers that are available in SAS such as SAS/GRAPH® NV
Workshop, which has been used for all 2-D graphs so far in this paper,

 using 3-D scatter plotters to display vertices: I’ve opted to use the JMP® 3-D plotter that has the
feature that 3-D scatter plots can be tilted and rotated interactively, or

 running a JMP script that plots vertices onto a 3-D scatter plot, and then adds vectors for every edge
you want displayed.

Looking down from the positive z-axis (using the JMP 3-D scatter plotter) (left), and using SAS/GRAPH
NV Workshop, using only the _Xcoord_ and _Ycoord_ columns (right).

Consider the graph
from the last
section (here
shown are centroid
centrality’s angles
with respect to the
graph’s centroid):

18

Looking down from the positive y-axis (using the JMP 3-D scatter plotter) (left), and using SAS/GRAPH

NV Workshop, using only the _Xcoord_ and _Zcoord_ columns (right).

To save space, we’ve omitted the illustration that looks down from the positive x-axis.

Here are screen shots when axes are tilted and rotated:

19

For the next few figures, the coordinates HYPERGROUP uses are the JMP 3-D scatter plotter to plot
vertices. The communities HYPERGROUP determines are used by the scatter plotter to set the colors of
the vertices.

Another example, a 4x4x4 mesh: There are 64 strong regions, each having 50 vertices connected by
1000 edges. There are 144 sets of weak edges, each having 5 edges.

20

The structure is that of a tree with vertices having three descendants. Here are screen shots of it in 3-D:

In previous
sections, this
graph was
used. It has
23 thousand
vertices and
about one-
quarter million
edges. There
are 460
strong
subgraphs
that on
average have
50 vertices
and 533
edges. These
strong
subgraphs are
connected by
459 sets of
weak edges
that have on
average 10
edges.

21

22

SEEING EDGES IN 3-D GRAPHS

A JMP script must be written (contact me if you want it) so that graph edges can be seen. Here are
screen shots of a small 3-D graph with all edges shown. Note that strong edges are colored the same as
the vertices they connect. Weak edges are black.

It’s a pity this doc is not like pictures in books and newspapers, and portraits on walls in Harry Potter
movies that move, because then you’d see the screenshots tilt and rotate, and you’d clearly see the 3-D
graph with squadrons of vertices flying together in formation and performing amazing aerobatics, as if on
broomsticks playing Quidditch!

You can control
how the layout is
determined so
that strong
subgraphs are
more compact,
or less compact,
trading off space
between strong
subgraphs.

Here’s the same
graph with layout
tuning
parameters that
have been
tweaked:

23

Even for graphs that are quite small (and just as it is the case with 2-D), larger graphs become indistinct
when too many edges are shown. It’s often better to show all vertices, but only weak edges:

24

If this is still too cluttered, HYPERGROUP can, as an option, create structural graphs based on partition,
community, or both. One vertex represents an entire partition or community, and an edge represents all
weak edges between two of them. Coordinates are also determined in 3-D.

25

A CASE STUDY USING FACEBOOK DATA

DATA

In this session, we are going to present a case study using data from Facebook to show how to apply
HYPERGROUP to real data. Bear in mind that the HYPERGROUP action can do much more than what is
demonstrated in the case study. HYPERGROUP can be used in many applications other than social
networking.

The data set is Facebook “friends” data from Stanford Network Analysis Project.
(http://snap.stanford.edu/data/egonets-Facebook.html). All of the user information is anonymized. There
are 4039 nodes in the data set, of which each node is a Facebook account. They are indexed from 0 to
4038. There are 88,234 edges, which means if two Facebook accounts “friend” each other, there is an
edge between them. So obviously, it is very dense network data, which is not surprising considering how
people use Facebook (often, a user has a large circle of friends). There are only two columns in the data
set, _from_ and _to_, which are the index of the source account of the edge and the index of the target
account of the edge. For example, if a row value of _from_ is 178, and value of _to_ is 303, then that
means there is an edge between the account who indexed 178 and 303. In other words, account index
178 and user index 303 are “friends”.

DETAILS

With this “friendship” network data, we are going to show how to do the following tasks in just one
HYPERGROUP statement.

 Determine the layout of the social network for visualization.

 Conduct graph partitioning that partitions the data into several subgraphs so that the users in each
subgraph are strongly connected, though they might not directly “friend” each other. The subgraph
number is indexed as ‘_color_’ in the result table.

 Conduct community detection. It is similar to graph partitioning in the above point, but uses a
completely different algorithm. The community is indexed as ‘_community_’ in the result table.

 Measure the centralities of the user and identify the most influential users.

Assuming you have already started a LASR server and loaded the data into it, you can use the following
PROC IMSTAT code to run HYPERGROUP in SAS® In-Memory Statistics.

proc imstat; /* 1 */

table mylasr.facebook_edges; /* 2 */

 hypergroup (_FROM_ _TO_) / structural=both centrality /* 3 */

 layout=walshaw niters=100 scalecoords nopendants /* 4 */

 width=101 length=99 margin=2 /* 5 */

 graphpartition highdegree=1 maxnodes=150 separator=edges /* 6 */

 commiters=25 commalg=LLsemisynchronous /* 7 */

;

run;

table mylasr.&_temphypgrp_; /* 8 */

fetch / orderby=(_Betweenness_) descending=_Betweenness_; /* 9 */

distinct _HypGrp_ _Color_ _Community_; /* 10 */

 promote temphypgrp; /* 11 */

run;

quit;

In line [1], the IMSTAT procedure is invoked. It is an interactive procedure that keeps running until you
quit it by issuing the QUIT statement or starting other procedures or DATA step sessions. After you
terminate PROC IMSTAT, the data is not removed from the LASR server memory. You can start a new
IMSTAT procedure to continue your analytics without reloading data. However, temporary tables will be
removed when the IMSTAT procedure ends.

http://snap.stanford.edu/data/egonets-Facebook.html

26

In line [2], the TABLE statement indicates to the SAS LASR Analytic Server which LASR table you want
to work on. Before the next TABLE statement is claimed, all actions will run on this table. Therefore, you
can run several actions on the same LASR table, without specifying the LASR table again and again.

In line [3], the HYPERGROUP statement uses two input variables in the parentheses, _from_ and _to_.
The STRUCTURAL option specifies which structural analysis you want to conduct, graph partition, or
community, or both, or even none. In this case, both graph partition and community detection are
conducted. The CENTRALITY option tells HYPERGROUP that you want to calculate centrality measures
of vertices.

In line [4], the options determine the layout algorithms and parameters of the algorithm.

In line [5], the options determine the width, length, and margin of the layout.

In line [6], the commonly used parameters of the graph partition algorithm are specified.

In line [7], the algorithm and the number of the iteration of community detection are specified.

Please note that all the options after the slash ‘/’ in a HYPERGROUP statement are irrelevant to the order
they are specified.

In line [8], the TABLE statement tells SAS LASR Analytic Server that we want to work on the temporary
table _temphypgrp_ produced by HYPERGROUP.

In line [9], the top 20 vertices with the largest values of betweenness centrality measure are printed in
descending order.

In line [10], distinct counts of _HypGrp_, _Color_, and _Community_ are calculated.

In line [11], the temporary table is promoted as a ‘permanent’ LASR table in memory.

OUTPUT TABLES

The following table shows the first 20 rows in the _TEMPHYPRP_ temporary table. The vertices are
ordered by betweenness centrality so that these are the top 20 most influential Facebook accounts by
betweenness centrality. You can also find hypergroup numbers in column _HypGrp_, X and Y
coordinates in column _XCoord_ and _YCoord_, subgraph number in _Color_, community number in
Community, and the centrality measures.

27

Let us take a closer look at the result by calculating the distinct counts of _HypGrp_, _Color_, and
Community columns. The following table shows there is only one hypergroup, which means all of the
Facebook accounts are somewhat connected. In other words, any two accounts are linked together
through some path or paths. Within the hypergroup, there are 219 subgroups and 49 communities.

PLOTS

There are many ways to render results of HYPERGROUP. They can be rendered in the following:

 SAS® Visual Analytics.

 SAS/GRAPH NV Workshop.

 Some SAS procedures such as SGPLOT, G3D, SAS JMP and so on.

 Any other tools that can render coordinates, colors, or edges.

The following two plots are rendered by scatter plot nodes in SAS Visual Analytics. The vertices are
nicely distributed across the diagram, with colors specified by _color_, which is subgraph number, and
community, respectively.

Graph Partition

28

Community Detection

The following two plots are rendered by scatter plot nodes in SAS/GRAPH NV Workshop. Because this
software product is dedicated to displaying networks, it can render edges, which scatter plotting
procedures cannot, except that JMP’s scatter plot can be called by a JMP script to superimpose edges.
Hence, it would be easy to visualize the accounts that play as critical roles.

For example, some vertices have many connections within their subgraph and community. Some vertices
not only have many connections, but also they are very critical in the way that many paths go through
them so that they link two big clusters of vertices together. In the example, colors of edges are
determined by color of source vertices. It is very obvious from the following two results that the graph
partition algorithm partitions the graph into many more subgraphs than the community detection
algorithm.

29

Graph Partition

Community Detection

30

The following plot is rendered by the G3D procedure where each color represents a community. In a
three-dimensional plot, the vertices can spread out to reduce overlap of communities in the visualization
so that the visualization is much clearer.

CONCLUSION

The algorithms used to determine hypergroups are based on graph theory. HYPERGROUP functionality
generates one or more graphs based on your data, and produces results so that the graphs can be
displayed and useful information can be derived. Data structure can be unearthed. You can control what
data is supplied to analytics.

HYPERGROUP determines graph coordinates, colors, communities, structural graphs, centrality
measures, whether for two-dimensional or three-dimensional graphs.

HYPERGROUP functionality for SAS LASR Analytic Server uses this powerful new tool to discover how
data can be classified or assigned, so that records have columns that have disjoint sets of values. In
cases when the sets of values are not completely disjoint, HYPERGROUP can identify data that is
strongly connected, and identify “neighboring” data is weakly connected, or data that is farther away than
that.

Each record is assigned a hypergroup number, and within hypergroups a color, community, or both. The
GROUPBY facility, WHERE clauses, or both can act on hypergroup number, color, or community in order
to conduct analytics using data that is “related” or more “relevant”. Your analysis is better, results can be
obtained faster, and you really do have SAS®... THE POWER TO KNOW®.

31

REFERENCES

Leskovec, Jure, and Andrej Krevl. June 2014. "SNAP Datasets: Stanford Large Network Dataset
Collection." Available at http://snap.stanford.edu/data.

Leskovec, Jure, and Julian J. McAuley. 2012. "Learning to Discover Social Circles in Ego
Networks." Advances in Neural Information Processing Systems. Available at
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012.

ACKNOWLEDGMENTS

We would like to express our gratitude to Juthika Khargharia for providing the PROC G3D code to render
the three-dimensional plot of HYPERGROUP results.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Trevor Kearney
100 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.
Trevor.Kearney@sas.com
http://www.sas.com

Yue Qi
100 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.
Yue.Qi@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://snap.stanford.edu/data
http://www.sas.com/

