SAS and Hadoop – 4th S.O.T.U

Paul Kent, SAS
SAS and Hadoop :: the BIG Picture

SAS and Hadoop are made for each other

This talk explains some of the reasons why.

Examples are drawn from the customer community to illustrate how SAS is a good addition to your Hadoop Cluster.
 Adoption Is The Only Option
Hadoop Is Changing Our World And Changing Yours
April 15, 2015

Mike Gualtieri, Principal Analyst
Twitter: @mgualtieri
British Airways’ BI lead: ‘If you don’t adopt Hadoop at least in part, you won’t exist in a few years’ time’

British Airways cuts memory costs and sees ROI within one year after deploying Hadoop

By Margi Murphy | Computerworld UK | Published 15:55, 15 April 15

Enterprise business intelligence departments will ‘not exist in a few years’ time’ if they do not adopt Hadoop in at least one instance, British Airways’ data exploitation manager warned during the Hadoop Summit in Brussels today.
Are YOU Hadooping Yet?

![Bar Chart]

- Knowledge gathering: Feb-15 (45%), Nov-14 (30%)
- Developing strategy: Feb-15 (15%), Nov-14 (20%)
- Piloting & Experimenting: Feb-15 (25%), Nov-14 (25%)
- Deployed: Feb-15 (10%), Nov-14 (10%)

n=465 (Feb-15), 504 (Nov-14)

© 2014 Gartner, Inc. and/or its affiliates. All rights reserved.
The Stages of the Relationship

1. Connecting (Getting to know each other)
 - What exactly is Hadoop?
 - Base SAS connections to Hadoop

2. Dating
 - SAS Access to Hadoop
 - Pig Storage extensions from SAS
 - SAS SerDes for Hive

3. Engaged
 - Scoring Accelerator
 - SPDS Server for Hadoop
 - Grid Manager for Hadoop

4. Committed
 - Data Loader for Hadoop
 - SAS High Performance Procedures and the LASR Analytic Server
1. Introductions
Apache Hadoop - Background

The project includes these subprojects:

- Hadoop Common: The common utilities that support the other Hadoop subprojects.
- Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application data.
- Hadoop MapReduce: A software framework for distributed processing of large data sets on compute clusters.
Hadoop – Simplified View

- MPP (Massively Parallel) hardware running database-like software
- A single logical table is stored in parts across multiple worker nodes
- “work” operates in parallel on the different parts of the table
Idea #1 - HDFS. Never forgets!

<table>
<thead>
<tr>
<th>Head Node</th>
<th>Data 1</th>
<th>Data 2</th>
<th>Data 3</th>
<th>Data 4...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYFILE.TXT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..block1 -→</td>
<td>block1copy1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..block2 -→</td>
<td></td>
<td>block2copy2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>..block3 -→</td>
<td></td>
<td></td>
<td>block3copy3</td>
<td></td>
</tr>
</tbody>
</table>
Idea #1 - HDFS. Never forgets!

<table>
<thead>
<tr>
<th>Head Node</th>
<th>Data 1</th>
<th>Data 2</th>
<th>Data 3</th>
<th>Data 4...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYFILE.TXT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..block1</td>
<td>block1copy1</td>
<td></td>
<td>block1copy2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>block2copy2</td>
<td></td>
<td>block2copy2</td>
</tr>
<tr>
<td></td>
<td>block3copy2</td>
<td></td>
<td>block3copy3</td>
<td></td>
</tr>
</tbody>
</table>
Idea #1 - HDFS. Never forgets!

<table>
<thead>
<tr>
<th>Head Node</th>
<th>Data 1</th>
<th>Data 2</th>
<th>Data 3</th>
<th>Data 4…</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYFILE.TXT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..block1 -></td>
<td>block1copy1</td>
<td></td>
<td>block1copy2</td>
<td></td>
</tr>
<tr>
<td>..block2 -></td>
<td></td>
<td>block2copy2</td>
<td></td>
<td>block2copy2</td>
</tr>
<tr>
<td>..block3 -></td>
<td>block3copy2</td>
<td></td>
<td>block3copy3</td>
<td></td>
</tr>
</tbody>
</table>
Idea #2 - MapReduce

- We Want the Minimum Age in the Room
- Each Row in the audience is a data node
- I’ll be the coordinator
 - From outside to center, accumulate MIN
 - Sweep from back to front. Youngest Advances
Idea #3 YARN: Share Hadoop

Store ALL DATA in one place…

Interact with that data in MULTIPLE WAYS

with Predictable Performance and Quality of Service

Applications Run Natively IN Hadoop

- BATCH (MapReduce)
- INTERACTIVE (Tez)
- ONLINE (HBase)
- STREAMING (Storm, S4, …)
- GRAPH (Giraph)
- IN-MEMORY (Spark)

YARN

HDFS2 (Redundant, Reliable Storage)
Connecting
FILENAME paul HADOOP

"/users/kent/mybigfile.txt"

CONFIG="/etc/hadoop.cfg" USER="kent" PASS="sekrit";

DATA MYFILE;

INFILE paul;

INPUT name $ age sex $ height weight;

RUN;
/etc/hadoop.cfg

<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://exa.unx.sas.com:8020</value>
 </property>
 <property>
 <name>mapred.job.tracker</name>
 <value>exa.unx.sas.com:8021</value>
 </property>
</configuration>
Different Hadoop Versions?

options set=SAS_HADOOP_JAR_PATH="/u/kent/jars/cdh4/";

- OpenSource Apache 2.0
- Cloudera CDH4 and CDH5
- Hortonworks 1.3.2 and 2.x (including DDN and Teradata OEM editions)
- Pivotal HD (was Greenplum)
- MAPR
- IBM BigInsights
PROC HADOOP Syntax

PROC HADOOP CFG=CFG … [VERBOSE];
HDFS <hdfs commands>;
MAPREDUCE <mapreduce options>;
PIG <pig options>;
RUN;
HDFS statement

hdfs mkdir='/tmp/rick/mydir';

hdfs copyfromlocal='myfile.txt' out='/tmp/rick/mydir/myfile.txt';

hdfs copytocal='tmp/rick/mydir/myfile.txt' out='myfile2.txt';

hdfs delete='/tmp/rick/mydir/myfile.txt';
HDFS Statement: new in 9.4m3

hdfs ls=/tmp/rick;

hdfs ls=/tmp/rick' out=lsfile;

hdfs cat=/tmp/rick/testfile.txt';

hdfs cat=/tmp/rick/* .txt out=catfile;
Proc SQOOP

 Allows users to submit commands to Apache Sqoop from within a SAS session
 Moves data to and from the database
 Imports data into either HDFS or Hive tables
 Uses Apache Oozie to execute commands using a RESTful API, so no jars are required on the user’s client machine
2. Dating

SAS Learns Hadoop Tables

Hadoop Learns SAS Tables
SAS / ACCESS TO HADOOP

1

SAS/Access to Hadoop or Impala - Push *some* of SAS’ processing to Hadoop
LIBNAME xxx HADOOP

LIBNAME ollly HADOOP
SERVER=olly.mycompany.com
USER="kent" PASS="sekrit";

PROC DATASETS LIB=OLLY;
RUN;
Cool! I don’t have to repeat the INPUT statement in every program that I want to access my files!!

Thanks to Apache HIVE

- supplies the metadata that projects a relational view of several underlying file types.
- Provides SQL with relational primitives like JOIN and GROUP BY
Not only HIVE. Cloudera Impala
Not only HIVE. Pivotal Hawk
LIBNANE olly HADOOP
SERVER=hadoop.company.com
USER="paul" PASS="sekrit"

PROC MEANS DATA=olly.table;
RUN;

Select * From olly

Select * From olly_slice

Hadoop Cluster

Controller
Select * From olly

Workers
Select * From olly_slice

Potentially Big Data
LIBNANE oly HADOOP
SERVER=hadoop.company.com
USER=“paul” PASS=“sekrit”

PROC MEANS DATA=olly.table;
RUN;

Select sum(x), min(x) From oly

Hadoop LIBNAME Statement – with SQL Pasthru

Hadoop Cluster

Controller

Workers

Select sum(x), min(x) From oly_slice

Aggregate Data

ONLY

Hadoop Access Method
HADOOP LIBNAME Statement

- PROC SQL explicit SQL is supported

- This sends the SQL exactly as you typed it down into the HIVE processor

- One way to move the work (joins, group by) down onto the cluster
PROC SQL implicit SQL is supported

Base Procedure pushdown

More ways to move the work down onto the cluster
More Implicit Passthru

options sqlgeneration=dbms;

proc rank data=x.cake out=order descending ties=low;
 var present taste;
 ranks PresentRank TasteRank;
run;
IMPALA_25: Prepared: on connection 2

```sql
SELECT `table0`.`name`, `table0`.`present`, `table0`.`taste`, `table1`.`rankalias0` AS `PresentRank`, `table2`.`rankalias1` AS `TasteRank` FROM ( SELECT `name` AS `name`, `present` AS `present`, `taste` AS `taste` FROM `cake` ) AS `table0` LEFT JOIN ( WITH subquery0 AS (SELECT `present`, `tempcol0` AS `rankalias0` FROM ( SELECT `present`, MIN( `tempcol1` ) OVER ( PARTITION BY `present` ) AS `tempcol0` FROM ( SELECT `present`, CAST( ROW_NUMBER() OVER ( ORDER BY `present` DESC ) AS DOUBLE ) AS `tempcol1` FROM ( SELECT `name` AS `name`, `present` AS `present`, `taste` AS `taste` FROM `cake` ) AS `subquery2` WHERE ( (`present` IS NOT NULL ) ) ) AS `subquery1` ) AS `subquery0` ) SELECT DISTINCT `present`, `rankalias0` FROM subquery0 ) AS `table1` ON ( ( `table0`.`present` = `table1`.`present` ) ) LEFT JOIN ( WITH subquery3 AS (SELECT `taste`, `tempcol2` AS `rankalias1` FROM ( SELECT `taste`, MIN( `tempcol3` ) OVER ( PARTITION BY `taste` ) AS `tempcol2` FROM ( SELECT `taste`, CAST( ROW_NUMBER() OVER ( ORDER BY `taste` DESC ) AS DOUBLE ) AS `tempcol3` FROM ( SELECT `name` AS `name`, `present` AS `present`, `taste` AS `taste` FROM `cake` ) AS `subquery5` WHERE ( (`taste` IS NOT NULL ) ) ) AS `subquery4` ) AS `subquery3` ) SELECT DISTINCT `taste`, `rankalias1` FROM subquery3 ) AS `table2` ON ( ( `table0`.`taste` = `table2`.`taste` ) )
```

Hadoop (PIG) Learns SAS Tables

register pigudf.jar, sas.lasr.hadoop.jar, sas.lasr.jar;

/* Load the data from a CSV in HDFS */
A = load '/user/kent/class.csv'
 using PigStorage(',,')
 as (name:chararray, sex:chararray,
 age:int, height:double, weight:double);
(continued…)
Hadoop (PIG) Learns SAS Tables

Store A into '/user/kent/class'

using com.sas.pigudf.sashdat.pig.SASHdatStoreFunc('bigcdh01.unx.sas.com', '/user/kent/class_bigcdh01.xml');
SPD Engine with Hadoop

- Support for running on MapR 4.0.2
- Support for Code Accelerator
- Enhanced WHERE pushdown: AND, OR, NOT, parenthesis, range operators and in-lists
- Parallel write support can improve write performance up to 40%
- Optionally uses Apache Curator/Zookeeper as a distributed lock server. No more physical lock files.

libname spdat spde '/user/dodeca' hdfshost=default;
Hive SerDe for SPDE data

- Provides direct read access to SPDE data from the Hadoop ecosystem
- Access SPDE data from Hive, MapReduce and Pig
- Java tool provided to populate the Hive metastore with SPDE metadata
SAS Hadoop Engine – Anyfile Reader

- Consistent with Hadoop and its laissez-faire approach to schema “on Need”
- PROC HDMD describes as much of the file as you want to see as a table
- Libname engine matches metadata (HDMD) with datafile and returns “rowbuffers” to calling SAS procedure
- Imagine exporting INFILE/INPUT statement to Hadoop to be run there (at hadoop scale)
/* Create HDMD file */
proc hdmd name=gridlib.people
 format=delimited
 sep=tab
 file_type=custom_sequence
 input_format='com.sas.hadoop.ep.inputformat.sequence.PeopleCustomSequenceInputFormat'
 data_file='people.seq';

COLUMN name varchar(20) ctype=char;
COLUMN sex varchar(1) ctype=char;
COLUMN age int ctype=int32;
COLUMN height double ctype=double;
COLUMN weight double ctype=double;
run;
3. Engaged

SAS Embedded Process
Push SAS ETL/ELT processing to Hadoop with MapReduce

SAS Data Loader for Hadoop:
- SAS Code Accelerator for Hadoop
- SAS Data Quality Accelerator for Hadoop
- SAS Scoring Accelerator for Hadoop
DS2 Merge on Hadoop

- DS2 Code Accelerator generates Hive SQL to emulate classic DATA Step merge
- Merged data flows into the DS2 PDV in BY-groups ready for post-processing
 - must use a BY statement for predictable results in parallel execution
 - any “colliding” columns must have compatible data types.
- IN= is supported
- FIRST. / LAST. supported

Ex: merge t1(in=int1) t2(in=int2) t3(in=int3); by x;
Hadoop Code Accelerator

- Supports new file types:
 - SPDE
 - Via HCATALOG: ORC, Parquet, Avro
- Supports Hive partitioned tables
- Supports SQL in the DS2 SET statement
 - Example: set { select * from t1 inner join t2 on t1.id = t2.id };
 - SQL is passed to Hive to create the input for the DS2 EP
- Supports Multiple Tables in the SET statement.
 - Emulated in Hive using a SQL UNION ALL
- Supports the new MERGE statement
 - Emulated in Hive SQL
New Hadoop Embedded Process

- Fully integrated with YARN Resource Manager
- Runs in the same process as the Map-Reduce JVM
- EP Proxy Java and TKTS C share native memory allocated by TK
- Native buffers are allocated outside of JVM heap space
- TK Journal writes directly to MR job log
- Supports the new Analytic Store scoring model from Factory Miner
- Supports reading from HCatalog SerDes for the Scoring Accelerator and HPA/LASR parallel load.
New Hadoop EP Install Process

- Does *not* require installing Access to Hadoop to get the EP zip.
- Does *not* require a Linux user to run
- Does *not* create Linux service under initd.d
- Does *not* start the spawner deamon process
- Does *not* need to be copied to Hadoop lib folder or Hadoop native lib folder
- Does *not* require root access
- Does *not* require two way SSH keys setup
Grid Manager for hadoop

TKEGRID INTEGRATION WITH YARN

- Represents YARN components
- Represents SAS authored components

Grid Node

YARN containers

Node Manager
SAS session

YARN Grid Provider Module

YARN Resource Manager

TKEGrid

TKEGrid AppMaster
4. Committed

Data Loader for Hadoop

SAS HPA and VA on Hadoop
Introducing

SAS DATA LOADER FOR HADOOP

Self-service big data preparation for business users

Certified by Hortonworks and Cloudera
Capabilities - SAS Data Loader for Hadoop

1. ACQUIRE DATA
 - Copy Data to Hadoop
 - Profile Data
 - Identification Analysis
 - Query
 Access data, move it into Hadoop, and assess the data structure and content

2. TRANSFORM DATA
 - Query
 - Select Columns
 - Apply Filters
 - Map Columns
 - Sort / Order
 - Calculate Columns
 - Transpose data
 - Aggregate
 - Transform data
 Select data of interest, manipulate it, and structure it into the data format desired

3. CLEANSE DATA
 - Validate
 - Parse
 - Standardize
 Put data into a consistent format

4. INTEGRATE DATA
 - Join
 - Create Match codes
 - Sort & De-duplicate
 - Aggregate
 - Run a SAS program
 Combine datasets, including data that has no common key, remove duplicate data, and create new data points thru aggregation

5. DELIVER DATA
 - Load SAS LASR
 - Create tables
 - Create views
 - Copy from Hadoop
 Load datasets into SAS LASR in-memory analytic server, Create new Hadoop tables, and deliver data to other databases and apps
SAS / High Performance Analytics

SAS High-Performance Statistics
SAS High-Performance Data Mining
SAS High-Performance Text Mining
SAS High-Performance Econometrics
SAS High-Performance Forecasting
SAS High-Performance Optimization
SAS / High Performance Analytics

Prepare
- HPDS2
- HPDMDB
- HPSAMPLE

Explore / Transform
- HPSUMMARY
- HPCORR
- HPREDUCE
- HPIMPUTE
- HPBIN

Model
- HPLOGISTIC
- HPREG
- HPNEURAL
- HPNLIN
- HPCOUNTREG
- HPMIXED
- HPSEVERITY
- HPFOREST
- HPSVM
- HPDECIDE
- HPQLIM
- HPLSO
- HPSPLIT
- HPTMINE
- HPTMSCORE
SAS / High Performance Analytics
IN-MEMORY (LASR BASED) SOLUTIONS ON HADOOP

SAS ANALYTIC HADOOP ENVIRONMENT

In-Memory Analytics – Process in Memory, use Hadoop for Storage persistence and commodity computing
- Interactive exploration, dashboards and reporting
- Auto-charting automatically picks the best graph
- Forecasting, scenario analysis, Decision Trees and other analytic visualizations
- Text analysis and content categorization
- Feature-rich mobile apps for iPad® and Android
Interactive, visual application for statistical modeling and classification

Multiple methods:
- logistic, Regression, GLM, Trees, Forest, Clustering and more…

Model comparison and assessment

Group BY Processing
SAS In-Memory Statistics (IMSTAT) for Hadoop

- Data Prep in Hadoop
 - Parallel Data Step
 - Read / Write Text & HDFS Files
 - Text Processing in Hadoop
 - Structure and Prepare Data For Analysis
- Play nicely in the Hadoop Ecosystem
- Play nicely with SAS Users
 - Libname, Procs & SAS Code

- In-Memory Analytics
 - Interactive “Modern” Analytic Methods
 - Descriptive Statistics
 - Statistics
 - Forecasting
 - Classification
 - Text Mining
 - Optimization
 - Collaborative Filtering
- Group By Processing
INTERACTIVE ANALYSIS AT SCALE ...

LASR Analytic Server on Hadoop

SAS Server
~ BASE, ODS, STAT, Access, LASR (IMSTAT, RECOMMEND Etc..)

SAS Studio, HTML 5 new Modern Coding Environment
SAS In-Memory Statistics for HAdoop

```sas
proc imstat;
   /*-- list tables in the server --------------------------*/
   tableinfo / save=tmpcontent;
   store tmpcontent(2,3) = numObs;
run;
   /*-- print the last ten records from carinfo ---*/
   table lasr.carinfo;
   fetch / from=%eval(&numObs.-9) to=&numObs;
run;
   /*-- working on the fact table (cardata) -------*/
   /*-- data exploration using different actions --*/
   table lasr.cardata;
   distributioninfo;
   distinct _all_;
   boxplot mmrcurrentauctionaverageprice
      mmrcurrentauctioncleanprice
      mmrcurrentretailaverageprice
      mmrcurrentretailcleanprice / groupby=auction;
   frequency isbadbuy;
   crosstab isbadbuy*vehyear / groupby=auction;
run;
   table lasr.cardata(tempnames=(avgOdo));
   summary avgOdo / tempnames=avgOdo
      tempexpress="avgOdo = vehodo /
      (year(purchdate)-vehyear);";

   proc recommend port=&lasrport;
   add / item=movieid
      user=userid
      rating=rating;
   addtable mylasr.ml100k / type=rating
      vars=(movieid userid rating);
   method svd / factors=10 maxiter=20
      maxfeval=100 tech=lbfgs seed=1234
      function=L2 lamda=0.1 label="svdlbfgs"
      details;
   method knn / similarity=pc positive k=20
      label="knn1";
   method ensemble / details label="em1"
      maxiter=10 seed=4321;
run;
```
TKGRID INTEGRATION WITH YARN

- **Client**
- **General/Root**
- **SSH**
- **tkmpirsh.sh**

TKGrid

TKGrid JobLauncher

YARN Resource Manager

TKGrid AppMaster

Captain/Worker

Node Manager

AppSlave

YARN containers

- Represents YARN components
- Represents SAS authored components

SSH

TKGRID INTEGRATION WITH YARN

TKGrid JobLauncher

YARN Resource Manager

TKGrid AppMaster

SSH

AppSlave

Node Manager

Captain/Worker

YARN containers

- Represents YARN components
- Represents SAS authored components
Version Soup
Baseline support matrix @ 9.4M2

<table>
<thead>
<tr>
<th>9.4M2</th>
<th>Hive</th>
<th>Impala</th>
<th>Score Accl</th>
<th>Code Accl</th>
<th>DQ Accl</th>
<th>Data Ldr</th>
<th>SPDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloudera 4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloudera 5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HortonWorks 1.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HortonWorks 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pivotal HD 1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pivotal HD 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM BigInsights 2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MapR V3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Supported at 9.4M2
- Not Supported
- * Minus Yarn Integration
- **Net New Product**
Baseline support matrix – on track for 94m3

<table>
<thead>
<tr>
<th>9.4M3</th>
<th>Hive</th>
<th>Impala</th>
<th>Score Accl</th>
<th>Code Accl</th>
<th>DQ Accl</th>
<th>Data Ldr</th>
<th>SPDE</th>
<th>New @M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloudera 4.x</td>
<td>Supported</td>
<td>On Track for 9.4M3</td>
<td>Research Needed for M3</td>
<td>** IBM Issues</td>
<td>Net New Product</td>
<td>** MapR support for Impala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloudera 5.x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HortonWorks 1.x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HortonWorks 2.x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pivotal HD 2.x</td>
<td>M3</td>
<td></td>
<td>M3</td>
<td>M3</td>
<td>*</td>
<td>M3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>IBM BigInsights 3.x</td>
<td></td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>MapR V4.x</td>
<td>LA - M3</td>
<td>M3</td>
<td>M3</td>
<td>M3</td>
<td>M3</td>
<td>M3</td>
<td>M3</td>
<td>M3</td>
</tr>
</tbody>
</table>

- * PivotalHD is behind on Yarn, MR2 and Hive integration necessary for support – currently it is a stretch to make M3 with Data Loader.
- ** Limitations with IBM BigInsights 3.x - doesn't support MR2, Yarn. Parallel feeds supported.
- ** Note: SAS/Access to Impala is Limited Availability
In-memory support matrix

<table>
<thead>
<tr>
<th></th>
<th>LASR Analytic Server 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPA</td>
</tr>
<tr>
<td>9.4M2</td>
<td></td>
</tr>
<tr>
<td>Cloudera 4.5</td>
<td></td>
</tr>
<tr>
<td>Cloudera 5.0</td>
<td></td>
</tr>
<tr>
<td>HortonWorks 1.3.2</td>
<td></td>
</tr>
<tr>
<td>HortonWorks 2.0</td>
<td></td>
</tr>
<tr>
<td>Pivotal HD 1.1</td>
<td></td>
</tr>
<tr>
<td>Pivotal HD 2.0</td>
<td></td>
</tr>
<tr>
<td>IBM BigInsights 2.1</td>
<td>*</td>
</tr>
<tr>
<td>MapR V3</td>
<td></td>
</tr>
</tbody>
</table>

- **Supported at 9.4M2**
- **Not Supported**
- *** Minus Yarn Integration**
- **Net New Product**

![SAS Global Forum Logo](image-url)
In-memory support matrix on track for 94m3

<table>
<thead>
<tr>
<th></th>
<th>LASR Analytic Server 2.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4M3</td>
<td>HPA VA IMSTAT VS VSD</td>
</tr>
<tr>
<td>Cloudera 4.x</td>
<td></td>
</tr>
<tr>
<td>Cloudera 5.x</td>
<td></td>
</tr>
<tr>
<td>HortonWorks 1.x</td>
<td></td>
</tr>
<tr>
<td>HortonWorks 2.x</td>
<td></td>
</tr>
<tr>
<td>Pivotal HD 2.x</td>
<td>M3</td>
</tr>
<tr>
<td>IBM BigInsights 3.x</td>
<td>M3 ** ** ** **</td>
</tr>
<tr>
<td>MapR V4.x</td>
<td>M3 M3 M3 M3 M3 M3</td>
</tr>
</tbody>
</table>

- **Supported**
- **On Track for 9.4M3**
- **No Plans**
- **Research Needed for M3**
- **IBM Issues**
- **Net New Product**
- **MapR support for Impala**

Limitations with IBM BigInsights 3.x - doesn’t support MR2. Parallel feeds supported.
GIVE IT A TRY YOURSELF! DATA LOADER FOR HADOOP TRIAL

- SAS Data Loader for Hadoop & 90 Day Trial - Launched February ’15
 - Transpose, Filter, Query, Aggregate, Sort, Join
 - Sqoop Integration
 - In-Hadoop Data Quality
 - In-Hadoop Data Profiling

- What you’ll need to get started
 - VMware Player
 - Cloudera QuickStart VM CDH 5.3 ;
 - Hortonworks HDP Sandbox 2.2
 - Data Loader Vapp 2.2

- What’s available to help
 - Online help + phone support
 - Online doc
 - Dedicated group
 - https://communities.sas.com/groups/sas-data-loader
 - Tons of How-do-style quick videos
Thank You!

4 short years and…

- Hadoop is on the opening session, 2 Hadoop CEO’s share the panel discussion at Exec Track
- 50% of the people attending an executive conference talk have an active Hadoop project
- SAS has built a family of applications that take full advantage of Hadoop as an analytics platform

Paul.Kent@SAS.com @hornpolish paulmkent
SPD Server with Hadoop

- SPDS 5.2 server on Linux
- Support for running on Cloudera 5.2
- Only server and libname parameter files need to change
- Read/write/update support
- Kerberos support
- Limited WHERE pushdown
- Parallel read support without a WHERE clause