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ABSTRACT

Proving difference is the point of most statistical testing. In contrast, the point of equivalence and noninferiority tests
is to prove that results are substantially the same, or at least not appreciably worse. An equivalence test can show
that a new treatment, one that is less expensive or causes fewer side effects, can replace a standard treatment. A
noninferiority test can show that a faster manufacturing process creates no more product defects or industrial waste
than the standard process. This paper reviews familiar and new methods for planning and analyzing equivalence and
noninferiority studies in the POWER, TTEST, and FREQ procedures in SAS/STAT® software.

Techniques that are discussed range from Schuirmann’s classic method of two one-sided tests (TOST) for demonstrat-
ing similar normal or lognormal means in bioequivalence studies, to Farrington and Manning’s noninferiority score test
for showing that an incidence rate (such as a rate of mortality, side effects, or product defects) is no worse. Real-world
examples from clinical trials, marketing, and industrial process design are included.

PROLOGUE

You are a consulting statistician at a pharmaceutical company, charged with designing a study of your company’s new
arthritis drug, SASGoBowlFor’Em (abbreviated as “Bowl”). Your boss realizes that Bowl is unlikely to demonstrate
better efficacy than the gold standard, Armanaleg, but its lower cost will make it an attractive alternative for consumers
as long as you can show that the efficacy is about the same.

Your boss communicates the following study plans to you:

� The outcome to be measured is a “relief score,” which ranges from 0 to 20 and is assumed to be approximately
normally distributed.

� Subjects are to be allocated to Armanaleg and Bowl at a ratio of 2 to 3, respectively.

� The relief score is to be assessed after four weeks on the treatment.

� Bowl is expected to be slightly less effective than Armanaleg, with a mean relief score of 9.5 compared to 10 for
Armanaleg.

� The minimally acceptable decrease in relief score is considered to be 2 units, corresponding to a 20% decrease,
assuming a mean relief score of 10 for Armanaleg.

� The standard deviation of the relief score is expected to be approximately 2.25 for each treatment. Common
standard deviation will be assumed in the data analysis.

� The sample size should be sufficient to produce an 85% chance of a significant result—that is, a power of
0.85—at a 0.05 significance level.

You recognize that a typical hypothesis test is inappropriate here because you are trying to demonstrate similarity
rather than difference. A noninferiority test or an equivalence test is the way to go, but which is the better choice?
You realize that because you’re interested in only one direction—Bowl scoring better than some “not substantially
worse” threshold compared to Armanaleg—a noninferiority test will be both more aligned with the study goals and
more powerful.

Because of the normality and equal-variance assumptions, the classic pooled t test is a natural choice for the data
analysis. But it won’t be classic in terms of the hypotheses: you will need to incorporate the aforementioned “not
substantially worse” threshold, also called the noninferiority margin. This margin is 2 units, the minimally acceptable
decrease in relief score, because your boss wants to be able to announce with confidence at the conclusion of the
study that the efficacy of Bowl is within 20% (2 units, given the mean assumptions) of Armanaleg’s. In particular, he
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wants an 85% chance (the power) of being able to make this announcement with 95% confidence (one minus the
significance level)—in other words, asserting a mere 5% chance that he’s wrong.

So your hypotheses are

H0W�B � �A � �2

H1W�B � �A > �2

where �B and �A are the mean relief scores for Bowl and Armanaleg, respectively.

You use the following statements to determine the required sample size:

proc power;
twosamplemeans

sides = u
groupweights = 2 | 3
groupmeans = 10 | 9.5
nulldiff = -2
stddev = 2.25
power = 0.85
alpha = 0.05
ntotal = .

;
run;

The TWOSAMPLEMEANS statement in PROC POWER doesn’t have an explicit option to represent the noninferiority
margin, but you can use the NULLDIFF= option. (For more information about using null value options to represent
noninferiority margins, see the section “Data Analysis for Normal and Lognormal Means” on page 5.)

The results in Figure 1 suggest a sample size of 70.

Figure 1 Sample Size Determination for Arthritis Study

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal

Method Exact

Number of Sides U

Null Difference -2

Alpha 0.05

Group 1 Mean 10

Group 2 Mean 9.5

Standard Deviation 2.25

Group 1 Weight 2

Group 2 Weight 3

Nominal Power 0.85

Computed N
Total

Actual
Power

N
Total

0.855 70

Your boss is able to get funding for a study with 70 patients. After the study ends, he hands you the data and asks you
to perform the noninferiority test. You use the following DATA step to create a SAS® data set:
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data ArthritisRelief;
Treatment = "Armanaleg";
do i = 1 to 28; input Relief @@; output; end;
Treatment = "Bowl ";
do i = 1 to 42; input Relief @@; output; end;
drop i;

datalines;
9 14 13 8 10 5 11 9 12 10 9 11 8 11
4 8 11 16 12 10 9 10 13 12 11 13 9 4
7 14 8 4 10 11 7 7 13 8 8 13 10 9

12 9 11 10 12 7 8 5 10 7 13 12 13 11
7 12 10 11 10 8 6 9 11 8 5 11 10 8

;

You use the following statements to perform the noninferiority test:

proc ttest data=ArthritisRelief sides=l h0=2;
class Treatment;
var Relief;

run;

Like the TWOSAMPLEMEANS statement in PROC POWER, the TTEST procedure doesn’t have an explicit option to
represent the noninferiority margin, but you can use the H0= option in the PROC TTEST statement instead.

The results in Figure 2 show a significant result, p = 0.0192, for the pooled t test. This suggests, as you’d hoped, that
the efficacy of Bowl is not appreciably worse than that of Armanaleg—that is, the mean relief score for Bowl is at most
2 units less than that for Armanaleg.

Figure 2 Noninferiority Test for Arthritis Study

The TTEST Procedure

Variable: Relief

The TTEST Procedure

Variable: Relief

Treatment N Mean Std Dev Std Err Minimum Maximum

Armanaleg 28 10.0714 2.7879 0.5269 4.0000 16.0000

Bowl 42 9.4048 2.4501 0.3781 4.0000 14.0000

Diff (1-2) 0.6667 2.5895 0.6318

Treatment Method Mean 95% CL Mean Std Dev
95%

CL Std Dev

Armanaleg 10.0714 8.9904 11.1525 2.7879 2.2042 3.7947

Bowl 9.4048 8.6413 10.1683 2.4501 2.0159 3.1243

Diff (1-2) Pooled 0.6667 -Infty 1.7202 2.5895 2.2180 3.1117

Diff (1-2) Satterthwaite 0.6667 -Infty 1.7524

Method Variances DF t Value Pr < t

Pooled Equal 68 -2.11 0.0192

Satterthwaite Unequal 52.752 -2.06 0.0224

INTRODUCTION

Equivalence and noninferiority tests are useful in many different industries. In drug testing, for example, you can
show that a generic alternative—one that is less expensive or causes fewer side effects than a popular name-brand
drug—is similar in efficacy or mortality to the better-known drug. As a consulting statistician in the Prologue, you
designed and analyzed such a study. In manufacturing, you can show that a faster manufacturing process creates no
more product defects or industrial waste than the standard process.

The usual scenario in hypothesis testing is demonstration of a difference (between two treatments or processes, or
between a treatment or process and a benchmark). For example, if you are estimating a parameter � (such as a
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mean or proportion difference or ratio), the hypotheses for a typical two-sided test are

H0W � D �0

H1W � ¤ �0

where �0 is the null value.

The hypotheses for a typical “upper” one-sided test are

H0W � � �0

H1W � > �0

and for a typical “lower” two-sided test are

H0W � � �0

H1W � < �0

One alternative testing scenario is the equivalence test, which aims to demonstrate similar results (efficacy, mortality
rate, yield, and so on) when an advantage lies elsewhere, such as lower cost, fewer side effects, or a faster process.
For an equivalence test, you specify “equivalence limits” .�L; �U / to characterize a range of values for � that you
consider to be acceptable. In other words, you would consider an observed difference at one of the equivalence limits
to be minimally important.

The hypotheses for an equivalence test have the form

H0W � � �L or � � �U

H1W �L < � < �U

where �L and �U are the equivalence limits. If the equivalence limits are symmetric with respect to a particular value
(for example, 0 for a difference parameter or 1 for a ratio parameter), then you can express the equivalence limits in
terms of a “margin” (ı). If � represents a difference parameter, then the equivalence limits in terms of a margin are
.�ı; ı/. If � represents a ratio parameter, then the equivalence limits in terms of a margin are .1=ı; ı/.

Three main varieties of equivalence are discussed in the application area of bioequivalence: average, population, and
individual. The scope of this paper is limited to average bioequivalence.

Another alternative testing scenario is the noninferiority test, which aims to demonstrate that results are not appreciably
worse. For a noninferiority test, you specify a noninferiority margin (ı) to characterize the largest absolute difference
that you consider to be dismissible. If larger values of � are better, then you construct the hypotheses for a noninferiority
test as

H0W � � �0 � ı

H1W � > �0 � ı

where ı is a positive-valued margin. If smaller values of � are better, then you use the following hypotheses:

H0W � � �0 C ı

H1W � < �0 C ı

There is often confusion about the roles of the null value and noninferiority margin. The null value usually represents
an important threshold, such as a minimally clinically meaningful difference or a cost-benefit breakpoint, the main
focus of the hypothesis test. The noninferiority margin is more of a “fuzz factor,” a bit of wiggle room to allow for a
trivial difference in the wrong direction. However, in some cases the null value is set to zero difference by convention,
and the margin then subsumes the usual role of the null value.

For equivalence analyses, you can construct an “equivalence interval” that contains all possible values of the parameter
of interest that would result in rejecting the null hypothesis in favor of equivalence. Likewise, you can conduct a
noninferiority test by checking whether a one-sided confidence interval for the parameter of interest lies entirely above
the noninferiority limit of �0 � ı (if bigger is better) or below the noninferiority limit of �0 C ı (if smaller is better).

There is also a testing scenario called superiority testing that is similar to noninferiority testing except that the goal is
to demonstrate that results are appreciably better. Superiority tests are not discussed in this paper because their
mechanics are so similar to those of noninferiority tests; the only difference is that you add the margin to the null value
if bigger is better and subtract it if smaller is better.

Figure 3 shows a visual summary of the hypotheses involved in noninferiority, superiority, and equivalence tests.

4



Figure 3 Hypotheses in Noninferiority, Superiority, and Equivalence Tests

POPULAR METHODS

Here are some popular methods of testing equivalence and noninferiority that are discussed in this paper:

� Schuirmann’s two one-sided tests (TOST) method (Schuirmann 1987) for equivalence of normal or lognormal
means based on t tests

� classic one-sided t test with a margin added to the null value, for noninferiority of normal or lognormal means

� Farrington-Manning score tests (Farrington and Manning 1990, Miettinen and Nurminen 1985) for equivalence
or noninferiority of risk difference or relative risk for two independent samples

� assessment of noninferiority by comparing confidence limits for a risk difference or relative risk to a noninferiority
margin (Schuirmann 1999, Dann and Koch 2008)

NORMAL AND LOGNORMAL MEANS

Data Analysis for Normal and Lognormal Means

For equivalence and noninferiority analyses that involve normal or lognormal data, you can use PROC TTEST to
compute p-values and confidence intervals for a variety of designs and criteria for means, mean differences, and
mean ratios.

Table 1 shows the statements and options in PROC TTEST that correspond to the supported designs for hypothesis
testing and confidence intervals.

Table 1 Designs for Normal and Lognormal Means in PROC TTEST

Design Syntax
One-sample VAR variables
Two-sample CLASS variable, VAR variables
Paired-sample PAIRED pair-lists
AB/BA crossover VAR variables / CROSSOVER=(variable1 variable2)
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For a two-sample analysis or an AB/BA crossover analysis that includes a period effect (the default, unless you specify
the IGNOREPERIOD option in the VAR statement), the results include both pooled and Satterthwaite versions of the
tests and confidence intervals.

Table 2 shows the options in the PROC TTEST statement that correspond to the supported distributional assumptions
and parameters of interest.

Table 2 Parameters of Interest for Normal and Lognormal Means

Parameter PROC TTEST Statement Options
Normal mean or mean difference (default)
Lognormal mean or mean ratio DIST=LOGNORMAL
Normal mean ratio TEST=RATIO DIST=NORMAL

The means in a DIST=LOGNORMAL analysis are geometric means rather than arithmetic means.

Table 3 shows the options that you can use in the PROC TTEST statement to specify equivalence or noninferiority
criteria.

Table 3 Criteria for Normal and Lognormal Means

Criterion PROC TTEST Statement Options
Equivalence TOST(<lower,> upper )
Noninferiority SIDES=L|U H0=m

PROC TTEST has no explicit options to specify a noninferiority test or margin (such as the NONINF and MARGIN=
options in PROC FREQ). Instead, you should specify the noninferiority margin by using the H0= option. If you have
both a custom null value and a noninferiority margin, then you need to either add them together (for DIST=NORMAL
analyses) or multiply them together (for DIST=LOGNORMAL analyses) to yield the correct value for the H0= option.

Tests for all possible combinations of the rows of Table 1 through Table 3 are supported. Confidence limits are
available for all possible combinations except the normal mean ratio either for paired-sample designs or for AB/BA
crossover designs where the period effect is ignored.

For an equivalence analysis, a confidence interval that corresponds to the TOST equivalence test is usually called an
“equivalence interval.” Its confidence level turns out to be 100.1 � 2˛/% instead of the 100.1 � ˛/% that you might
expect, because it’s constructed as the overlap of two one-sided 100.1�˛/% confidence intervals, one corresponding
to each of the “two one-sided tests.” (If each of the two tests is performed with significance level ˛, then the overall
significance level is also ˛.) The equivalence interval is the same as the rejection region for the level-˛ TOST
significance test.

For a noninferiority analysis, you can compare the usual 100.1 � ˛/% confidence interval to the noninferiority limit.
This interval falls entirely above the limit when bigger is better, or entirely below the limit when smaller is better, if and
only if the null hypothesis is rejected in favor of noninferiority.

Table 4 shows hypothesis tests and corresponding confidence interval interpretations for some typical examples of
equivalence and noninferiority analyses that involve normal or lognormal means.
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Table 4 Examples of Hypotheses and Confidence Limits for Normal and Lognormal Means in PROC TTEST

Testing Scenario Hypotheses Confidence Limits Syntax
Noninferiority of product
yield in paired design with
margin of 15 g, assuming
normality

H0W�1 � �2 � �15 g,
H1W�1 � �2 > �15 g

Reject H0 if lower
100.1 � ˛/% confidence
limit is at least –15 g

PROC TTEST SIDES=U
H0=-15; PAIRED
Yield1*Yield2;

Noninferiority of industrial
waste in two-sample design
with margin of 4.5 kg,
assuming normality

H0W�1 � �2 � 4:5 kg,
H1W�1 � �2 < 4:5 kg

Reject H0 if upper
100.1 � ˛/% confidence
limit is at most 4.5 kg

PROC TTEST SIDES=L
H0=4.5; CLASS Catalyst;
VAR Waste;

(4/5, 5/4) lognormal ratio
equivalence in AB/BA
crossover design including
period effect

H0W 1=2 � 0:8 or
1=2 � 1:25

H1W 0:8 < 1=2 < 1:25

Reject H0 if 100.1� 2˛/%
confidence interval for
1=2 falls entirely within
Œ0:8; 1:25�

PROC TTEST
DIST=LOGNORMAL
TOST(0.8, 1.25); VAR
AUC1 AUC2;
CROSSOVER=(Trt1 Trt2)

Power and Sample Size Analysis for Normal and Lognormal Means

You can use PROC POWER to compute power or sample size when planning studies to be analyzed using the
methods in Table 1 through Table 3. PROC POWER supports all combinations of the rows in those tables except the
following:

� tests that involve the normal mean ratio in paired-sample designs

� Satterthwaite versions of equivalence tests for two-sample designs and for the AB/BA crossover design that
includes a period effect

Table 5 shows the statements in PROC POWER that correspond to the different designs.

Table 5 Designs in Power for Normal and Lognormal Means in PROC POWER

Design Analysis Statement
One-sample ONESAMPLEMEANS
Two-sample TWOSAMPLEMEANS
Paired-sample PAIREDMEANS
AB/BA crossover, including period effect TWOSAMPLEMEANS
AB/BA crossover, ignoring period effect PAIREDMEANS

There is no explicit statement for the AB/BA crossover design in PROC POWER. But because the underlying analysis
for this design is either a two-sample or paired t test (depending on whether or not you include a period effect), you
can use either the TWOSAMPLEMEANS or PAIREDMEANS statement. (For more information about power analyses
for AB/BA crossover designs, see the section “Power and Sample Size Analysis for the AB/BA Crossover Design” on
page 8.)

Table 6 shows the options that you can use in any of the statements in Table 5 to specify the distributional assumption
and parameter of interest.

Table 6 Parameters of Interest in Power for Normal and Lognormal Means in PROC POWER

Parameter Analysis Statement Option
Normal mean or mean difference <default>
Lognormal mean or mean ratio DIST=LOGNORMAL

Table 7 shows the options that you can use in the relevant statement in Table 5 to specify equivalence or noninferiority
criteria.
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Table 7 Criteria in Power for Normal and Lognormal Means in PROC POWER

Criterion Analysis Statement Options
Equivalence TEST=EQUIV|EQUIV_DIFF|EQUIV_RATIO

LOWER=number UPPER=number

Noninferiority TEST=DIFF|DIFF_SATT|RATIO SIDES=1|U|L
NULLMEAN|NULLDIFF|NULLRATIO=number

You use the TEST=EQUIV and NULLMEAN=number options with a one-sample design; the TEST=EQUIV_DIFF and
NULLDIFF=number options for a test of normal difference with a two-sample, paired, or AB/BA crossover design; and
the TEST=EQUIV_RATIO and NULLRATIO=number options for a test of lognormal ratio with a two-sample, paired, or
AB/BA crossover design.

As with the noninferiority tests in PROC TTEST, there are no explicit options to specify a noninferiority test or margin
in PROC POWER. You should specify the noninferiority margin by using the appropriate null option for the design and
parameter of interest.

Note that PROC POWER, compared to PROC TTEST, swaps “group 1” and “group 2” in the definitions of mean
difference and ratio. In PROC POWER, a difference is for group 2 minus group 1, and a ratio is for group 2 over group
1.

Power and Sample Size Analysis for the AB/BA Crossover Design

If you ignore the period effect in an AB/BA crossover design, the power analysis for an equivalence or noninferiority
test of the treatment effect is comparatively simple. Such a test is merely a paired t test on all the (treatment A,
treatment B) response value pairs, regardless of treatment sequence. Thus, you can simply ignore the treatment
sequence and proceed as if it’s a paired design.

However, if you include a period effect, the power analysis is more complicated. The treatment effect test in this case
is a two-sample t test on either the halved period differences (for a test of normal mean difference) or the square
roots of the period ratios (for a test of lognormal mean ratio), where the two “groups” are the two treatment sequences
(AB and BA). The period difference or ratio is the difference or ratio, respectively, between the period 1 and period 2
response values. The normal mean difference that is estimated in such a test is simply the difference of treatment
means,

�diff D �A � �B

But the standard deviation (for a test of normal mean difference) or coefficient of variation (for a test of lognormal
mean ratio) that is estimated by such a test is more complicated. The “group” standard deviations or coefficients of
variation are assumed to be equal because of the symmetry of the period differences or ratios. For a test of normal
mean difference, the common standard deviation �c involves both treatment means and the correlation between the
observations for a given subject:

�c D
1

2

�
�2

A C �
2
B � 2�A�B�AB

� 1
2

As a special case, if you assume that the treatment standard deviations are equal (to � 0, for example) and that
observations on the same subject are uncorrelated, then

�c D �
0=
p
2

Thus, if you are doing a power analysis for a test of normal mean treatment difference in an AB/BA crossover design
that includes a period effect, then specify �diff for the MEANDIFF= option and �c for the STDDEV= option in the
TWOSAMPLEMEANS statement in PROC POWER.

When the period effect is included, the lognormal mean ratio that is estimated in the treatment effect test is again the
ratio of geometric treatment means,

ratio D A=B
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and the common coefficient of variation CVC is

CVC D

24�CV2
A C 1

� 1
4
�
CV2

B C 1
� 1

4

.�ABCVACVB C 1/
1
2

� 1

35
1
2

As a special case, if you assume that the treatment coefficients of variation are equal (to CV0, for example) and that
observations on the same subject are uncorrelated, then

CVC D

��
.CV0/2 C 1

� 1
2 � 1

� 1
2

Thus, if you are doing a power analysis for a test of lognormal mean treatment ratio in an AB/BA crossover design
that includes a period effect, then specify ratio for the MEANRATIO= option and CVC for the CV= option in the
TWOSAMPLEMEANS statement in PROC POWER.

PROPORTIONS, RISK DIFFERENCES, AND RELATIVE RISKS

Data Analysis for Proportions, Risk Differences, and Relative Risks

For equivalence and noninferiority analyses that involve simple categorical data analyses, you can use PROC FREQ
to compute p-values and confidence intervals for a variety of designs and criteria for binomial proportions, risk
differences, and relative risks.

Table 8 shows the options in the TABLES statement in PROC FREQ that correspond to the supported parameters for
hypothesis testing and confidence intervals.

Table 8 Parameters for Tests and Confidence Intervals for Proportions in PROC FREQ

Parameter TABLES Statement Option
Binomial proportion (one-way table) BINOMIAL
Risk difference (2 � 2 table) RISKDIFF
Relative risk (2 � 2 table) RELRISK

Table 9 shows the options that you can specify in parentheses after a relevant option in Table 8 for equivalence and
noninferiority analyses.

Table 9 Equivalence and Noninferiority Options for Proportions in PROC FREQ

Criterion TABLES Statement Statistic Options
Equivalence EQUIV MARGIN= value | (lower,upper )
Noninferiority NONINF MARGIN= value

All combinations of the rows of Table 8 and Table 9 are supported.

PROC FREQ has several options beyond the options in Table 8 and Table 9 that you can use to request specific
hypothesis tests and confidence limits for equivalence or noninferiority:

� The METHOD= option in parentheses after the RISKDIFF or RELRISK option in the TABLES statement specifies
the test method.

� The CL= option in parentheses after the BINOMIAL, RISKDIFF, or RELRISK option in the TABLES statement
requests specific types of confidence limits.

� The BINOMIAL, RISKDIFF, or RELRISK option in the EXACT statement requests exact versions of tests and
confidence limits.
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All the equivalence and noninferiority confidence limits are 100.1� 2˛/% limits based on the approach of Schuirmann
(1999). You can compare the confidence limits to either the equivalence limits .�L; �U / or the noninferiority limit
(either �0 � ı or �0 C ı).

Table 10 through Table 12 show all the tests and confidence limits that are applicable for both equivalence and
noninferiority analyses.

Table 10 shows the tests and confidence limits for a binomial proportion in a one-way table.

Table 10 BINOMIAL Options in the TABLES Statement in PROC FREQ for Tests and Confidence Limits for a
Binomial Proportion

Test or Confidence Limits Options
Exact (Clopper-Pearson) test1 (default)1

Wald test with sample variance (default)
Wald test with null variance VAR=NULL
Wald test with continuity correction and sample variance CORRECT
Wald test with continuity correction and null variance CORRECT VAR=NULL

Agresti-Coull confidence limits CL=AGRESTICOULL
Blaker confidence limits CL=BLAKER
Exact (Clopper-Pearson) confidence limits CL=EXACT
Jeffreys confidence limits CL=JEFFREYS
Logit confidence limits CL=LOGIT
Likelihood ratio confidence limits CL=LR
Mid-p (exact) confidence limits CL=MIDP
Wald confidence limits CL=WALD
Wald confidence limits with continuity correction CL=WALD(CORRECT)
Wilson (score) confidence limits CL=WILSON
Wilson (score) confidence limits with continuity correction CL=WILSON(CORRECT)
1 Also specify the BINOMIAL option in the EXACT statement.

Table 11 shows the tests and confidence limits for a risk difference in a 2 � 2 table.

Table 11 RISKDIFF Options in the TABLES Statement in PROC FREQ for Tests and Confidence Limits for a Risk
Difference

Test or Confidence Limits Options
Farrington-Manning (score) test METHOD=FM
Hauck-Anderson test METHOD=HA
Newcombe (hybrid-score) test METHOD=NEWCOMBE
Wald test with sample variance (default)
Wald test with null variance VAR=NULL
Wald test with continuity correction and sample variance CORRECT
Wald test with continuity correction and null variance CORRECT VAR=NULL

Agresti-Caffo confidence limits CL=AC
Exact unconditional confidence limits1 CL=EXACT1

Exact unconditional confidence limits based on score statistic2 CL=EXACT2

Hauck-Anderson confidence limits CL=HA
Miettinen-Nurminen (score) confidence limits CL=MN
Miettinen-Nurminen-Mee (uncorrected score) confidence limits CL=MN(CORRECT=NO)
Newcombe confidence limits CL=NEWCOMBE
Newcombe confidence limits with continuity correction CL=NEWCOMBE(CORRECT)
Wald confidence limits CL=WALD
Wald confidence limits with continuity correction CL=WALD(CORRECT)
1 Also specify the RISKDIFF option in the EXACT statement.
2 Also specify the RISKDIFF(METHOD=SCORE) option in the EXACT statement.
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Table 12 shows the tests and confidence limits for a relative risk in a 2 � 2 table. All these options are new for
equivalence and noninferiority in SAS/STAT 14.1, even though some of the confidence limits are supported in earlier
releases.

Table 12 RELRISK Options in the TABLES Statement in PROC FREQ for Tests and Confidence Limits for a Relative
Risk

Test or Confidence Limits Options
Farrington-Manning (score) test METHOD=FM
Wald test (default)
Wald modified test METHOD=WALDMODIFIED
Likelihood ratio test METHOD=LR

Exact unconditional confidence limits1 CL=EXACT1

Exact unconditional confidence limits based on score statistic2 CL=EXACT2

Likelihood ratio confidence limits CL=LR
Score confidence limits CL=SCORE
Score confidence limits (uncorrected) CL=SCORE(CORRECT=NO)
Wald confidence limits CL=WALD
Wald modified confidence limits CL=WALDMODIFIED
1 Also specify the RELRISK option in the EXACT statement.
2 Also specify the RELRISK(METHOD=SCORE) option in the EXACT statement.

PROC FREQ provides McNemar’s test for the analysis of dependent proportions (where the data consist of paired
responses). In SAS/STAT 14.1 you can specify a custom null value for the ratio of discordant pairs. This doesn’t
support a full-fledged equivalence or noninferiority analysis for dependent proportions because PROC FREQ doesn’t
provide the one-sided tests or confidence limits, but you can produce approximate noninferiority and equivalence
results by doubling the significance level ˛ and ignoring the minor tail.

Power and Sample Size Analysis for Proportions, Risk Differences, and Relative Risks

You can use PROC POWER to compute power or sample size when planning studies to be analyzed using the
equivalence and noninferiority tests discussed in the section “Data Analysis for Proportions, Risk Differences, and
Relative Risks” on page 9. Table 13 and Table 14 show the PROC POWER syntax that corresponds to each supported
equivalence or noninferiority test in Table 10 through Table 12.

Table 13 Power Analyses for Exact and Wald Tests for a Binomial Proportion in PROC POWER

Test ONESAMPLEFREQ Statement Syntax
Exact equivalence test TEST=EQUIV_EXACT LOWER= UPPER=

Exact noninferiority test TEST=EXACT SIDES=1|U|L MARGIN=

Wald equivalence test with sample variance TEST=EQUIV_Z VAREST=SAMPLE LOWER= UPPER=

Wald noninferiority test with sample variance TEST=Z VAREST=SAMPLE SIDES=1|U|L MARGIN=

Wald equivalence test with null variance TEST=EQUIV_Z LOWER= UPPER=

Wald noninferiority test with null variance TEST=Z SIDES=1|U|L MARGIN=

Wald equivalence test with continuity
correction and sample variance

TEST=EQUIV_ADJZ VAREST=SAMPLE LOWER= UPPER=

Wald noninferiority test with continuity
correction and sample variance

TEST=ADJZ VAREST=SAMPLE SIDES=1|U|L MARGIN=

Wald equivalence test with continuity
correction and null variance

TEST=EQUIV_ADJZ LOWER= UPPER=

Wald noninferiority test with continuity
correction and null variance

TEST=ADJZ SIDES=1|U|L MARGIN=
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Table 14 Power Analyses for Farrington-Manning Score Tests for Two Independent Proportions in PROC POWER

Test TWOSAMPLEFREQ Statement Syntax
Farrington-Manning (score) noninferiority test
of risk difference

TWOSAMPLEFREQ TEST=FM SIDES=1|U|L NULLPDIF=

Farrington-Manning (score) noninferiority test
of relative risk

TWOSAMPLEFREQ TEST=FM_RR SIDES=1|U|L NULLRR=

The power analyses in Table 14 are new in SAS/STAT 13.2 (for risk difference) and SAS/STAT 14.1 (for relative risk).

The TEST=PCHI option in the TWOSAMPLEFREQ statement matches the Wald tests for equality in PROC FREQ for
risk differences. But power analysis is not supported for equivalence tests for 2 � 2 tables, and the power analyses for
noninferiority tests based on Wald statistics use different forms of the Wald statistics than PROC FREQ for nonzero
null plus margin. Consequently, in order to properly align the power analysis and data analysis, you should use the
Farrington-Manning score statistics for each.

You can also compute power or sample size for noninferiority tests based on the same McNemar statistics as supported
in PROC FREQ (TABLES AGREE(MNULLRATIO=value)) with the SIDES=1|U|L and NULLDISCPROPRATIO= options
in the PAIREDFREQ statement in PROC POWER.

EXAMPLES

Noninferiority in Manufacturing: Comparing Normal Means

This example from industrial manufacturing shows how to design an experiment that compares two normal means,
taking both power and noninferiority considerations into account. You will see how to use the TWOSAMPLEMEANS
statement in PROC POWER to compute an appropriate sample size and how to use PROC TTEST to test for
noninferiority.

You are an industrial engineer who has invented a new process for manufacturing your company’s product. Results
from pilot tests are encouraging but not conclusive: the new process makes significantly more product of significantly
better quality, but it also seems to produce more waste. Is it too much more waste?

This situation calls for a noninferiority test, and you want to design the experiment carefully because each observation
requires an expensive run of your process. Managers say that they can deal with a waste increase of as much as 3.7
units. Pilot data indicate that the actual waste increase is probably around 1.5 units, with a standard deviation of about
2 units. How many runs will it take to get a significant noninferiority test for this difference margin of 3.7 units, with
reasonable power?

Managers want the experiment to be large enough to leave only a 1% chance of an erroneously significant result
(which translates to a power of 0.99). They will tolerate a higher chance (5%) of an erroneously insignificant result
(which translates to a significance level ˛ of 0.05).

You use the following SAS statements to determine the required number of runs for each process by using a balanced
design. The analysis includes several target powers in a small interval around 0.99 to explore the sensitivity of sample
size to power.

proc power;
twosamplemeans test=diff nfrac

nulldiff = 3.7
meandiff = 1.5
sides = L
alpha = 0.05
stddev = 2
npergroup = .
power = 0.985 to 0.995 by 0.001;

run;

Recall that the NULLDIFF= option here represents the sum of the null value (here 0) and the margin.

The computed sample sizes are shown in Figure 4. They indicate that, with a true difference of 1.5 and a significance
level of 0.05, it will take about 27 runs of each process to give you a solid 99% chance of a significant noninferiority
test.
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Figure 4 Sample Size Determination for Industrial Waste Study

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal

Method Exact

Number of Sides L

Null Difference 3.7

Alpha 0.05

Mean Difference 1.5

Standard Deviation 2

Computed Ceiling N per Group

Index
Nominal

Power

Fractional
N per

Group
Actual
Power

Ceiling
N per

Group

1 0.985 24.766371 0.986 25

2 0.986 25.110193 0.988 26

3 0.987 25.478571 0.988 26

4 0.988 25.875385 0.988 26

5 0.989 26.305525 0.990 27

6 0.990 26.775269 0.990 27

7 0.991 27.292866 0.992 28

8 0.992 27.869467 0.992 28

9 0.993 28.520667 0.994 29

10 0.994 29.269247 0.995 30

11 0.995 30.150423 0.996 31

Now suppose you have gathered the results from the two processes, as shown in Table 15.

Table 15 Mean (Standard Deviation) for 27 Runs

Process Quality Yield Waste
Old 19.9530(0.8077) 40.1481(0.7698) 10.3556(2.1445)
New 34.6667(1.8605) 50.0000(0.8321) 11.9889(2.2548)

As expected, quality, yield, and waste are all elevated in the new process. You enter the numbers from Table 15 into a
special input data set for PROC TTEST:

data Process;
input _STAT_ $4. @6 Process $3. @10 Quality Yield Waste;

cards;
N New 27 27 27
MEAN New 34.6667 50.0000 11.9889
STD New 1.8605 0.8321 2.2548
N Old 27 27 27
MEAN Old 19.9530 40.1481 10.3556
STD Old 0.8077 0.7698 2.1445
;

You use the following PROC TTEST statements to perform simple t tests for improvements in quality and yield:

proc ttest data=Process;
class Process;
var Quality Yield;

run;
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The results (not shown here) are indeed highly significant. How about the waste? Is the increase from the new
process too much? The following PROC TTEST code performs a noninferiority test to answer that question:

proc ttest data=Process sides=l h0=3.7;
class Process;
var Waste;

run;

The results are shown in Figure 5.

Figure 5 Noninferiority Test for Industrial Waste Study, Tabular Results

The TTEST Procedure

Variable: Waste

The TTEST Procedure

Variable: Waste

Process N Mean Std Dev Std Err Minimum Maximum

New 27 11.9889 2.2548 0.4339 . .

Old 27 10.3556 2.1445 0.4127 . .

Diff (1-2) 1.6333 2.2003 0.5989

Process Method Mean 95% CL Mean Std Dev
95%

CL Std Dev

New 11.9889 11.0969 12.8809 2.2548 1.7757 3.0900

Old 10.3556 9.5073 11.2039 2.1445 1.6888 2.9389

Diff (1-2) Pooled 1.6333 -Infty 2.6362 2.2003 1.8469 2.7224

Diff (1-2) Satterthwaite 1.6333 -Infty 2.6362

Method Variances DF t Value Pr < t

Pooled Equal 52 -3.45 0.0006

Satterthwaite Unequal 51.87 -3.45 0.0006

Good news! The mean amount of waste from the new process is found to be significantly noninferior to that from the
old process (p = 0.0006).

Noninferiority in Marketing: Comparing Response Rates

This marketing example shows how to design a study to compare two response rates in terms of risk (proportion)
difference in a noninferiority setting. You will see how to use the TWOSAMPLEFREQ statement in PROC POWER to
compute power and sample size and how to use PROC FREQ to test for noninferiority.

Your company is planning its next big marketing campaign, and you’ve submitted a proposal to the executive board
that advocates the use of recycled paper in company mailings. Printing options are limited compared to those for
standard paper, possibly lowering the customer response rate, but public relations priorities favor using recycled paper.
At a board meeting, the executives decide that if you can demonstrate that the response rate for mailings with recycled
paper isn’t appreciably worse than for mailings with standard paper, they’ll approve your proposal. They give you
permission to send out 4,000 mailings with each type of paper.

First you need to clarify the executives’ definition of “appreciably worse” and the chances of an erroneously significant
result—that is, a false positive—that they will tolerate. They inform you that they’d be willing to ignore a response rate
difference of 4% or less, and they’ll allow for a 1% chance of a false positive.

You decide that you’d better figure out your chances of a significant result before you commit the company’s effort
and resources to this comparison study. You talk to some colleagues and come up with an educated guess of
response rates: 15% for standard paper and 13% for recycled. The recommended choice of statistical test is the
Farrington-Manning score test for the difference between proportions (risks) in the two groups, standard paper and
recycled paper.

14



You run the following statements to calculate the power of your planned study. The results are shown in Figure 6.

proc power;
twosamplefreq test=fm

nullproportiondiff = -0.04
refproportion = 0.15
proportiondiff = -0.02
sides = U
alpha = 0.01
npergroup = 4000
power = .;

run;

Figure 6 Power Calculation for Paper Comparison

The POWER Procedure
Farrington-Manning Score Test for Proportion Difference

The POWER Procedure
Farrington-Manning Score Test for Proportion Difference

Fixed Scenario Elements

Distribution Asymptotic normal

Method Normal approximation

Number of Sides U

Null Proportion Difference -0.04

Alpha 0.01

Reference (Group 1) Proportion 0.15

Proportion Difference -0.02

Sample Size per Group 4000

Computed
Power

Power

0.598

The power is less than 60%; you really don’t want to proceed with the study as planned if your chance of a significant
result is that low. You run the following statements to check the required sample size per group for powers between
0.8 and 0.95:

proc power;
twosamplefreq test=fm

nullproportiondiff = -0.04
refproportion = 0.15
proportiondiff = -0.02
sides = U
alpha = 0.01
npergroup = .
power = 0.8 0.85 0.9 0.95;

run;

Figure 7 shows that you’d need over 6,000 mailings per group just to get a power of 80%.
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Figure 7 Sample Size Determination for Paper Comparison

The POWER Procedure
Farrington-Manning Score Test for Proportion Difference

The POWER Procedure
Farrington-Manning Score Test for Proportion Difference

Fixed Scenario Elements

Distribution Asymptotic normal

Method Normal approximation

Number of Sides U

Null Proportion Difference -0.04

Alpha 0.01

Reference (Group 1) Proportion 0.15

Proportion Difference -0.02

Computed N per Group

Index
Nominal

Power
Actual
Power

N per
Group

1 0.80 0.800 6058

2 0.85 0.850 6824

3 0.90 0.900 7853

4 0.95 0.950 9512

You wonder how sensitive the required sample size is to choice of significance level and variations in the actual
proportion difference. You run the following statements, using the %POWTABLE autocall macro to produce the
compact sample size table in Figure 8:

proc power;
ods output output=powdata;
twosamplefreq test=fm

nullproportiondiff = -0.04
refproportion = 0.15
proportiondiff = -0.03 -0.02 -0.01
sides = U
alpha = 0.01 0.025 0.05
npergroup = .
power = 0.8 0.85 0.9 0.95;

run;

%powtable (
Data = powdata,
Entries = npergroup,
Panels = power,
Cols = alpha,
Rows = proportiondiff

)
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Figure 8 Sensitivity Analysis for Paper Comparison

The POWTABLEMacro

Entries are N per Group

Alpha

0.010 0.025 0.050

Nominal
Power

Proportion
Diff

0.80 -0.03 23436 18327 14435

-0.02 6058 4737 3731

-0.01 2778 2173 1711

0.85 -0.03 26404 20962 16783

-0.02 6824 5417 4337

-0.01 3130 2484 1989

0.90 -0.03 30390 24529 19990

-0.02 7853 6338 5165

-0.01 3601 2906 2368

0.95 -0.03 36813 30331 25257

-0.02 9512 7836 6525

-0.01 4361 3593 2991

The first thing you notice is the dramatic increase in required sample size for the scenario of a 3% lower response rate
for recycled paper. You’re not too surprised, because that’s awfully close to the margin of 4%, and tiny proportion
differences are very difficult to detect. If the response rate for recycled paper were 1% lower than for standard paper,
your required sample size would be more than cut in half.

You check again with your colleagues about their conjecture of a 2% lower response rate, but they stand by it firmly.
Taking another look at Figure 8, you notice that increasing the number of mailings per group to 6,500 or relaxing the
significance level requirement from ˛ D 0:01 to ˛ D 0:05 would increase the power to a level between 80% and 85%.
You explain this to the board.

The executives won’t budge on the number of mailings, but they are willing to allow for a 5% false positive chance. So
you proceed with the original study plan, grudgingly accepting the 80%–85% risk of being foiled by Lady Luck. After a
few months you tally the results of the mailings to produce Table 16.

Table 16 Results of Paper Comparison Study

Response
Paper Yes No
Recycled 507 3,493
Standard 622 3,378

You write the following SAS statements to perform the noninferiority test:

data PaperComp;
input Paper $ Response $ Count;
datalines;
Recycled Yes 507
Recycled No 3493
Standard Yes 622
Standard No 3378

;
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proc freq data=PaperComp order=data;
tables Paper*Response /

riskdiff(noninf margin=.04 method=fm norisks);
weight Count;

run;

The results in Table 9 show a p-value of 0.0743, insignificant even at the board’s relaxed criterion of ˛ = 0.05.

Figure 9 Noninferiority Analysis for Paper Comparison

The FREQ Procedure

Statistics for Table of Paper by Response

The FREQ Procedure

Statistics for Table of Paper by Response

Noninferiority Analysis for the Proportion (Risk)
Difference

H0: P1 - P2 <= -Margin Ha: P1 - P2 > -Margin

Margin = 0.04 Score (Farrington-Manning)
Method

Proportion Difference ASE (F-M) Z Pr > Z

-0.0288 0.0078 1.4447 0.0743

Noninferiority Limit 90% Confidence Limits

-0.0400 -0.0416 -0.0159

The observed proportion difference of –0.0288 is more than a standard error below your conjectured difference of
–0.02. This leads you to suspect that your calculated power (which assumed the difference of –0.02, among other
things) might very well have been overly optimistic. So it often goes with power analysis: the power calculation is only
as accurate as the conjectures that drive it.

Equivalence in Clinical Drug Trials: Comparing Bioavailability in Terms of Lognormal Mean Ratio

This pharmacokinetics example shows how to plan and analyze a clinical trial to establish bioequivalence between a
generic drug and a name-brand drug by using an AB/BA crossover design with lognormal data. You will see how to
use both the PAIREDMEANS and TWOSAMPLEMEANS statements in PROC POWER (depending on whether you
include a period effect in the crossover design) to compute an appropriate sample size and how to use PROC TTEST
to test for bioequivalence.

As the principal statistician for a new generic “drug A” developed by your pharmaceutical company, you’re planning a
clinical trial to demonstrate bioavailability similar to that of a rival, “drug B.”

The data analysis plan is to compare the area under the serum-concentration curve (AUC) for the two drugs by
using the two one-sided test (TOST) approach for a lognormal mean ratio with the classic 80%–125% average
bioequivalence limits, assuming equal coefficient of variation (CV) for the two drugs.

The design is the AB/BA crossover design, and supply chain limitations mean that you need to plan for twice as many
subjects getting the rival drug first (sequence BA). You want to determine the number of subjects to recruit in order to
achieve a power of 0.9 for the equivalence test with a significance level of ˛ = 0.05.

Based on results of previous studies, you conjecture a geometric mean AUC ratio (A to B) of 1.08, a correlation of
0.28 between AUC measurements on the same subject (one for each drug), and a common CV of 0.37.

Your company hasn’t decided yet whether to include a period effect in the crossover analysis, so you perform two
power analyses to cover both cases. PROC POWER doesn’t handle crossover designs directly, but you know that if
the period effect is ignored in the data analysis, then the statistical test boils down to a paired t test on the square
roots of the period ratios, ignoring treatment sequence. The parameters that are estimated in this paired t test are the
same as the ones you have already conjectured values for. Thus you already have all the information you need to
perform this power analysis by using the PAIREDMEANS statement in the POWER procedure, as follows:
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proc power;
pairedmeans test=equiv_ratio

lower = 0.8
upper = 1.25
meanratio = 1.08
corr = 0.28
cv = 0.37
npairs = .
power = 0.9;

run;

The results in Figure 10 show that 75 subjects are needed to achieve a power of 0.9 if the data analysis ignores the
crossover period effect.

Figure 10 Sample Size Determination for Bioequivalence Study Assuming Period Effect Will Be Ignored

The POWER Procedure
Equivalence Test for Paired Mean Ratio

The POWER Procedure
Equivalence Test for Paired Mean Ratio

Fixed Scenario Elements

Distribution Lognormal

Method Exact

Lower Equivalence Bound 0.8

Upper Equivalence Bound 1.25

Geometric Mean Ratio 1.08

Coefficient of Variation 0.37

Correlation 0.28

Nominal Power 0.9

Alpha 0.05

Computed N
Pairs

Actual
Power

N
Pairs

0.903 75

You also know that if the data analysis includes a period effect, then the statistical test is a two-sample t test on the
square roots of the period ratios, where the “groups” being compared are the two treatment sequences. So you can
treat the crossover analysis instead as a two-sample t test for purposes of power analysis.

The geometric mean ratio parameter in this two-sample t test is the same as the one you already conjectured a value
for. But the CV is different, as discussed in the section “Power and Sample Size Analysis for Normal and Lognormal
Means” on page 7. You calculate the CV for use in PROC POWER as

CVC D

24�CV2
A C 1

� 1
4
�
CV2

B C 1
� 1

4

.�ABCVACVB C 1/
1
2

� 1

35
1
2

D

24�0:372 C 1
� 1

4
�
0:372 C 1

� 1
4

.0:28.0:37/.0:37/C 1/
1
2

� 1

35 1
2

D 0:21538

You use the following statements to compute the number of subjects to recruit if the data analysis will include a
crossover period effect:
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proc power;
twosamplemeans test=equiv_ratio

lower = 0.8
upper = 1.25
meanratio = 1.08
cv = 0.21538
groupweights = (1 2)
ntotal = .
power = 0.9;

run;

The results in Figure 11 show that you’ll need 84 subjects if the data analysis includes a period effect, compared to 75
if the period effect is ignored.

Figure 11 Sample Size Determination for Bioequivalence Study Including Period Effect

The POWER Procedure
Equivalence Test for Mean Ratio

The POWER Procedure
Equivalence Test for Mean Ratio

Fixed Scenario Elements

Distribution Lognormal

Method Exact

Lower Equivalence Bound 0.8

Upper Equivalence Bound 1.25

Mean Ratio 1.08

Coefficient of Variation 0.21538

Group 1 Weight 1

Group 2 Weight 2

Nominal Power 0.9

Alpha 0.05

Computed N
Total

Actual
Power

N
Total

0.903 84

Your company decides to include a period effect, and a clinical trial is conducted with 84 subjects, 28 getting your
generic drug A first and the other 56 getting the rival drug B first. With the AUC measurements from the study in hand,
you run the following statements to perform the bioequivalence test:

data auc;
input Trt1 $ Trt2 $ AUC1 AUC2 @@;
datalines;

A B 336 339 A B 325 335 A B 310 217 A B 263 128 A B 244 305 A B 517 268
A B 226 163 A B 230 210 A B 300 364 A B 309 234 A B 259 349 A B 251 223
A B 359 288 A B 192 174 A B 396 313 A B 170 187 A B 526 360 A B 170 127
A B 200 130 A B 324 186 A B 352 281 A B 179 355 A B 387 332 A B 278 287
A B 464 244 A B 216 385 A B 587 434 A B 419 458
B A 201 273 B A 142 194 B A 214 374 B A 548 280 B A 220 417 B A 345 178
B A 321 654 B A 254 503 B A 268 354 B A 217 172 B A 228 158 B A 230 108
B A 262 280 B A 189 277 B A 184 283 B A 123 123 B A 338 455 B A 392 359
B A 215 377 B A 249 410 B A 123 243 B A 354 279 B A 205 172 B A 303 255
B A 249 255 B A 280 398 B A 237 292 B A 301 239 B A 278 344 B A 241 192
B A 151 213 B A 154 500 B A 417 394 B A 245 400 B A 198 245 B A 466 337
B A 275 262 B A 109 147 B A 205 198 B A 268 163 B A 213 334 B A 195 202
B A 213 297 B A 195 120 B A 212 401 B A 238 177 B A 235 171 B A 224 379
B A 392 154 B A 248 299 B A 159 250 B A 381 386 B A 370 230 B A 127 195
B A 279 335 B A 308 282
;
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proc ttest data=auc dist=lognormal tost(0.8, 1.25) plots;
var AUC1 AUC2 / crossover=(Trt1 Trt2);

run;

The first several tables in the output (not shown) display information about the crossover variables, basic summary
statistics, and the usual confidence limits relevant to a typical (as opposed to equivalence) data analysis. Figure 12
shows 100.1 � 2˛/% = 90% confidence limits, which is relevant here because these confidence limits are contained
completely within the equivalence limits of [0.8, 1.25] if and only if the level-˛ TOST equivalence test is rejected. The
confidence interval for the treatment geometric mean ratio does in fact lie completely within [0.8, 1.25], resulting in an
assessment of “Equivalent.”

Figure 12 Equivalence Intervals for Analysis Including Period Effect in Crossover Design

The TTEST Procedure

Response Variables: AUC1, AUC2

TOST Level 0.05 Equivalence Analysis

The TTEST Procedure

Response Variables: AUC1, AUC2

TOST Level 0.05 Equivalence Analysis

Treatment Period Method
Geometric

Mean
Lower
Bound 90% CL Mean

Upper
Bound Assessment

Ratio (1/2) Pooled 1.1260 0.8 < 1.0419 1.2169 < 1.25 Equivalent

Ratio (1/2) Satterthwaite 1.1260 0.8 < 1.0476 1.2103 < 1.25 Equivalent

Ratio (1/2) Pooled 1.0190 0.8 < 0.9428 1.1012 < 1.25 Equivalent

Ratio (1/2) Satterthwaite 1.0190 0.8 < 0.9480 1.0952 < 1.25 Equivalent

Figure 13 shows a significant p-value of 0.014 for the pooled test. Your company celebrates the successful demon-
stration of pharmacokinetic equivalence between your generic drug and the name-brand rival.

Figure 13 Equivalence Tests Including Period Effect in Crossover Design

Treatment Period Method
Coefficients
of Variation Test Null DF t Value P-Value

Ratio (1/2) Pooled Equal Upper 0.8 82 7.32 <.0001

Ratio (1/2) Pooled Equal Lower 1.25 82 -2.24 0.0140

Ratio (1/2) Pooled Equal Overall 0.0140

Ratio (1/2) Satterthwaite Unequal Upper 0.8 66.163 7.90 <.0001

Ratio (1/2) Satterthwaite Unequal Lower 1.25 66.163 -2.41 0.0093

Ratio (1/2) Satterthwaite Unequal Overall 0.0093

Ratio (1/2) Pooled Equal Upper 0.8 82 5.18 <.0001

Ratio (1/2) Pooled Equal Lower 1.25 82 -4.38 <.0001

Ratio (1/2) Pooled Equal Overall <.0001

Ratio (1/2) Satterthwaite Unequal Upper 0.8 66.163 5.59 <.0001

Ratio (1/2) Satterthwaite Unequal Lower 1.25 66.163 -4.72 <.0001

Ratio (1/2) Satterthwaite Unequal Overall <.0001

WHERE TO FIND MORE INFORMATION

The statistical techniques that this paper presents have a great number of moving parts. To the already hefty machinery
of typical tests for significant differences, equivalence and noninferiority tests add margins of various types, with
different possibilities for how you incorporate them into the analysis. Also, power and sample size analysis adds the
need to carefully consider and specify alternative hypotheses and the probability of failing to reject the null. Indeed,
the complete process of planning equivalence and noninferiority tests of sufficient power is not for the faint of heart!

The general discussion of combinations of options in the FREQ, POWER, and TTEST procedures in the sections
“NORMAL AND LOGNORMAL MEANS” on page 5 and “PROPORTIONS, RISK DIFFERENCES, AND RELATIVE
RISKS” on page 9 gives you a catalog of the tools you will use to navigate this process. The three extended examples
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in the section “EXAMPLES” on page 12 demonstrate these tools in action for some common equivalence and
noninferiority tasks, showing how their results can be interpreted.

However, there are many more noninferiority and equivalence tasks than this paper can discuss in detail. For more
information about the design and analysis of equivalence and noninferiority tests, see the references listed at the end
of this paper. There are also two SAS usage notes that provide more details and examples, SAS Institute Inc. (2013a)
on noninferiority and SAS Institute Inc. (2013b) on equivalence. Finally, for complete details about the FREQ, POWER,
and TTEST procedure syntax that is required to perform these analyses in SAS, see the SAS/STAT User’s Guide.
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