
1

Paper SAS 1866-2015

Now That You Have Your Data in Hadoop, How Are You Staging Your
Analytical Base Tables?

Steven Sober, SAS Institute Inc.

ABSTRACT

Well, Hadoop community, now that you have your data in Hadoop, how are you staging your analytical
base tables? In my discussions with clients about this, we all agree on one thing: Data sizes stored in
Hadoop prevent us from moving that data to a different platform to generate the analytical base tables.
To address this problem, I want to introduce to you the SAS® In-Database Code Accelerator for Hadoop.

INTRODUCTION

It’s not widely understood that analytics consumes a fundamentally different set of data than does query
and reporting. Most business professionals are surprised when they learn that not just any data can be
used for predictive modeling. Actually, the modeling data is required to be in a special format, usually
one-record-per-subject, before it can be leveraged. So how does this data transformation process work?

Operational data can consist of any entity or subject (for example, customer, company, region, product,
date, and so on) that has sequential or multiple records. This type of operational data, however, needs to
be both summarized and converted into a single-record or row-per-subject data set before any predictive
modeling work can begin. We call this data manipulation process a “transposition” of the data. For the
purposes of this paper, the resulting output is called an analytic base table (ABT).

Suppose that we wanted to know, in a business setting for a large banking institution, which product
categories over the lifetime of data collected are correlated and provide the bank with the best cross-sale
opportunities. In order to answer this type of question, our raw transactional data needs some additional
reorganization and summarization. Here is a simple example of a transactional data set that needs to be
transposed before data mining can occur:

Output 1. Sales History Table

After you summarize the numeric field named 'quantity’ by ‘product_category’ and ‘product_purchased’
(character fields), the output will look similar to this:

Output 2. Sales History Summarized

While summarization (above) is the first step, the data still needs to be transposed. This means that the
former ‘product_purchased’ column now becomes a distinct category column, and duplicate records are
eliminated to produce a unique file, in this case by ‘product_category’. After the transposition occurs, the
data will appear as follows:

2

Output 3. Summarized Sales History Transposed

Now that we have staged the analytical base table, we can begin the next set of iterative work: namely
exploring the transposed data to see how well it supports our proposed predictive analysis. Note that it is
common for SAS users to stage analytical base tables that have tens of thousands of columns per
subject. The reason for this is to improve the accuracy of the models produced by predictive analytics.

To support our development of an analytical base table we will investigate how SAS® Data Loader for
Hadoop will leverage our investment in Hadoop by moving the SAS processes that stage the analytical
base table to a MapReduce framework.

CHALLENGES IN PROCESSING HADOOP DATA

Data Volume and Formats

Data volumes stored in Hadoop make the processing of the data challenging. Source tables can easily be
in the hundreds of gigabytes or even in terabytes. With these data volumes, you cannot move the data to
a different platform. The processing must take place on the Hadoop cluster. Because Hadoop is an open-
source environment, there are numerous data formats supported. From a SAS point of view, as long as
our source and target tables are support by SAS/ACCESS® Interface to Hadoop or SAS/ACCESS®
Interface to Impala, you can process that data in the Hadoop cluster using the MapReduce framework.

Single Input Stream

MapReduce processes are limited to one input stream that makes joining of multiple sources a challenge.
To overcome this, we have a few options. If your data is not stored in an SQL-based format, we can use
PIG. With the SQL-based formats like Hive and Impala, we can use SQL to accomplish the join. With
SQL, we can create a view of the join, and that view can be used as the single input stream to the
MapReduce process.

Single Output Stream

MapReduce processes are limited to one output stream. This implies we cannot create multiple output
tables in a single pass of the source table.

Transposing Data

Transposing data is a straightforward task that is not trivial to using open-source techniques or SQL. In
SAS 9.4 (TS1M3) PROC TRANSPOSE will run via a MapReduce framework. Until then, we can leverage
the TRANSPOSE directive in SAS Data Loader for Hadoop when our source tables are stored in Hive. If
our source tables are not stored in Hive and they are in a format that the SAS® Embedded Process
supports, we can leverage a component of the SAS Data Loader for Hadoop called the SAS In-Database
Code Accelerator for Hadoop. This will enable us to write DS2 THREAD and DATA statements that run in
a MapReduce framework.

SAS IN-DATABASE CODE ACCELERATOR FOR HADOOP

SAS In-Database Code Accelerator for Hadoop enables us to run DS2 code in a MapReduce framework.
DS2 is a new, SAS proprietary programming language that is appropriate for advanced data
manipulation, large transpositions, computationally complex programs, scoring models, and BY group
processing. DS2 is included with Base SAS® and intersects with the SAS DATA step. It also includes
additional data types, ANSI SQL types, programming structure elements, and user-defined methods and
packages:

3

DS2 Data Type Description

BIGINT stores a large signed, exact whole
number, with a precision of 19 digits.
The range of integers is -
9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. Integer
data types do not store decimal values.
Fractional portions are discarded

TINYINT stores a very small signed, exact whole
number, with a precision of three digits.
The range of integers is -128 to 127.
Integer data types do not store decimal
values. Fractional portions are
discarded.

VARBINARY(n) stores varying-length binary data, where
n is the maximum number of bytes to
store. The maximum number of bytes is
not required to store each value. If
varbinary(10) is specified and the binary
string uses only five bytes, only five
bytes are stored in the column.

VARCHAR(n) stores a varying-length character string,
where n is the maximum number of
characters to store. The maximum
number of characters is not required to
store each value. If varchar(10) is
specified and the character string is only
five characters long, only five characters
are stored in the column.

Table 1. Partial Listing of DS2 Data Types. (For a complete list, see the SAS 9.4 DS2 Language Reference.)

To accomplish the task defined in the introduction of this paper, we will use two approaches. When our
source tables are stored in Hive, our preferred approach is to use the SUMMARY and TRANSPOSE
directives in SAS Data Loader for Hadoop. When our data is not stored in Hive and it is in a format
supported by the SAS Embedded Process, our approach will be to use DS2.

Summary – DS2 Code

Summarizing data using DS2 is very similar to using a DATA step.

Figure 1. DS2 Code to Summary Sales History

To summarize our data we are using a RETAIN statement for the variable ‘total’. In addition, we are using
FIRST. LAST. processing with the BY group ‘product_purchaed’. Review line 36 of Figure 1. We will set
the value for ‘total’ to zero for each new occurrence of the BY group. Review line 40 of Figure 1. When we
hit the last occurrence of the BY group variable ‘product_purchased’, we will output one row. When this
process completes, we will have our summary table:

4

Output 4. Summary Table

Next, we need to set a global macro variable to the total number of rows in our summary table. This
macro variable is used in the rename step, which is detailed later in this paper When we transpose our
data, we will generate 7 new columns. The names of those columns are the values of
‘product_purchased’ in Output 4. To obtain the number of rows in the summary table, we will use a DATA
step:

Figure 2. DATA Step to Set Macro Variable &varcnt

Review line 30 of Figure 2. We test for the last record, and, when we find it, we use the CALL SYMPUT
statement to create the macro variable ‘&varcnt’.

Transpose - DS2 array processing

With Hadoop, we must remember that our DS2 code will be processed in a MapReduce framework. Each
data node of the Hadoop cluster will execute the DS2 code in parallel and without sharing any information
between the data nodes. This impacts array processing, which is required when transposing data using
DS2 code. To illustrate this, we will use an approach used by Base SAS programmers to transpose our
data. In the DS2 code shown in Figure 3, ‘z’ is the variable that contains the array position for our two
arrays ‘attribute’ and ‘location’:

Figure 3. DS2 Code

Using this approach works in a non-distributed computing environment. However, in a distributed
computing environment, our transposed table is incorrect:

5

Output 5. Incorrect Transposed Table

The reason that the table is incorrect is that each BY group is processed on a different data node, and
this impacts our array position variable ‘z’. The value of ‘z’ will start at 1 on each data node and produce
the incorrect results shown in Output 5.

To generate a correct result, we must alter our DS2 code to add an offset to the variable ‘z’. So each BY
group has the correct starting position in the arrays. To accomplish this, we will determine the number of
unique values of our variable ‘product_purchased’ for each ‘product_category’:

Figure 4. Base SAS Code to Calculate the Offset for Array Processing in a Distributed Environment

Review line 24-26 in Figure 4. We are using PROC FREQ to process the summary table and write the
results to a table:

Output 6. Table Created by PROC FREQ

We will now process the table created by PROC FREQ and create a file that contains the IF statements
that we need to control which array location we are to populate:

Figure 5. Base SAS Code to Generate a File to Control the Offset of the Array Position for Each
‘product_category’

6

The code in Figure 5 produced the following:

Figure 6. Offset for Array Processing in a Distributed Environment

We will now alter our DS2 code to use offsets. Review line 57 of Figure 7. We are initializing the variable
‘z’ to zero for each BY group (that is, ‘product_category’). Review line 60 of Figure 7. This is how we will
include the IF statements created in the code shown in Figure 5.

Figure 7. Altered DS2 Code Using Offsets for Array Processing in a Distributed Environment

When the code in Figure 7 is processed, it produces a correct transpose table:

Output 7. Transpose Table using Offsets for Array Processing

Before we give this transpose table to the data scientists we have one more thing to take care of because
the names of our transposed columns ‘attribute1-attribute7’ are meaningless. What we want are the
values shown in ‘location1-location7’—that is, Credit Card, Heloc, Auto Loan, Savings, IRA, Checking,
and CD.

Rename – DATA step

The values in the array ‘location1-location7’ in Output 7 are the unique values of the variable
‘product_purchased’. The best way to accomplish the rename in a distributed environment is to use a
DATA step with a RENAME statement. Like DS2, a DATA step is also eligible to run via a MapReduce
framework. The statements used in the DATA step will determine if this code is eligible for the
MapReduce framework. In addition to the statements, the source and target tables must be stored in
Hadoop for this code to be eligible. To accomplish the rename we will create a SAS macro:

7

Figure 8. DATA Step Code to Rename our Transposed Variables

Like our offset code, the macro in Figure 8 will create a file that contains the RENAME and DROP
statements. To do this, we will use the macro variable ‘&varcnt’. (See Figure 2.) Review lines 11-17 in
Figure 8. In this step, we will loop through each array location (that is, ’location1-location7’). When we find
a word in that array position, we generate the RENAME statement and set a flag to indicate that the
RENAME statement has been generated and written to our file. If we do not set this flag, we could
generate multiple RENAME statements for the same variable, and that would cause an error when this
code is processed.

8

Figure 9. Rename Statements Generated by the Code in Figure 8.

Review line 30 of Figure 8. We are including the file shown in Figure 9. A very positive side effect
(meaning that the run time is very fast) of doing the rename with a DATA step is what happens under the
covers. A Hadoop method is used to simply copy the source into the target with the new variable names.
Figure 10 shows the SAS log information using the SAS OPTION “options sastrace=',,d,d'
sastraceloc=saslog;”.

Figure 10. SAS Log Showing the Hadoop Method to Create the Final Transposed Table

We are now ready to hand off our analytical base table to the data scientist team who will apply predictive
analytics to it so that they can make well-informed decisions.

Output 8. Analytical Base Table

SAS DATA QUALITY ACCELERATOR FOR HADOOP

SAS Data Quality Accelerator for Hadoop (a component of SAS Data Loader for Hadoop) enables us to
apply world-class data quality routines to data stored in Hadoop using a MapReduce framework.

Data Quality Accelerator for
Hadoop Operations

Description Input Output

Casting

Casing applies context-
sensitive case rules to text. It
operates on character content,
such as names, organizations,
and addresses.

SAS INSTITUTE

DQ_LOWERCASE
DQ_UPPERCASE

DQ_PROPERCASE

sas institute

SAS INSTITUTE

SAS Institute

Extraction

Extraction returns one or more
extracted text values, or
tokens, as output.

Blue men’s long-
sleeved

button-down collar
denim

shirt

Color: Blue

Material: Denim

Item: Shirt

Gender Analysis

Gender analysis evaluates the
name or other information
about an individual to be
determined.

Jane Smith

Sam Adams

P. Jones

F

M

U

Identification Analysis

Identification analysis returns
a value that indicates the
category of the content in an

input character string.

John Smith

SAS Institute Inc.

NAME

ORGANIZATION

Matching

Matching analyzes the input
data and generates a
matchcode for the data.

Gidley, Scott A

Scotty Gidleigh

Mr Scott Gidlee Jr.

Mr Robert J Brauer

Bob Brauer

XYZ$$$

XYZ$$$

XYZ$$$

ABC$$$

ABC$$$

9

Data Quality Accelerator for
Hadoop Operations

Description Input Output

Parsing

Parsing segments a string into
semantically atomic tokens.

Mr. Roy G. Biv Jr Prefix: Mr.

Given Name: Roy

Middle Name: G.

Family Name: Biv

Suffix: Jr

Pattern Analysis

Pattern analysis returns a
simple representation of a text
string’s character pattern,
which can be used for pattern
frequency analysis in profiling
jobs.

919-677-8000

NC

999-999-999

AA

Standardization

Standardization generates a
preferred standard
representation of data values.

N car

919.6778000

Smith, Mister James

NC

(919) 677–8000

Mr. James Smith

Table 2. SAS Data Quality Accelerator for Hadoop Operations

Data Quality Operations

Let’s review an example of the SAS Data Quality Accelerator for Hadoop. Like SAS In-Database Code
Accelerator for Hadoop the SAS In-Database Data Quality Accelerator uses DS2 to run data quality
operations in a MapReduce framework.

For our example, we will use the “Matching” operator. (Review Matching in Table 2). Matching analyzes
the input data and generates a match code for the data. Match codes are encoded representations of
character values that are used for analysis, transformation, and standardization of data. Review lines 79-
82 in Figure 11. On line 79, we are declaring to our DS2 program everything that we need to cleanse our
data in a MapReduce framework. On line 81, we are loading the Quality Knowledge Base (QKB). The
QKB contains all of the defined rules, criteria, and data by which analysis and cleansing can be
performed for data. Review line 87 of Figure 11; DQ.MATCH is the data quality operation that we are
applying to the variable ‘Address”. DQ.MATCH is using the rules defined in the Quality Knowledge Base
for “customer address” with a sensitivity setting of 85. The match code generated by this operation is
returned to the variable ‘customer_address_matchcode’.

Figure 11. SAS In-Database Data Quality Accelerator Example

10

CONCLUSION

The SAS In-Database Code Accelerator and the SAS Data Quality Accelerator execute the DS2 DATA
and THREAD statements in Hadoop to drive BY group processing and in-database data quality
operations. This paper discussed the techniques for writing SAS code to prepare data. These same
coding techniques are also leveraged by SAS Data Loader for Hadoop. This product provides directives
and an easy to use interface that enables a SAS user to quickly leverage their Hadoop cluster without the
need to write code.

RESOURCES

 SAS Institute, Inc. 2015. SAS® 9.4 DS2 Language Reference, Fourth Edition. Available at

http://support.sas.com/documentation/onlinedoc/base/index.htm

 SAS Institute, Inc. 2015. SAS® 9.4 In-Database Products: User’s Guide, Fifth Edition. Available at

http://support.sas.com/documentation/onlinedoc/indbtech/index.html

 SAS Institute, Inc. DS2 Programming: Essentials (training course). Available at

https://support.sas.com/edu/schedules.html?id=1798

ACKNOWLEDGMENTS

The author would like to thank Carlos Lara and Phil Weiss for their insights on staging analytical base
tables for predictive analytics.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

 Steven Sober

 100 SAS Campus Drive

Cary, NC 27513

SAS Institute Inc.

919-677-8000

Steven.Sober@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies

http://support.sas.com/documentation/onlinedoc/base/index.htm
http://support.sas.com/documentation/onlinedoc/indbtech/index.html
https://support.sas.com/edu/schedules.html?id=1798
mailto:Steven.Sober@sas.com

