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ABSTRACT  

Well, Hadoop community, now that you have your data in Hadoop, how are you staging your analytical 
base tables? In my discussions with clients about this, we all agree on one thing: Data sizes stored in 
Hadoop prevent us from moving that data to a different platform to generate the analytical base tables.  
To address this problem, I want to introduce to you the SAS® In-Database Code Accelerator for Hadoop.  

INTRODUCTION  

It’s not widely understood that analytics consumes a fundamentally different set of data than does query 
and reporting. Most business professionals are surprised when they learn that not just any data can be 
used for predictive modeling. Actually, the modeling data is required to be in a special format, usually 
one-record-per-subject, before it can be leveraged. So how does this data transformation process work?   

Operational data can consist of any entity or subject (for example, customer, company, region, product, 
date, and so on) that has sequential or multiple records. This type of operational data, however, needs to 
be both summarized and converted into a single-record or row-per-subject data set before any predictive 
modeling work can begin. We call this data manipulation process a “transposition” of the data. For the 
purposes of this paper, the resulting output is called an analytic base table (ABT). 

Suppose that we wanted to know, in a business setting for a large banking institution, which product 
categories over the lifetime of data collected are correlated and provide the bank with the best cross-sale 
opportunities. In order to answer this type of question, our raw transactional data needs some additional 
reorganization and summarization. Here is a simple example of a transactional data set that needs to be 
transposed before data mining can occur: 

 

Output 1. Sales History Table 

After you summarize the numeric field named 'quantity’ by ‘product_category’ and ‘product_purchased’ 
(character fields), the output will look similar to this: 

 

Output 2. Sales History Summarized  

While summarization (above) is the first step, the data still needs to be transposed. This means that the 
former ‘product_purchased’ column now becomes a distinct category column, and duplicate records are 
eliminated to produce a unique file, in this case by ‘product_category’. After the transposition occurs, the 
data will appear as follows: 
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Output 3. Summarized Sales History Transposed 

Now that we have staged the analytical base table, we can begin the next set of iterative work: namely 
exploring the transposed data to see how well it supports our proposed predictive analysis. Note that it is 
common for SAS users to stage analytical base tables that have tens of thousands of columns per 
subject. The reason for this is to improve the accuracy of the models produced by predictive analytics.  

To support our development of an analytical base table we will investigate how SAS® Data Loader for 
Hadoop will leverage our investment in Hadoop by moving the SAS processes that stage the analytical 
base table to a MapReduce framework. 

CHALLENGES IN PROCESSING HADOOP DATA  

Data Volume and Formats 

Data volumes stored in Hadoop make the processing of the data challenging. Source tables can easily be 
in the hundreds of gigabytes or even in terabytes. With these data volumes, you cannot move the data to 
a different platform. The processing must take place on the Hadoop cluster. Because Hadoop is an open-
source environment, there are numerous data formats supported. From a SAS point of view, as long as 
our source and target tables are support by SAS/ACCESS® Interface to Hadoop or SAS/ACCESS® 
Interface to Impala, you can process that data in the Hadoop cluster using the MapReduce framework.  

Single Input Stream 

MapReduce processes are limited to one input stream that makes joining of multiple sources a challenge. 
To overcome this, we have a few options. If your data is not stored in an SQL-based format, we can use 
PIG. With the SQL-based formats like Hive and Impala, we can use SQL to accomplish the join. With 
SQL, we can create a view of the join, and that view can be used as the single input stream to the 
MapReduce process. 

Single Output Stream 

MapReduce processes are limited to one output stream. This implies we cannot create multiple output 
tables in a single pass of the source table.  

Transposing Data 

Transposing data is a straightforward task that is not trivial to using open-source techniques or SQL. In 
SAS 9.4 (TS1M3) PROC TRANSPOSE will run via a MapReduce framework. Until then, we can leverage 
the TRANSPOSE directive in SAS Data Loader for Hadoop when our source tables are stored in Hive. If 
our source tables are not stored in Hive and they are in a format that the SAS® Embedded Process 
supports, we can leverage a component of the SAS Data Loader for Hadoop called the SAS In-Database 
Code Accelerator for Hadoop. This will enable us to write DS2 THREAD and DATA statements that run in 
a MapReduce framework. 

SAS IN-DATABASE CODE ACCELERATOR FOR HADOOP  

SAS In-Database Code Accelerator for Hadoop enables us to run DS2 code in a MapReduce framework. 
DS2 is a new, SAS proprietary programming language that is appropriate for advanced data 
manipulation, large transpositions, computationally complex programs, scoring models, and BY group 
processing. DS2 is included with Base SAS® and intersects with the SAS DATA step. It also includes 
additional data types, ANSI SQL types, programming structure elements, and user-defined methods and 
packages: 
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DS2 Data Type Description 

BIGINT stores a large signed, exact whole 
number, with a precision of 19 digits. 
The range of integers is -
9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807. Integer 
data types do not store decimal values. 
Fractional portions are discarded 

TINYINT stores a very small signed, exact whole 
number, with a precision of three digits. 
The range of integers is -128 to 127. 
Integer data types do not store decimal 
values. Fractional portions are 
discarded. 

VARBINARY(n) stores varying-length binary data, where 
n is the maximum number of bytes to 
store. The maximum number of bytes is 
not required to store each value. If 
varbinary(10) is specified and the binary 
string uses only five bytes, only five 
bytes are stored in the column. 

VARCHAR(n) stores a varying-length character string, 
where n is the maximum number of 
characters to store. The maximum 
number of characters is not required to 
store each value. If varchar(10) is 
specified and the character string is only 
five characters long, only five characters 
are stored in the column. 

Table 1. Partial Listing of DS2 Data Types. (For a complete list, see the SAS 9.4 DS2 Language Reference.) 

To accomplish the task defined in the introduction of this paper, we will use two approaches. When our 
source tables are stored in Hive, our preferred approach is to use the SUMMARY and TRANSPOSE 
directives in SAS Data Loader for Hadoop. When our data is not stored in Hive and it is in a format 
supported by the SAS Embedded Process, our approach will be to use DS2.   

Summary – DS2 Code 

Summarizing data using DS2 is very similar to using a DATA step.  

 

Figure 1. DS2 Code to Summary Sales History 

To summarize our data we are using a RETAIN statement for the variable ‘total’. In addition, we are using 
FIRST. LAST. processing with the BY group ‘product_purchaed’. Review line 36 of Figure 1. We will set 
the value for ‘total’ to zero for each new occurrence of the BY group. Review line 40 of Figure 1. When we 
hit the last occurrence of the BY group variable ‘product_purchased’, we will output one row. When this 
process completes, we will have our summary table: 
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Output 4. Summary Table 

Next, we need to set a global macro variable to the total number of rows in our summary table. This 
macro variable is used in the rename step, which is detailed later in this paper When we transpose our 
data, we will generate 7 new columns. The names of those columns are the values of 
‘product_purchased’ in Output 4. To obtain the number of rows in the summary table, we will use a DATA 
step: 

 

Figure 2. DATA Step to Set Macro Variable &varcnt 

Review line 30 of Figure 2. We test for the last record, and, when we find it, we use the CALL SYMPUT 
statement to create the macro variable ‘&varcnt’.   

Transpose - DS2 array processing 

With Hadoop, we must remember that our DS2 code will be processed in a MapReduce framework. Each 
data node of the Hadoop cluster will execute the DS2 code in parallel and without sharing any information 
between the data nodes. This impacts array processing, which is required when transposing data using 
DS2 code. To illustrate this, we will use an approach used by Base SAS programmers to transpose our 
data. In the DS2 code shown in Figure 3, ‘z’ is the variable that contains the array position for our two 
arrays ‘attribute’ and ‘location’: 

 

 

Figure 3. DS2 Code 

Using this approach works in a non-distributed computing environment. However, in a distributed 
computing environment, our transposed table is incorrect: 
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Output 5. Incorrect Transposed Table 

The reason that the table is incorrect is that each BY group is processed on a different data node, and 
this impacts our array position variable ‘z’. The value of ‘z’ will start at 1 on each data node and produce 
the incorrect results shown in Output 5. 

To generate a correct result, we must alter our DS2 code to add an offset to the variable ‘z’. So each BY 
group has the correct starting position in the arrays. To accomplish this, we will determine the number of 
unique values of our variable ‘product_purchased’ for each ‘product_category’: 

  

Figure 4. Base SAS Code to Calculate the Offset for Array Processing in a Distributed Environment  

Review line 24-26 in Figure 4. We are using PROC FREQ to process the summary table and write the 
results to a table: 

 
Output 6. Table Created by PROC FREQ  

We will now process the table created by PROC FREQ and create a file that contains the IF statements 
that we need to control which array location we are to populate:  

 

Figure 5. Base SAS Code to Generate a File to Control the Offset of the Array Position for Each 
‘product_category’ 
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The code in Figure 5 produced the following: 

 

Figure 6. Offset for Array Processing in a Distributed Environment 

We will now alter our DS2 code to use offsets. Review line 57 of Figure 7. We are initializing the variable 
‘z’ to zero for each BY group (that is, ‘product_category’). Review line 60 of Figure 7. This is how we will 
include the IF statements created in the code shown in Figure 5.  

 

Figure 7. Altered DS2 Code Using Offsets for Array Processing in a Distributed Environment 

When the code in Figure 7 is processed, it produces a correct transpose table: 

 

Output 7. Transpose Table using Offsets for Array Processing 

Before we give this transpose table to the data scientists we have one more thing to take care of because 
the names of our transposed columns ‘attribute1-attribute7’ are meaningless. What we want are the 
values shown in ‘location1-location7’—that is, Credit Card, Heloc, Auto Loan, Savings, IRA, Checking, 
and CD. 

Rename – DATA step 

The values in the array ‘location1-location7’ in Output 7 are the unique values of the variable 
‘product_purchased’. The best way to accomplish the rename in a distributed environment is to use a 
DATA step with a RENAME statement. Like DS2, a DATA step is also eligible to run via a MapReduce 
framework. The statements used in the DATA step will determine if this code is eligible for the 
MapReduce framework. In addition to the statements, the source and target tables must be stored in 
Hadoop for this code to be eligible. To accomplish the rename we will create a SAS macro: 
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Figure 8. DATA Step Code to Rename our Transposed Variables 

Like our offset code, the macro in Figure 8 will create a file that contains the RENAME and DROP 
statements. To do this, we will use the macro variable ‘&varcnt’. (See Figure 2.) Review lines 11-17 in 
Figure 8. In this step, we will loop through each array location (that is, ’location1-location7’). When we find 
a word in that array position, we generate the RENAME statement and set a flag to indicate that the 
RENAME statement has been generated and written to our file. If we do not set this flag, we could 
generate multiple RENAME statements for the same variable, and that would cause an error when this 
code is processed. 

 



8 

Figure 9. Rename Statements Generated by the Code in Figure 8. 

Review line 30 of Figure 8. We are including the file shown in Figure 9. A very positive side effect  
(meaning that the run time is very fast) of doing the rename with a DATA step is what happens under the 
covers. A Hadoop method is used to simply copy the source into the target with the new variable names. 
Figure 10 shows the SAS log information using the SAS OPTION “options sastrace=',,d,d' 
sastraceloc=saslog;”.   

 

Figure 10. SAS Log Showing the Hadoop Method to Create the Final Transposed Table  

We are now ready to hand off our analytical base table to the data scientist team who will apply predictive 
analytics to it so that they can make well-informed decisions.  

 

 

Output 8. Analytical Base Table  

SAS DATA QUALITY ACCELERATOR FOR HADOOP 

SAS Data Quality Accelerator for Hadoop (a component of SAS Data Loader for Hadoop) enables us to 
apply world-class data quality routines to data stored in Hadoop using a MapReduce framework.   

Data Quality Accelerator for 
Hadoop Operations 

Description Input Output 

Casting 

  

Casing applies context-
sensitive case rules to text. It 
operates on character content, 
such as names, organizations, 
and addresses.  

SAS INSTITUTE 

 

DQ_LOWERCASE 
DQ_UPPERCASE 

DQ_PROPERCASE 

 

 

sas institute 

SAS INSTITUTE 

SAS Institute 

Extraction 

  

Extraction returns one or more 
extracted text values, or 
tokens, as output.  

Blue men’s long-
sleeved 

button-down collar 
denim 

shirt 

Color: Blue 

Material: Denim 

Item: Shirt 

Gender Analysis 

  

Gender analysis evaluates the 
name or other information 
about an individual to be 
determined.  

Jane Smith 

Sam Adams 

P. Jones 

F 

M 

U 

Identification Analysis 

  

  

Identification analysis returns 
a value that indicates the 
category of the content in an 

input character string. 

John Smith 

SAS Institute Inc. 

NAME 

ORGANIZATION 

Matching 

  

Matching analyzes the input 
data and generates a 
matchcode for the data. 

Gidley, Scott A 

Scotty Gidleigh 

Mr Scott Gidlee Jr. 

Mr Robert J Brauer 

Bob Brauer 

XYZ$$$ 

XYZ$$$ 

XYZ$$$ 

ABC$$$ 

ABC$$$ 
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Data Quality Accelerator for 
Hadoop Operations 

Description Input Output 

Parsing 

  

Parsing segments a string into 
semantically atomic tokens.  

Mr. Roy G. Biv Jr Prefix: Mr. 

Given Name: Roy 

Middle Name: G. 

Family Name: Biv 

Suffix: Jr 

Pattern Analysis 

  

Pattern analysis returns a 
simple representation of a text 
string’s character pattern, 
which can be used for pattern 
frequency analysis in profiling 
jobs. 

919-677-8000 

NC 

999-999-999 

AA 

Standardization 

  

  

Standardization generates a 
preferred standard 
representation of data values. 

N car 

919.6778000 

Smith, Mister James 

NC 

(919) 677–8000 

Mr. James Smith 

Table 2. SAS Data Quality Accelerator for Hadoop Operations  

 

Data Quality Operations 

Let’s review an example of the SAS Data Quality Accelerator for Hadoop. Like SAS In-Database Code 
Accelerator for Hadoop the SAS In-Database Data Quality Accelerator uses DS2 to run data quality 
operations in a MapReduce framework.  

For our example, we will use the “Matching” operator. (Review Matching in Table 2). Matching analyzes 
the input data and generates a match code for the data. Match codes are encoded representations of 
character values that are used for analysis, transformation, and standardization of data. Review lines 79-
82 in Figure 11. On line 79, we are declaring to our DS2 program everything that we need to cleanse our 
data in a MapReduce framework. On line 81, we are loading the Quality Knowledge Base (QKB). The 
QKB contains all of the defined rules, criteria, and data by which analysis and cleansing can be 
performed for data. Review line 87 of Figure 11; DQ.MATCH is the data quality operation that we are 
applying to the variable ‘Address”. DQ.MATCH is using the rules defined in the Quality Knowledge Base 
for “customer address” with a sensitivity setting of 85. The match code generated by this operation is 
returned to the variable ‘customer_address_matchcode’. 

 

Figure 11. SAS In-Database Data Quality Accelerator Example 
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CONCLUSION 

The SAS In-Database Code Accelerator and the SAS Data Quality Accelerator execute the DS2 DATA 
and THREAD statements in Hadoop to drive BY group processing and in-database data quality 
operations. This paper discussed the techniques for writing SAS code to prepare data. These same 
coding techniques are also leveraged by SAS Data Loader for Hadoop. This product provides directives 
and an easy to use interface that enables a SAS user to quickly leverage their Hadoop cluster without the 
need to write code.  
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