Paper SAS1561-2015
Driving SAS® with Lua

Paul Tomas, SAS Institute Inc.

ABSTRACT

Programming SAS® has just been made easier, now that SAS 9.4 has incorporated the Lua programming language
into the heart of the SAS System. With its elegant syntax, modern design, and support for data structures, Lua offers
you a fresh way to write SAS programs, getting you past many of the limitations of the SAS macro language. This
paper shows you how you can get started using Lua to drive SAS, via a quick introduction to Lua and a tour through
some of the features of the Lua and SAS combination that make SAS programming easier. SAS macro programming
is also compared with Lua, so that you can decide where you might benefit most from using each language.

INTRODUCTION

Base SAS® 9.4 introduces the LUA procedure which embeds the Lua 5.2 run-time environment into the SAS System
and makes SAS functionality available through Lua. Lua offers a simple syntax and helpful error messages, and it
supports data structures and modules. All these Lua features contribute to making your SAS programming easier,
especially for larger and more complex projects. Lua is a programming language best known for its excellent
performance both in terms of speed and memory footprint. Lua was created by Roberto lerusalimschy at the Pontifical
Catholic University in Brazil and is maintained by a small group of developers there. Lua’s purpose is to script C-based
software. Because SAS is written in C, Lua is a great fit for SAS. Lua is distributed as open-source software and is
documented both online and in a number of books. Lua has been ported to a number of platforms, including iOS and
Android. Some popular games, such as Angry Birds, are written in Lua.

Lua is not a replacement for the SAS DATA step or any of the SAS procedures, but rather a tool that will enhance your
ability to drive SAS by using some of the powerful capabilities of a modern programming language.

Lua’s simple syntax makes it easy to learn by example. But beyond the basics, Lua provides some additional constructs
that you can use to capture some of the more advanced concepts behind the language. You are encouraged to
consult the resources mentioned at the end of this paper, in particular lerusalimschy (2013).

In this paper, inline Lua keywords and code phrases use bold Courier font (for example, “the print function”),
whereas inline SAS keywords use plain font in all capital letters (for example, “the TRIM function”).

GETTING STARTED

Many introductory texts to a programming language start off with a “Hello, world” example. This classic greeting
program can be written in Lua in just one line:

print ("Hello, world")

Line comments in Lua begin with ==, and block comments begin with ——[[and end with ==]1. So the program
could be embellished with documentation as follows:

-—II

This program prints 'Hello, world' to the console.

-—11
print ("Hello, world") -- print 'Hello, world'

Notice that statements do not end with semicolons (although you can add semicolons without any ill effects). However,
you do need semicolons if you write multiple statements on one line:

print ("Press the button."); print ("That was easy!")

RUNNING Lua IN SAS

The LUA procedure enables you to run Lua code from SAS. PROC LUA runs the Lua virtual machine inside the
SAS process to offer seamless integration of Lua with SAS. You can execute Lua code by embedding it within a
SUBMIT/ENDSUBMIT block in the PROC LUA invocation, as shown in the following statements:

/* Embedded Lua statements =*/
proc lua ;
submit;
print ('Hello from Lua!')
endsubmit;
run;

The preceding program, prints the 'Hello from Lua!' message to the SAS log. PROC LUA routes output from
Lua’s print function to the SAS log.

Lua BASICS

Lua VARIABLES

In Lua, you usually declare a variable by using a 1ocal statement. For example:

local pi = 3.14 —— Declare a numeric variable
local guest = "Veronica" —-- Declare a string variable

Using the 1ocal keyword is recommended because omitting it results in the variable being declared to be global in
scope.

Lua infers the type of the variable from the value that is provided to it; hence there is no type qualifier in variable
declarations. The basic types are number, string, and boolean. The Boolean values are true and false. There
is also a special type called nil, which is used to represent the absence of a value and is treated as false when
evaluated in a Boolean context. In Lua, any value that is not nil or false is evaluated as true in a Boolean context.
This includes the numeric value zero which, although interpreted as £alse in many other languages, is treated as
Boolean true in Lua.

SAS missing values need special treatment because they are not like ordinary numbers. Currently only the standard
SAS missing value (.) is supported in Lua. Missing values are discussed in the section “MISSING VALUES” on
page 6.

A number of string manipulation functions are available to extract substrings, locate character sequences, replace
fragments, and so on. One common string operator is ' . . ', which is used to concatenate strings together, as shown
in the following statements:

local strl = "Hello"
local str2 = "world"
print(strl .. " " .. str2) -- prints "Hello world"

Other variable types exist, such as table (see the next section) and function. For more information about these
and other types, see lerusalimschy (2013) and the Lua documentation at http://www.lua.org.
TABLES

Lua also supports flexible in-memory data structures called tables, which can be extremely useful and can drastically
simplify your programming.

http://www.lua.org

Tables as Arrays

Tables can be set up to act like arrays (lists), as in the following statement:
local shoppingList = {'milk', 'flour', 'eggs', 'sugar'}

When tables are declared in this fashion, items are indexed by a numeric index:
local drink = shoppingList[1]

Much like SAS DATA step arrays, arrays in Lua start at index 1 by default.

You can iterate over an array by using the ipairs function, as in the following code:

for i, item in ipairs (shoppinglList) do
print (i, item)
end

This code prints the following to the console:

milk
flour
eggs
sugar

[VSR S

The ipairs function returns two values with each iteration: the current index into the array (assigned to variable i in
the preceding example) and the value of the item at that index in the array (assigned to variable item).

Tables as Dictionaries

Lua tables can also be set up to act like dictionaries (hash tables). For example:

local band = {
vocals='Robert Plant’',
guitar='Jimmy Page',
bass='John Paul Jones',
drummer="'John Bonham'

Using a table in this manner enables you to index entries by key, as in the following statement:
local singer = band.vocals -- you can also use band['vocals']

Lua provides a function called pairs (similar to ipairs) that iterates through all the key/value combinations in the
dictionary. For example, the following statements print each key and value that are found in the previously declared
Lua table:

for key, value in pairs(band) do
print (key, value) -- print each key and value found in the 'band' table
end

The preceding code produces the following output:

bass John Paul Jones
drummer John Bonham
vocals Robert Plant
guitar Jimmy Page

Tables can contain other tables, and tables can also contain functions (as described in the next section). The
combination of array-like behavior with hash table semantics enables you to represent pretty much any type of data
structure in memory. Furthermore, Lua provides the concept of metatables, which enable you to control how tables
respond to the insertion and retrieval of values. For more information about Lua tables, see lerusalimschy (2013).

FUNCTIONS

Functions can be defined in Lua by using the function keyword, as follows:

function sayHello (name)
print ('Hello ' .. name)
end

Function arguments are declared within the set of parentheses that precedes the function body, and they are positional
only. In the preceding example, name is the one and only argument to sayHello. So the function could be invoked
via the following statement:

sayHello('Veronica')

You can achieve the effect of named arguments by using a Lua table. For example, the following statements declare a
function that expects a single table parameter (args). The function accesses the elements of that table by key name
(firstName, lastName). The function is then invoked by passing in a Lua table that has values for those keys.

function sayHello (args)

print ('Hello ' .. args.firstName .. ' ' .. args.lastName)
end

sayHello({ firstName='Andrew', lastName='Carnegie'})

The preceding code prints the following output:
Hello Andrew Carnegie

In Lua, you can assign functions to variables, just as you would assign numbers, strings, and tables. This is especially
useful in creating tables of functions. Lua modules are implemented this way, with functions assigned to tables, using
keys for the function names. For example, the following statements create a table called my_module that contains
two functions, sayHello and sayGoodBye:

local my_module = {}
my_module.sayHello = function (name)

print ("Hello " .. name)
end
my_module.sayGoodBye = function (name)
print ("Goodbye " .. name)
end

Now that this table is defined, you can access the functions just as you would access any other type of table entry. For
example:

my_module.sayHello ("Dave")
my_module.sayGoodBye ("Helen")

You return values from functions by using a return statement. For example, the following function definition returns
the result of calculating the area of a circle, given the radius as the function argument:

function area_of circle(radius)
return 3.l4xradius”2
end

Lua enables you to return multiple values from a function—the ipairs function is an example of this. To write
a function that returns multiple values, you simply provide those values, separated by commas, to the return
statement. The following example makes use of some functions that are provided via the sas table (discussed in the
next section) to retrieve the components of the current date:

function split_date()

—-—- get current date

local date = sas.date()

—-- return day, month, year

return sas.day(date), sas.month(date), sas.year (date)
end

You could then call this function as follows:

local day, month, year = split_date()
print(" =H, d, Hm="’ m, "y=",y)

Now that the basics of Lua have been covered, the next step is to see how you can use Lua in your SAS programs.

CALLING SAS FUNCTIONS FROM Lua

THE sas TABLE

When PROC LUA initializes the Lua state, it creates a special global Lua table called sas. This table is always
available to your Lua programs. All the SAS functions you are accustomed to using in DATA step code (such as MIN,
MAX, TRIM, and so on) are available in Lua by adding the prefix sas. to their names. So the MIN function in SAS
becomes sas.min in Lua, the TRIM function in SAS becomes sas.trimin Lua, and so on. The only exceptions to
this rule pertain to functions that make sense to operate only in a SAS DATA step. One example is the LAG function,
which has no equivalent outside a DATA step and therefore cannot be called from Lua.

The following code uses the sas . symget function to read a SAS macro variable and the sas . symput function to
update that same macro variable:

%$let foo=bar;
proc lua;

submit;
local foo = sas.symget ("foo")
print ("foo is ", foo) -- prints 'bar'
sas.symput ('foo', 'baz"')

endsubmit;

run;

$put &foo; /* prints 'baz' */

The call to sas . symput updates the macro variable £oo with the new value baz. The %PUT statement that follows
the PROC LUA invocation picks up the new value for foo.

The various math functions provided by Lua (such as pow, sin, cos, and so on) are mapped to their SAS equivalents
by PROC LUA so that your results stay consistent.

CALLING FCMP FUNCTIONS

You can also call functions that are created by the FCMP procedure. Only OUTARGS arguments that are arrays
can be modified by the called function. To use FCMP functions from Lua, simply define them as you normally would
by using PROC FCMP, and then set the CMPLIB= system option. You can then call your new functions from Lua
as you would for any other SAS function, by using the same sas. prefix. The following statements use the FCMP
procedure to define a function called SUMX, which is subsequently accessed from Lua by referring to it using the
name sas . sumx:

proc fcmp outlib=work. foo.foo;
/* define new function called 'sumx' =*/
function sumx (x[*]);
sum = 0
do i = to dim(x);
sum + x[1i];

R~

sum
end;
return(sum);
endsub;
run;
options cmplib=work.foo;
proc lua ;
submit;
array = { 1, 2, 3, 4, 5}
sum = sas.sumx(array) -- call 'sumx' from Lua
print (sum)
endsubmit;
run;

MISSING VALUES

As mentioned earlier, SAS missing values need special treatment. You can check whether a value is missing by
using the sas.is_missing function, or just by using Lua’s equality operator == against the sas .MISSING value
as follows:

local val = sas.inputn(".", "2.")
print (val==sas.MISSING) -- or you can use sas.is_missing(val)

In Lua, comparisons with other numbers work as expected, with sas . MISSING interpreted as negative infinity.

SUBMITTING SAS CODE FROM Lua

In addition to providing a gateway to SAS functions, the sas table contains some additional functions to make
integration with SAS easier. One such function is the sas. submit function, which enables you to submit SAS code
from Lua. The following example calls sas . submit to sort a data set:

sas.submit ("proc sort data=work.mydata; run;")
Using Lua’s support for [[and 1] as text delimiters, you could also write the preceding code as follows:

sas.submit[[
proc sort data=work.mydata;
run;

11

Using [[and 11 delimiters enables you to use quotes and double quotes within the block of code without needing to
escape those characters.

Local variables that precede the call to sas.submit are automatically resolved in the block of code if they are
referenced through the use of @ delimiters, as in the following:

6

local dataset = "sashelp.class"
sas.submit|[[
proc print data=Q@dataset(@;
run;

11

The sas. submit function also supports an optional table parameter so that you can explicitly control the key-value
pairs that are made available for resolution in the block of SAS code. The following statements invoke sas . submit
by passing in two arguments: the block of SAS code (as a Lua string), and a Lua table containing a key-value pair that
is used to resolve the @dataset@ token in the SAS code:

sas.submit ([[
proc print data=Q@dataset(@;
run;

11, { dataset="sashelp.class"})

The preceding invocation to sas. submit causes the following SAS code to be submitted:

proc print data=sasehelp.class;
run;

sas.submit_ FUNCTION

Sometimes you might want to submit some SAS code but not execute it immediately, such as when you are generating
SAS code in a loop and you need to finish up with a submitted RUN statement. In this case, you use the sas . submit_
function (that is sas . submit followed by an underscore). For example:

sas.submit_([[data work.class;]]
—— more submit_ calls

sas.submit ("run; ")

The sas.submit_ function queues the SAS code for execution, but that code does not execute until you follow up
with a call to sas.submit.

READING AND WRITING SAS DATA SETS

Submitting SAS code is useful, but often the control logic that determines what SAS code needs to be submitted
next depends on the values that are contained in a SAS data set. To read values from a SAS data set, you use the
sas . open function, which returns a handle that provides functions to read observations, retrieve values of data set
variables, and release the handle.

The following simple example opens a data set and prints some values from each observation:

local dsid = sas.open("sashelp.class")
for row in sas.rows(dsid) do
print (row.name, row.age)
end
sas.close (dsid)

Each row that is returned by the sas.rows () function in the for loop is returned as a Lua table, using the data
set variable name in lower case as the key that corresponds to each value in that row. After reading each row, the
sas.close function is called to release the resources that are associated with the data set handle. If you forget to
call sas.close () after using the data set, you will see a warning like the following printed to SAS log when the data
set handle goes out of scope:

WARNING: Closing SASHELP.CLASS - handle has gone out of scope.

This is Lua’s garbage collection mechanism at work, making sure that unused variable references are cleaned up.

Although the preceding example works well for narrow tables that contain relatively few columns, it can be expensive
for wider tables, because each variable is preloaded into the Lua table for each row. If you don’t need to access all
variables at one time for each observation, you can instead select the variables you want by using the sas.get
function, as follows:

local dsid = sas.open("sashelp.class")
while sas.next (dsid) do
print (sas.get (dsid, "name"), sas.get (dsid, "age"))
end
sas.close (dsid)

The sas.next () function moves forward through a SAS data set until it reaches the last observation. After it reaches
the last observation, it returns nil, which evaluates to £alse, thus ending the while loop. The sas.get function
is used to read values from the current observation; it accepts either a variable name as a string value or the variable
index (position) as a number. For example, an alternate method to read the values of every data set variable could be
implemented as follows:

local dsid = sas.open("sashelp.class")
local nvars = sas.nvars (dsid)
while sas.next (dsid) do

for i=1,nvars do

print (sas.get (dsid, i))

end
end
sas.close (dsid)

Here the sas .nvars function is used to determine the number of variables in the data set.

The sas.vars function, similar to the sas . rows function, enables you to iterate across metadata for all the variables
in a SAS data set, as in the following statements:

local dsid = sas.open("sashelp.class")
for var in sas.vars(dsid) do

print ("var=", table.tostring(var))
end
sas.close (dsid)

The value returned by each call to sas.vars is a Lua table that contains the attributes of the current variable. If you
were to run that example, you would see entries like the following printed to the SAS log:

var= table: 0AF61828=

["fmt_dec"]=0
["type"]="C"
["label"]=""
["fmt_width"]=0
["informat"]=""
["name"]="Name"
["infmt_dec"]=0
["format"]=""
["infmt_width"]=0
["length"]=8

If, instead of iterating across all variables, you only want to access information about a single variable, you can do so
by using the sas.varinfo function as follows:

local dsid = sas.open("sashelp.class")

—— get info for variable 'name'

print ("name=", table.tostring(sas.varinfo(dsid, "name")))
sas.close (dsid)

The table that sas .varinfo returns is identical in structure to the table that sas .vars returns.

PROC LUA provides a number of other functions to read data set metadata, and you can find out more about them in
the PROC LUA documentation at http://support.sas.com/documentation/solutions/base/lua.

SUBSETTING DATA

When you read SAS data sets, it is sometimes necessary to restrict the set of observations that are read to observations
that meet some criterion. You can subset data by using the sas .where function, as follows:

local dsid = sas.open("sashelp.class")
sas.where (dsid, "age>11l")
while sas.next (dsid) do
print (sas.get (dsid, "name"), sas.get (dsid, "age")
end
sas.close (dsid)

An active where clause can be augmented by using the ALSO keyword, rolled back by using the UNDO keyword, and
cleared by using the CLEAR keyword, as shown in the following examples:

sas.where (dsid, "age>11l")
sas.where (dsid, "ALSO height<48")
sas.where (dsid, "UNDO") —-- undo the last where clause

sas.where (dsid, "CLEAR") —- clear all active where clauses

WRITING TO SAS DATA SETS

The process of writing to a SAS data set involves first defining a new data set in terms of its name and structure and
then opening it for updating and inserting observations. These tasks are described in the following sections.

DEFINING A NEW SAS DATA SET FROM SCRATCH

The sas.new_table function enables you to define a new (empty) data set. You provide the name of the new data
set, and you provide a Lua table that is set up as an array of Lua tables, each of which contains the attributes of one
data set variable. For example, the following code creates a new SAS data set called Work.Status that contains three
variables, node, status, and datetime:

sas.new_table ("work.status", {
{ name="node", type="C", length=36},
{ name="status", type="C", length=16},
{ name="datetime", type="N", length=8, format="DATETIME19."}
h

Format, informat, length, and label specifiers are supported.

http://support.sas.com/documentation/solutions/base/lua

WRITING TO A NEW SAS DATA SET

After you define a new SAS data set, you can use it for output by opening it in update mode. You open it in update
mode by specifying u as the second argument to the sas . open function, as in the following statements:

local dsid = sas.open("work.status", "u")

You then append observations to this data set by using the sas . append function.

A typical scenario is to write out observations in a loop of some sort, as follows:

local dsid = sas.open("work.status", "u")
for|while some-condition do

local node =
local status =
local dt =
sas.append (dsid)
sas.put (dsid, "node", node)
sas.put (dsid, "status", status)
sas.put (dsid, "datetime", dt)
sas.update (dsid)

end

sas.close (dsid)

The sas. append function creates a new observation for the data set. The sas.put function places values in that
new observation. Finally, the sas.update function is called to write the new observation with those values to the
data set.

UPDATING AN EXISTING SAS DATA SET

You can update an existing data set by opening it in update mode. You locate the observation you want to update by
using a where clause and then using the sas . put function, followed by sas.update, to save the new values into
that observation, as shown in the following statements:

local dsid = sas.open("work.status", "u")
sas.where (dsid, "node='segmentation'")
sas.put (dsid, 'status', 'completed')
sas.update (dsid)

sas.close (dsid)

ADDITIONAL FUNCTIONS
sas.exists and sas.fileexists

SAS functions treat 0 as false, whereas Lua treats 0 as true. Therefore, code like the following will not work as
intended:

if sas.exist ("work.foo") then

The correct code would be:

if sas.exist ("work.foo")~= 0 then -- correct, but not intuitive

10

The sas.exists function has been added to return a Boolean result to allow for more intuitive code:

if sas.exists ("work.foo") then -- correct

The function sas . fileexists works in the same way, by returning a Boolean result as opposed to the 0 or 1 result
that sas.fileexist returns.

sas.glibname and sas.gfilename

If you allocate a SAS library from Lua, either by calling the sas . 1libname function or by submitting SAS code (using
sas.submit), you will find that the library allocation does not persist beyond the execution of PROC LUA. It does
not persist because your Lua code executes within a PROC environment, and SAS operations such as allocating a
SAS library or a new fileref limit their scope to their immediate environment.

If you need a SAS library to persist beyond the duration of the PROC LUA execution, use the sas.glibname
function. Prefixing the function name with a g tells PROC LUA to target the global environment, which lives outside
the PROC LUA boundary. For example, the following statements use the sas . glibname function to allocate a SAS
library from Lua, and then make use of that library in a SAS DATA step that follows the PROC LUA statements:

proc lua;
submit;
sas.glibname ("MYDATA", "/home/fred/mydata")
endsubmit;
run;

data mydata.orders; /* use the library allocated in Lua */

run;

WORKING WITH LARGER PROJECTS

Using embedded statements within the PROC LUA invocation works well for running ad hoc snippets of Lua code, but
it has the following limitations:

e When programs are large, it becomes difficult to maintain all the code in one SAS program.

e Because the code is embedded in a SAS procedure invocation, you cannot use editing tools that support Lua
syntax when you edit your Lua source code. So you lose the benefit of features such as syntax highlighting and
context awareness.

e Because of the way the SAS language processor handles SUBMIT/ENDSUBMIT blocks, using embedded Lua
code in PROC LUA does not work when that code is incorporated into a SAS macro.

Therefore, another mechanism is provided via PROC LUA’s INFILE= option, which enables you to reference a Lua file
by name (without the ./ua extension). The following SAS statements reference the hello. lua file:

/* Referencing a Lua script called 'hello.lua' =*/
proc lua infile='hello';
run;

Because there are no SUBMIT/ENDSUBMIT blocks in this invocation, this code can be wrapped inside a SAS macro.
This approach is more appropriate when you build up a set of Lua programs that act as modules that can be called by
each other. When you use this approach, you must place your Lua source file somewhere in the Lua search path so
that PROC LUA can find it.

11

Lua SEARCH PATH
The Lua search path is similar to the SASAUTOS path, which is used to locate SAS macro.

You set up the search path by issuing a FILENAME statement that uses LuaPath for the fileref before you invoke PROC
LUA, as shown in the following example:

filename LuaPath '<path-to-directory-containing-your-Lua-file>';

You can also use concatenated paths:

filename LuaPath ('<pathl>' '<path2>' ...etc.);

For example, suppose you have the following Lua program:

print ('Hello from Lua')

If you have saved this program as c:\MyLuaFiles\hello.lua, then you could run it from SAS as follows:

filename LuaPath 'c:\MyLuaFiles';
proc lua infile='hello';
run;

Note that you omit the .lua extension when you specify the INFILE= option.

When you use concatenated paths in your LuaPath FILENAME statements, PROC LUA loads the first file it finds in
the search path whose name matches the one specified in the INFILE= option.

Lua MODULES

The value of the LuaPath fileref determines not only how Lua files are located by the INFILE= option of PROC LUA,
but also how files are located when Lua processes a require statement, a mechanism that is used for loading Lua
modules from within Lua. For example, the split_date function from the earlier example could be contained within
a Lua script of its own and then reused by various Lua programs, as in the following example:

—— utils.lua

local module = {}
module.split_date = function(list)
local date = sas.date() —-- get current date
return sas.day(date), sas.month(date), sas.year(date) -- return day, month, year
end
return module -- return table containing 'split_date' function to caller

The preceding code defines a local table variable called module and then inserts the split_date function in that
table, using split_date as the key. The last statement returns the table to the caller. The table thus acts as a
module, which is just a table of functions.

If you save this code as utils.lua under c:\MyLuaFiles, then other Lua scripts on that same search path can use make
use of that function by using the following statements:

—— the table returned by 'utils.lua' is assigned to 'myUtils'
local myUtils = require('utils')

—— access the split_date function in the table

local day,month,year = split_date()

12

The require statement is very similar to the INFILE= option of PROC LUA. The main difference is that the INFILE=
option always causes the specified Lua file to execute, whereas the require statement follows Lua’s own rule of
loading the code only if it has not been previously loaded. Thus the require statement is typically used to load
modules (that is, Lua tables of functions and values) into the calling program, whereas the INFILE= option is used to
call the main entry point into a Lua program.

The Lua search mechanism enables you to hierarchically structure your various Lua modules. For example, you could
use your company’s name to distinguish your site’s utils module from a third-party version by storing utils.lua under
a subdirectory of c:\MyLuaFiles (for example, c:\MyLuaFiles\com\mycompany). In that case, your require statement
would become the following:

local utils = require('com.mycompany.utils')

The INFILE= option also supports this type of hierarchy.

LIMITATIONS

Currently, PROC LUA does not support all the modules that Lua provides. For example, PROC LUA does not currently
support the os module, which offers direct support to the operating system. Lua’s language features for multithreading
have also been disabled.

The Lua community has created a large set of Lua modules that are available online. However, you might find that
some third-party Lua modules do not work in PROC LUA. In particular, if they were written in C or involve custom-built
C libraries, PROC LUA cannot run them. Lua code that is written for a Lua version other than 5.2 might need some
modifications to work in PROC LUA.

COMPARISONS WITH THE SAS MACRO LANGUAGE

Traditionally, a series of DATA and PROC steps is controlled through the use of the SAS macro language. For large or
more complex programs, or for projects that involve many other contributors, Lua’s features can help make these
projects more manageable. The following sections summarize some of the key differences between the SAS macro
language and Lua.

DATA STRUCTURES

Because the SAS macro language is based on text, there is very limited support for data structures that can be
represented in a SAS macro variable. Although a list of items can be implemented as a space-delimited series
of strings, this can get cumbersome if the strings themselves contains spaces. Hash tables, trees, or other more
complex structures would be much more difficult to implement. In contrast, Lua tables enable you to represent rich
data structures in a single variable, and they are accompanied by a set of functions to help you manage those data
structures.

ITERATION

The differences in iteration features between the SAS macro language and Lua can be best highlighted through a
simple example.

Here is how you might use the SAS macro language to process a list of names:

/* Macro */
%$let names=George Paul Ringo John;
$let n = 1;
%$let nm = %$scan(&names, &n, " ");
$do %$while(&nm ne %$str());

$put &name;

%$let n = %eval(&n + 1);

%let nm = %scan(&names, &n, " ");
%$end;

13

Compare this with Lua:

local names={"George", "Paul", "Ringo", "John"}
for i,v in ipairs(names) do

print (v)
end

By eliminating the need for the various % and & characters, the code becomes more readable and easier to maintain
and debug.

FUNCTIONS

The SAS macro language offers support for returning values from macros, but in some cases modularity is broken
because the internals of how a macro is written determines how the macro can be invoked.

For example, if your macro does not include any DATA or PROC steps, you can return a value in this manner:

$macro do_something;
%$local somevar;

&somevar /* return the value *?
$mend

%$let a=%do_something;

If you were to introduce a PROC step into that macro, you would no longer be able to use that macro as originally
intended. The following code fails:

$macro do_something;
proc sql;
select max(age) into :foo from sashelp.class;
quit;
&foo
$mend;
%let a=%do_something; /* generates syntax error x*/

Thus, if you adopted this return style when you first implemented the macro and then later you needed to introduce a
SAS PROC or DATA step into it, you would end up needing to modify all the calls made to this macro, because you
would now have to call this macro differently.

You might solve this problem by using code like the following:

$macro do_something (in=, out=);
%local somevar;

%let &out=Hello; /* hope that caller didn't use 'somevar'
as the name of the output variable */
$mend;

%$local a;

%$do_something (in=foo, out=a);
$put a=é&a;

However, this approach suffers from another limitation: a potential name conflict between the OUT= parameter value
and any local variables that are used by that macro. In Lua, issues like these do not exist because functions offer true

encapsulation, as shown in the following statements:

14

function do_something(in) —— caller does not need to
local variable —— to know the local variable
local somevar —— names of this function

return "Hello"
end

local vl = do_something("foo")

Returning multiple values is even more challenging in a macro, forcing you to either accept greater proliferation of
global variables or use a similar OUT= parameter as in the previous example. Either alternative forces the caller of
the macro to become familiar with the internals of that macro, in order to know what names not to use for any OUT=
parameters so that they do not conflict with any of the macro’s local variables.

Lua can return multiple values in two ways. One way is by putting all of the return values into a table and returning the
table, as in the following example:

function do_something (in)
local somevar

return {color="red", make="Honda", price=12500}
end

local vl = do_something("foo")
—— v1= {color="red", make="Honda", price=12500}

As seen earlier in the section “FUNCTIONS” on page 4, the other way Lua can return multiple values is to return them
as a comma-separated list, which can then be received by a comma-separated list of variables.

Calling SAS functions is straightforward in Lua. You use the sas. prefix instead of wrapping the function call in the
%SYSFUNC macro. For example, in the SAS macro you would use the following statement to invoke the RAND
function:

%$let x = $sysfunc(rand(Lognormal))
In Lua, you would just use the following statement:

X = sas.rand("Lognormal")

ERROR REPORTING

Lua syntax errors are reported with the line number of the offending Lua statement. For example, the following error
message indicates an error in line 9 of the Lua code:

ERROR: There was an error loading the file
ERROR: test.lua:9: unexpected symbol near ')'

Contrast this to errors that are reported by the SAS macro processor, such as the following:

ERROR: An unexpected semicolon occurred in the %DO statement. A dummy macro
will be compiled.

This is also true of run-time errors—Lua reports the line number of the location where the error is first encountered.

Lua offers this benefit because it does not use the SAS macro preprocessor approach to code execution. You will
experience this benefit when you when debug your programs, especially for large programs that involve hundreds
or thousands of lines of code. The result of macro expansion is a set of SAS statements that might not correspond,
line-by-line, to the statements in your original source file. Thus, when errors that are reported in the SAS log refer to
line numbers, those line numbers are often not useful to you. On the other hand, Lua reports back line numbers that
you can relate to the lines in your source file—so you can quickly locate the problem area and address the issue.

15

ARITHMETIC

In the SAS macro language, it is necessary to use the %EVAL macro to indicate where a text expression should be
interpreted numerically. In Lua, this is not necessary because numeric data types are supported directly. There is
also no need in Lua to distinguish between floating point and integer operations, as is the case in the SAS macro
language, where you need to know when to use %EVAL and %SYSEVALF. Thus, to increment a counter variable in
the SAS macro language, you need to write the following:

%$let count = %eval(&count + 1)
whereas in Lua, you can simply write the following:

count = count + 1

CONCLUSION

The LUA procedure offers a new approach to writing SAS code by enabling you to use Lua to orchestrate your PROC
and DATA steps. This difference is especially noticeable when you work with larger and more complex programs that
can be very difficult to implement using only the SAS macro language for the control logic. The fact that PROC LUA
and the SAS macro language can work together lets you decide how much of one approach versus the other to adopt.

REFERENCES

lerusalimschy, R. (2013). Programming in Lua. 3rd ed. Rio de Janeiro: Lua.org.

Lua.org (2013). “The Programming Language Lua.” http://www.lua.org.

ACKNOWLEDGMENTS

The author is grateful to Donald Erdman for his guidance in the creation of PROC LUA, for some code examples used
in this paper, and for reviewing this paper. Rick Langston’s assistance in preparing PROC LUA for release and in
reviewing this paper has been immeasurable. Dan Jackson provided valuable input into the design of the auxiliary
functions and string handling routines. Tim Hunter prepared much of the ground work for embedding Lua in SAS. The
author also thanks Anne Baxter for editorial assistance.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Paul Tomas

SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
919-531-5339
Paul.Tomas@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

16

http://www.lua.org

