
1

Paper SAS1385-2015

Federated Security Domains with SAS® and SAML

Mike Roda, SAS Institute Inc.

ABSTRACT

From large holding companies with multiple subsidiaries to loosely affiliated state educational institutions,
security domains are being federated to enable users from one domain to access applications in other
domains and ultimately save money on software costs through sharing. Rather than rely on centralized
security, applications must accept claims-based authentication from trusted authorities and support open
standards such as Security Assertion Markup Language (SAML) instead of proprietary security protocols.
This paper introduces SAML 2.0 and explains how the open source SAML implementation known as
Shibboleth can be integrated with the SAS® 9.4 security architecture to support SAML. It then describes in
detail how to set up Microsoft Active Directory Federation Services (AD FS) as the SAML identity
provider, how to set up the SAS middle tier as the relying party, and how to troubleshoot problems.

INTRODUCTION

This paper will introduce the reader to federated identity and give a technical overview of what is perhaps
the most important standard in this space, the Security Assertion Markup Language (SAML) 2.0 standard.
Designed as layers of standards on top of each other, at the outer-most layer are SAML profiles that
implement the use cases we are interested in, single sign-on, federated identity, and others. We will
discuss the layers that make up the SAML 2.0 standard and look at how SAML distinguishes between the
roles of the identity provider and service provider.

With some background on SAML 2.0, we will examine how the SAS 9.4 middle tier can integrate with
existing security infrastructure in the enterprise by leveraging pluggable authentication modules for the
Apache HTTP server that SAS Web Server is based. One such module comes from the open source
Shibboleth project and implements a SAML 2.0 service provider. We will walk through the configuration
required to use Shibboleth with the SAS middle tier in order to support authentication through an external
identity provider.

On the other end of the federation is Microsoft Active Directory Federation Services (AD FS) 2.0. We will
show how to use Microsoft’s implementation of the SAML 2.0 standard to pull user attributes out of the
Active Directory LDAP and send them as claims in the SAML assertion to the SAS middle tier, where they
can be consumed for authentication.

SAML 2.0 is a very flexible standard that supports multiple communication mechanisms known as
bindings, and ways of including information about users in the assertions. This unfortunately means that
some troubleshooting will probably be required to get things working. In addition to showing what to look
for in the log files, we will explain how to use a web browser to capture, decode and view the SAML
assertions and look at examples of the XML data.

BACKGROUND ON FEDERATED IDENTITY AND SAML 2.0

The system of international travel passports used around the world is an example of federated security
domains and claims-based authentication used in the physical world. People can prove their identity and
citizenship within their own country using local documentation such as a birth certificate but this
documentation is not accepted anywhere else. In order to collaborate on international travel, countries
issue standardized passports to their citizens and accept the passports from other countries. The
passport contains claims about the person’s name, birthdate, and so on. Watermarks and other security
devices prevent tampering and ensure authenticity. It would be impractical for a single government
authority to issue passports for everyone in the world.

The same holds for computer systems. Collaboration and sharing applications between affiliated but
distinct enterprises or institutions is becoming increasingly common. This extends the challenge of single
sign-on to multiple security domains. Centralization of security is no longer possible. Duplication of

2

credentials is problematic and possibly insecure. The problem can be solved using a topology of
federated security domains together with claims-based authentication as the mechanism for passing
identity data between them. With claims-based authentication, an authority in the federation issues a
token with claims about the bearer of said token. The token usually contains a digital signature to verify its
integrity. With multiple security domains exchanging tokens, standardization becomes critical.

The Security Assertion Markup Language (SAML) 2.0 standard defines a framework for exchanging
security information between partners in a federation. This security information is packaged in the form of
portable XML assertions that applications working across security domain boundaries can trust. The
standard was approved by the Organization for the Advancement of Structured Information Standards
(OASIS) in March 2005.

KEY TERMS AND DEFINITIONS FOR SAML 2.0

Table 1 provides a table of terms.

Term Concept

Federation Two or more security domains with trust established between them.

Assertion XML document that is created and sent during a federated access request
and contains claims about a user.

Claims Information a federated member is asserting to be true.

Identity provider A federation member that creates assertions for its users. Also referred to as
the asserting party.

Service provider A federation member that consumes assertions to make access control
decisions for its applications. Also referred to as a relying party.

Attributes Information about the user that is contained in the assertion.

Metadata XML document produced by a SAML provider to describe its service endpoint
URLs, x.509 certificate and other information in a standard way for
consumption by partners in the federation.

Table 1. SAML 2.0 Terminology

The SAML 2.0 standard consists of layers that, at the highest level, describes use cases to be supported.
Single sign-on and federated identity, the focus of this paper, are included as well as security exchange
between SOAP-based web services.

An exchange of security information in SAML takes place between an asserting party and a relying party.
For multiple domain single sign-on with federated identity, the asserting party is referred to as an identity
provider and the relying party is the service provider. SAML assertions are XML documents that contain a
subject and include information about the subject in the form of attributes that the identity provider claims
to be true.

When a user attempts to access service URL, the service provider initiates the exchange with an
authentication request and the identity provider sends a response which encapsulates the assertion. The
SAML protocol defines the structure and content of these request and response messages.

The method for which standard network communication protocols such as HTTP are used to send SAML
protocol messages between parties is defined by the SAML bindings. This paper looks at the HTTP
bindings but there are also more specialized bindings for SOAP. The three types of HTTP bindings are:

 HTTP Redirect Binding – The web browser receives a 302 redirect to the partner endpoint with
the SAML message usually deflated (compressed), Base-64 encoded, and appended to the URL
as a query string parameter.

 HTTP POST Binding – The web browser receives an HTML form containing the SAML message
encoded into a hidden field and javascript to immediately subject the form and to the partner
endpoint.

3

 HTTP Artifact Binding – Either of the previous two except the contents of the message contain
only an artifact ID. The partner then must make a separate out-of-band call with the artifact to
obtain the full SAML message.

Note that the SAML request and response use these bindings independently. It is common for the SAML
authentication request to flow over HTTP Redirect Binding and the larger SAML response, that contains
the assertion, to come back using HTTP POST Binding.

Finally, SAML profiles refer to the specific use case that is being addressed. Profiles can impose
constraints on the protocol, bindings, and assertions in order to maximize interoperability.

Figure 1 illustrates the relationship between these SAML layers.

Figure 1. Layers of the SAML 2.0 standard

MICROSOFT AD FS 2.0

Microsoft Active Directory Federation Services (AD FS) 2.0 is a software component for Microsoft
Windows operating systems that can be installed on the Active Directory domain controller to support
federated identity and SAML 2.0. AD FS can act as the asserting party, asserting identity claims from the
Active Directory LDAP, or as a relying party consuming claims from another party.

SAS AUTHENTICATION WITH SAML AND MICROSOFT AD FS

The SAS web application tier, otherwise known as the middle tier, centralizes security at the SAS Logon
Manager, which is actually an implementation of the JASIG Central Authentication Service (CAS). CAS
achieves single sign-on (SSO) using a protocol that loosely mimics Kerberos. In the typical scenario, this
works as follows. When a user visits a SAS web application, their web browser is redirected to the SAS
Logon Manager where they are prompted for credentials to log in. After authentication, the Logon
Manager issues a Ticket Granting Cookie (TGC) to the user’s web browser and redirects it back to the
original web application with a one-time-use Service Ticket attached to the URL in the form of a query
string parameter. The web application makes a back channel call to the Logon Manager to validate the
service ticket and then establishes a web session for the user. If the user then visits another SAS web
application for which they do not have a web session yet, they are again redirected to the Logon
Manager. However, this time the web browser provides the previously issued TGC and instead of being

4

prompted again for credentials is immediately redirected back to the application with a service ticket for
the other web application.

ENTERPRISE SECURITY INTEGRATION

While this technology for single sign-on works well among the SAS web applications, enterprises typically
have their own centralized security infrastructure and identity store. In many cases, enterprise single sign-
on can be extended over the SAS middle tier. There are several ways of accomplishing this but what all
of these have in common is they pre-establish an authenticated principal in the login request to the Logon
Manager and CAS is configured to trust this. The specific means for pre-establishing the principal in the
login request is how the methods differ but they can be approximately grouped into those that use built-in
features of the web application server, and those that perform authentication upstream in the web server.

While some of the most common authentication methods are built into the Tomcat-based SAS Web
Application Server, many more are available as pluggable authentication modules to the popular open
source Apache HTTP server that SAS Web Server is based on. Credentials established in the web server
are rewritten into HTTP headers and passed to the web application server, where they are intercepted
and used to pre-establish a principal in the login request. This is depicted in Figure 2.

Figure 2. Enterprise Security Integration with Web Server Authentication

Note that the web server is performing authentication only on the login request. The other SAS web
applications are unaware of enterprise security and always defer authentication to the SAS Logon
Manager.

SHIBBOLETH SP

A standard SAS deployment can be expressed in SAML terminology, with the SAS Logon Manager acting
as the identity provider and the other SAS web applications as service providers. This does not change.
However, when integrating with AD FS 2.0 for the identity provider, the SAS login page must be seen by
AD FS as a service provider address. You can think of it as the login page is providing the service of
logging you into the local identity provider. This can seem convoluted but the login page is actually
transparent to the user with web authentication.

5

This can be accomplished using the open source SAML 2.0 service provider implementation from the
Shibboleth project. The Shibboleth SP is implemented as native compiled software that is divided into a
pair of components: a daemon process named "shibd", and an Apache HTTP server loadable
authentication module that can be plugged into SAS Web Server. Since the Apache web server runs as
a pool of separate processes, the shibd process is used to maintain a common cache of session
information. On Windows the daemon is installed as a service and named shibd_Default by default. The
two components can be restarted independently of each other.

The Shibboleth Native SP module for Apache is supported on 64-bit Windows, Linux, and Solaris, but
binaries are available only for Windows and Linux. The Windows binaries come with an installer. For
installation on Linux, you can use yum or install from RPMs. It must be built from source for Solaris
SPARC or x64.

HTTPS COMMUNICATION

It is recommended that SAS Web Server be configured for HTTPS. Since the SAML 2.0 endpoints
provided by the Shibboleth service provider are surfaced through SAS Web Server, the assertions
passed to Shibboleth will go over an encrypted channel. Make sure the Trusted Roots store of the AD FS
2.0 machine contains the certificate used by SAS Web Server or the CA certificate chain that signed it.

SAML 2.0 was designed to work over unencrypted communications so the identity provider will also
encrypt the assertions passed to the service provider using the public key from the service provider’s
Metadata. AD FS 2.0 does this by default but it can be disabled for debugging or if considered too
redundant. Shibboleth automatically generates RSA keys and a self-signed certificate for itself and
includes the public key in the metadata file that is shared with the identity provider.

With authentication being performed in SAS Web Server, trust must be established back to SAS Web
Application Server. A few options are presented later in this paper. It is recommended that SAS Web
Application Server be configured for HTTPS to secure the communication.

SAS Web Server can be configured for HTTPS at deployment time using the SAS Deployment Wizard.
There are instructions for manually configuring HTTPS to SAS Web Server and SAS Web Application
Server in the SAS Middle Tier Administration Guide.

SHIBBOLETH INSTALLATION

SAS does not ship Shibboleth software so the Shibboleth Native SP must be downloaded and installed
separate from SAS. Instructions can be found on the Shibboleth 2 installation page. There are links under
Native Service Provider (SP) for all the supported platforms, and on each of those pages is a list of web

servers including Apache. By default the software is installed under /opt/shibboleth-sp on UNIX and

C:\opt\shibboleth-sp on Windows.

Configuration files are found in the etc subdirectory. The most important configuration file is

shibboleth2.xml. The application entityID should be edited. After installation the file should be edited

and the entityID set to the URL of the shibboleth service running on the web server. For example if SAS
Web Server is running on sas.company.com:

<ApplicationDefaults entityID=”https://sas.company.com/shibboleth”

 REMOTE_USER=”eppn persistent-id targeted-id”>;

APACHE CONFIGURATION

Most of the configuration needed for Apache comes packaged from Shibboleth in add-on files named to
coincide with the supported versions of Apaches. At the time of this writing, SAS Web Server is based on

Apache HTTP server 2.2 so the apache22.config file that comes with Shibboleth needs to be included

in the httpd.conf file in the SAS Web Server configuration directory. This should go at the bottom of

the file. The example below is for Windows:

Include C:/opt/shibboleth-sp/etc/shibboleth/apache22.config

6

Then Apache is configured to require Shibboleth authentication for the SAS login page. To prevent other
parts of the environment from failing, it is important that only this location is protected by Shibboleth:

<Location /SASLogon/login>

 AuthType shibboleth

 ShibRequestSetting requireSession 1

 require valid-user

</Location>

If SAS Web Server is configured for HTTPS, the above should be added within the VirtualHost

defined in httpd-ssl.conf, which is located in the extra subdirectory.

Apache must be configured to pass the authenticated principal name to the web application server. We
would like to rewrite the standard Apache REMOTE_USER environment variable into an HTTP header;
however, since REMOTE_USER is determined late in the Apache processing flow, it cannot simply be set
in a header using a RequestHeader directive. This problem was discussed on the Server Fault website
for administrators and a solution posted using a look-ahead. The resulting configuration is shown below:

 <Location /SASLogon/login>

 AuthType shibboleth

 ShibRequestSetting requireSession 1

 require valid-user

 RewriteEngine On

 RewriteCond %{LA-U:REMOTE_USER} (.+)

 RewriteRule . - [E=RU:%1,NS]

 RequestHeader set X-Remote-User "%{RU}e" env=RU

 </Location>

Send Secret Password

Malicious clients must be prevented from bypassing the web server and spoofing the X-Remote-User

header. There are two ways this can be accomplished:

 A secret password known only to the web server and web application server can be sent in every
login request using a Basic Authorization header.

 The web server can be configured to authenticate with the web application server with client
certificate authentication.

This paper will use the secret password. A Base64-encoded Authorization string of the format user
name:password is created. The user name is not used. Many online sites exist to Base64 encode and
decode the string. For example “:Password1” is encoded as “OlBhc3N3b3JkMQ==”. This is added to the
request headers:

 <Location /SASLogon/login>

 AuthType shibboleth

 ShibRequestSetting requireSession 1

 require valid-user

 RewriteEngine On

 RewriteCond %{LA-U:REMOTE_USER} (.+)

 RewriteRule . - [E=RU:%1]

 RequestHeader set X-Remote-User "%{RU}e" env=RU

 RequestHeader set Authorization "Basic OlBhc3N3b3JkMQ=="

 </Location>

As mentioned earlier, SAS Web Application Server should be configured for HTTPS. This will protect the secret
password from network sniffers.

7

TOMCAT VALVE CONFIGURATION

SAS Web Application Server is Pivotal tc Server, which itself is based on Apache Tomcat. Tomcat allows
for valves that sit in the request processing pipeline to perform some action. A number of valves come
built into Tomcat and the default SAS configuration uses them for such things as logging. SAS has
extended the container with valves for authentication and other purposes. To support authentication
performed in SAS Web Server, SAS provides a valve that pulls the user name out of an HTTP request
header and sets the principal in request. For security purposes the valve is not configured by default so it
must be added.

The valve only needs to be exposed to SASLogon to it is added to

Web/WebAppServer/SASServer1_1/conf/Catalina/localhost/SASLogon.xml under the

config directory:

<Valve
className="com.sas.vfabrictcsvr.authenticator.PrincipalFromRequestHeadersV

alve" />

Check Secret Password

The secret password used in the Apache HTTP server configuration needs to be specified in the valve
configuration also. However, rather than put it in plaintext, it is good practice to encrypt it. Tc Server uses
a password-based encryption scheme to encrypt passwords used in the configuration. The same process
can be used here for consistency.

To encrypt the plaintext password (Password1), a shell is opened and the following command is executed
from the SASHome/SASWebApplicationServer/9.4 directory to get the encrypted value:

Windows:

java -cp tomcat-6.0.35.B.RELEASE\lib\tcServer.jar;tomcat-

6.0.35.B.RELEASE\bin\tomcat-juli.jar;tomcat-6.0.35.B.RELEASE\lib\tomcat-

coyote.jar com.springsource.tcserver.security.PropertyDecoder -encode

"This!sTheSpringSourcePassphrase" Password1

UNIX:

java -cp './tomcat-6.0.35.B.RELEASE/lib/tcServer.jar:./tomcat-

6.0.35.B.RELEASE/bin/tomcat-juli.jar:./tomcat-6.0.35.B.RELEASE/lib/tomcat-

coyote.jar' com.springsource.tcserver.security.PropertyDecoder -encode

'This!sTheSpringSourcePassphrase' Password1

Keeping with the convention used elsewhere, rather than include the encrypted value directly in the valve
configuration, many of the settings used by the Tomcat server are specified as properties. The following

is added to the catalina.properties file in the configuration area under

Web/WebAppServer/SASServer1_1/conf/:

pw.sas.valve.PrincipalFromRequestHeadersValve=s2enc://OZBRllprnGj4J/YPqnj5

Bw==

The secret password property is then added to the valve configuration as a parameter. This is shown in
bold font below:

<Valve

className="com.sas.vfabrictcsvr.authenticator.PrincipalFromRequestHeadersV

alve" secretPassword="${pw.sas.valve.PrincipalFromRequestHeadersValve}" />

Table 2 shows all the options supported by the valve:

8

Option Default Description

uriPattern /SASLogon/login.*$ URI regular expression to process requests. Includes the query
string.

fallThrough false Controls flow upon unsuccessful authentication. If true, control
passes to the next valve in the pipeline; if false, a 401 error
code is returned.

secretPassword Secret password to expect in the Basic Authorization header
(optional).

userHeader X-Remote-User HTTP header containing the authenticated principal name.

roleName ROLE_USER Role to associate with the principal. Normally not used.

Table 2. PrincipalFromRequestHeadersValve Options

SAS Web Application Server must be restarted after making these changes.

MICROSOFT AD FS 2.0 CONFIGURATION

On the AD FS 2.0 server we need to add information about the Shibboleth service provider and configure
what claims should be sent in the assertions. This is done from the AD FS 2.0 Management Console.
Under Trust Relationships, we right-click on Relying Party Trusts and select Add Relying Party Trust to
bring up the wizard. After entering the URL for the Shibboleth SP Metadata, AD FS displays a warning
indicating that some of the content in the Metadata is not supported. This is shown in Display 1.

Display 1. Adding Relying Party Trust in AD FS 2.0 Management Console

We give the relying party a display name and check the box to ‘Permit all users to access this relying
party’. After adding the relying party, a window pops up to edit the claim rules for the relying party. Claim
rules control what information will be passed to Shibboleth in the SAML assertion. This can be brought up

9

later by right clicking on the Relying party to the right of the Relying Party Trusts and selecting Edit Claim
Rules.

From within the claim rules, the Issuance Transform Rules tab is selected and we click on Add Rule to
bring up another wizard. A list of options appears. Most administrators will choose ‘Send LDAP Attributes
as Claims’. On the next page we select Active Directory for the attribute store and choose which attributes
to include in the assertions. The LDAP Attribute column displays the name of the attribute in the LDAP
attribute store and the Outgoing Claim Type column displays the SAML attribute that should carry the
value. SAM-Account-Name would normally be mapped to Windows account name, User-Principal-Name
would map to UPN, and so on. This is shown in Display 2. Multiple claims can be sent in the assertion for
flexibility and we can decide which one to use when completing the Shibboleth configuration.

Display 2. Editing Claim Rules for the Relying Party in AD FS 2.0 Management Console

There are a couple of important URLs that are need to be noted from the ADFS Management console.
These will be required later when we complete the Shibboleth configuration. Under “AD FS 2.0” in the
Management console, under Service and then Endpoints, the URL to the Metadata should be shown in
the list of endpoints. It will be something like https://host.company.com/FederationMetadata/2007-
06/FederationMetadata.xml. After expanding Service and clicking on Claim Descriptions, we can find the
claim that was selected in the last step for the outgoing claim (for example UPN) and copy the Claim
Type, which is in the form of a URI. A double click on the row in the table will bring it up in a separate
window which is easier to copy from.

10

COMPLETE SHIBBOLETH CONFIGURATION

Shibboleth must be told about the AD FS 2.0 identity provider. Inside the shibboleth2.xml file we

update the entityID attribute of the SSO element to match the entityID in the AD FS Metadata. The AD FS
Metadata can be viewed using a web browser.

<SSO entityID="http://host.company.com/adfs/services/trust">

 SAML2 SAML1

</SSO>

There are examples in the file showing how the identity provider Metadata can be provided. The following
loads it from the URL determined earlier and specifies a local filename to store the Metadata in between
reloads:

<MetadataProvider type="XML" uri=

"https://host.company.com/FederationMetadata/2007-

06/FederationMetadata.xml" backingFilePath="FederationMetadata.xml"

reloadInterval="180000"/>

There are situations where modifications need to be made to the Metadata. If this is the case, it can be
downloaded using a web browser and specified as follows:

<MetadataProvider type="XML" file="FederationMetadata.xml"/>

Attribute Scoping

Attributes passed in the SAML 2.0 assertion are usually scoped with a '@' character. Scoping makes it
clear which institution or enterprise in the federation the attribute belongs to. By default Shibboleth will
verify that the scope in each attribute matches the scope specified in the identity provider Metadata. This
is a security feature when using multiple identity providers that prevents one identity provider of asserting
claims in another identity provider’s scope. Unfortunately AD FS does not add a scope to attributes
automatically, but there are a few workarounds. The User-Principal-Name in Active Directory will be
scoped with the Active Directory Realm so this can be used. Shibboleth can also be configured to not
expect attributes to be scoped. This paper will cover both cases.

Attributes in the assertions passed from the identity provider are mapped in the Shibboeth attribute-

map.xml file.

Scoped Attributes

By default Shibboleth will validate scoped attributes. This includes attributes from Active Directory such as
User-Principal-Name and E-mail address that are naturally scoped. In the AD FS management console
we set up the claim to pass in the assertion and made note of the URI. This needs to be put in the

attribute-map.xml file. The example below is for User Principal Name:

<Attribute

name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn" id="eppn"

>

 <AttributeDecoder xsi:type="ScopedAttributeDecoder"

caseSensitive="false" />

</Attribute>

There is an extra step required since AD FS does not automatically add the scope (it is part of the value
itself). The AD FS Metadata must be downloaded and manually edited to explicitly state that scoped
attributes will be passed. Specific instructions are in the Microsoft guide under ‘Add the Scope Element to
AD FS 2.0 Metadata’.

11

Un-scoped Attributes

For un-scoped attributes we add the same thing to attribute-map.xml but specify a StringAttributeDecoder
instead of a ScopedAttrributeDecoder. The example below is for Windows Account Name (SAM-Account-
Name):

<Attribute

name="http://schemas.microsoft.com/ws/2008/06/identity/claims/windowsaccou

ntname" id="eppn" >

 <AttributeDecoder xsi:type="StringAttributeDecoder"

caseSensitive="false"/>

</Attribute>

Shibboleth requires scopes by default for some attributes, including eppn. These are specified in the

attribute-policy.xml file. For eppn it is changed to permit ANY (not just scoped) values:

<afp:AttributeRule attributeID="eppn">

 <afp:PermitValueRule xsi:type="ANY"/>

</afp:AttributeRule>

SAS Web Server and the Shibboleth daemon must be restarted after making changes to the Shibboleth
configuration files.

TROUBLESHOOTING

When everything is setup correctly, a user attempting to access a SAS web application will be redirected
to the AD FS identity provider to log in, and back to the SAS web application without seeing the SAS login
page. However, whenever configuring Shibboleth for a new identity provider, there is usually some
amount of troubleshooting required. The most common problem is figuring out what part of the assertion
should be used for the authenticated user name. Some identity providers include a Subject NameId
element while others simply send attribute claims and the service provider is left to decide which one to
use for the user name. Even with the NameID, there are multiple formats.

VIEWING THE ASSERTIONS

It is very difficult to tell what is going on without seeing the actual XML being sent in the SAML request
and response. Most modern web browsers have a way of displaying the HTTP traffic. In Internet Explorer
10 and later, F12 Developer Tools is available from the Options menu. On the Network tab is a button to
Start Capturing. Navigating to any of the SAS web applications should results in a number of redirects
and finally end up on the identity provider login, which is an IIS server by default. For SAML 2.0 Redirect
binding, the SAML request XML will be compressed and encoded into the query string with the
SAMLRequest parameter. The value must be URL decoded and then Base64 Decoded and inflated.
Several online sites exist to do this. Output 2 shows an XML request.

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

AssertionConsumerServiceURL="https://jefferson.em.sas.com/Shibboleth.sso/SA

ML2/POST" Destination="https://washington.em.sas.com/saml2"

ID="_ffb034169b63d5b062a0b358a9ad42cf" IssueInstant="2015-01-10T17:21:49Z"

ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Version="2.0"><saml:Issuer

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">https://jefferson.na.sas

.com/shibboleth</saml:Issuer><samlp:NameIDPolicy

AllowCreate="1"/></samlp:AuthnRequest>

Output 1. SAML request

AD FS 2.0 encrypts assertions it sends to service providers by default. This can be disabled on the AD
FS server by running the Administrative Tools from the Start menu and bringing up the Windows
PowerShell Modules. At the Windows PowerShell command prompt, the following command will disable

12

encryption. The TargetName must match the name of the relying party as shown in the AD FS
management console earlier when adding relying party trust:

set-ADFSRelyingPartyTrust –TargetName “relying-party” –EncryptClaims

$False

After authenticating at the identity provider, the web browser is sent back to the service provider with a
POST request to /Shibboeth.sso/SAML2/POST. In Internet Explorer a double click on that request and
viewing the Request Body tab reveals the POST content sent in the request. The content is Base64-
encoded. Using any online Base64 decoders, the XML can be viewed. Output 2 shows a snippet of the
response.

<samlp:Response...

 <AttributeStatement>

 <Attribute

Name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn">

 <AttributeValue>miroda@em.sas.com</AttributeValue>

 </Attribute>

 </AttributeStatement>

 ...</Assertion>

</samlp:Response>

Output 2. SAML response showing the attribute containing the UPN claim

After debugging the assertions, encryption can be re-enabled on the AD FS 2.0 server from the Windows
PowerShell command prompt:

set-ADFSRelyingPartyTrust –TargetName “relying-party” –EncryptClaims

$True

LOG FILES

Shibboleth creates several log files under /opt/shibboleth-sp/var/log/shibboleth (same path

on Windows). The shibd.log will contain messages indicating when attributes could not be mapped

successfully. For example, Output 3 shows an attribute from the assertion that was not mapped.

2015-01-09 16:00:33 INFO Shibboleth.AttributeExtractor.XML [1]: skipping

unmapped SAML 2.0 Attribute with Name: email,

Format:urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified

Output 3. Shibd.log entry showing unmapped assertion

Conversely, the transaction.log will output messages indicating which attributes were successfully

mapped. Output 4 shows that our eppn id was successfully mapped.

2015-01-09 16:00:33 INFO Shibboleth-TRANSACTION [1]: New session (ID:

_a15736ee46882ab09a87a7272eefa1f7) with (applicationId: default) for

principal from (IdP: http://host.company.com/adfs/services/trust) at

(ClientAddress: 10.23.13.155)

2015-01-09 16:00:33 INFO Shibboleth-TRANSACTION [1]: Cached the following

attributes with session (ID: _a15736ee46882ab09a87a7272eefa1f7) for

(applicationId: default) {

2015-01-09 16:00:33 INFO Shibboleth-TRANSACTION [1]: eppn (1 values)

2015-01-09 16:00:33 INFO Shibboleth-TRANSACTION [1]: }

Output 4. Transaction log shows attribute mapped to eppn

When Shibboleth is properly parsing the attributes and mapping one of them to the Apache
REMOTE_USER variable, the user name can be viewed in the SAS Web Server access logs. This
happens by default for HTTP requests. HTTPS requests go to the ssl_request logs and are configured in

httpd-ssl.conf. The user name can be output by adding a %u to the log directive near the end of the

file. Output 5 shows the user name in the HTTP access log:

13

fe80::4dee:d4b2:cfbe:f1d6 - - [11/Jul/2014:10:06:31 -0400] "GET

/SASLogon/login HTTP/1.1" 302 774

fe80::4dee:d4b2:cfbe:f1d6 - - [11/Jul/2014:10:07:41 -0400] "GET

/SASLogon/login HTTP/1.1" 302 778

fe80::4dee:d4b2:cfbe:f1d6 - - [11/Jul/2014:10:07:48 -0400] "POST

/Shibboleth.sso/SAML2/POST HTTP/1.1" 302 227

fe80::4dee:d4b2:cfbe:f1d6 – miroda@em.sas.com [11/Jul/2014:10:07:48 -0400]

"GET /SASLogon/login HTTP/1.1" 200 2730

Output 5. User name displayed in the SAS Web Server access log

Finally, if the principal is being received by the Tomcat valve in SAS Web Application Server and set in
the request, the user name should be visible in the localhost access log under SASServer1_1/logs.
Output 6 shows the user name appearing in the web application server logs.

10.121.19.81 – miroda@em.sas.com [09/Jan/2015:15:43:07 -0500] "GET

/SASLogon/login HTTP/1.1" 200 2787

Output 6. User name displayed in the SAS Web Application Server access log

CONCLUSION

Federated identity and multi-domain single sign-on, the two most important use cases or profiles
described by the SAML 2.0 standard, make it possible for organizations in entirely separate security
domains to collaborate with applications like SAS.

We have discussed what federated identity is and taken a technical overview of the layers that make up
the SAML 2.0 standard. We have looked at how the SAS 9.4 middle tier can support a wide variety of
authentication methods using widely available Apache pluggable modules with SAS Web Server and a
Tomcat valve in SAS Web Application Server. And we introduced the Shibboleth SP project that provides
an Apache module for SAML-based authentication.

Then we went through the steps necessary to configure an end-to-end solution with SAS as the relying
party and Microsoft AD FS as the asserting party or identity provider. Finally we discussed how to view
the assertions and what to look for in the various log files for troubleshooting purposes.

REFERENCES

Organization for the Advancement of Structured Information Standards. “Security Assertion Markup
Language (SAML) v2.0”. March 2005. Available at https://www.oasis-open.org/standards#samlv2.0.

Organization for the Advancement of Structured Information Standards. “SAML Wiki Knowledgebase.”
Accessed Jan 2015. Available at http://saml.xml.org/wiki/saml-wiki-knowledgebase.

Microsoft. “AD FS 2.0 Step-by-Step Guide: Federation with Shibboleth 2 and the InCommon Federation”.
Accessed Jan 2015. Available at http://technet.microsoft.com/en-us/library/gg317734(WS.10).aspx.

Shibboleth. “Understanding Shibboleth.” Accessed Jan 2015. Available at
https://wiki.shibboleth.net/confluence/display/SHIB2/UnderstandingShibboleth.

Shibboleth. “NativeSPConfiguration.” Accessed Jan 2015. Available at
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPConfiguration.

SAS Institute Inc. (2014). “SAS 9.4 Intelligence Platform: Middle-Tier Administration Guide, Second
Edition.” Available at http://support.sas.com/94administration.

Server Fault. “Get the authenticated user under apache”. Accessed Jan 2015. Available at
http://serverfault.com/questions/207301/get-the-authenticated-user-under-apache.

ACKNOWLEDGMENTS

I would like to thank the following people for taking the time to review and contribute to this paper:

https://www.oasis-open.org/standards#samlv2.0
http://saml.xml.org/wiki/saml-wiki-knowledgebase
http://technet.microsoft.com/en-us/library/gg317734(WS.10).aspx
https://wiki.shibboleth.net/confluence/display/SHIB2/UnderstandingShibboleth
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPConfiguration
http://support.sas.com/94administration
http://serverfault.com/questions/207301/get-the-authenticated-user-under-apache

14

 Phil Hopkins

 Stuart Rogers

 Adam Smith

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Mike Roda
SAS Institute Inc.
919-362-9707
mike.roda@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

