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ABSTRACT  

When large amounts of data are available, choosing the variables for inclusion in model building can be 
problematic. In this analysis, a subset of variables was required from a larger set. This subset was to be 
used in a later cluster analysis with the aim of extracting dimensions of human flourishing. A genetic 
algorithm (GA), written in SAS®, was used to select the subset of variables from a larger set in terms of 
their association with the dependent variable life satisfaction. Life satisfaction was selected as a proxy for 
an as yet undefined quantity, human flourishing. The data were divided into subject areas (for example 
health, environment). The GA was applied separately to each subject area to ensure adequate 
representation from each in the future analysis when defining the human flourishing dimensions. 

GENETIC ALGORITHMS – A BRIEF INTRODUCTION 

Genetic Algorithms are iterative, heuristic (experience based) search processes that can be used to find 
solutions to problems where an exhaustive search of all potential solutions would be impractical due to 
time or resource constraints. John Holland (1993) was credited with their invention in the early 1970s. 
They mimic natural evolution by using techniques such as natural selection, inheritance, mutation and 
crossover. They are used in fields and contexts where the optimal solution is required from within a large 
search space. This research attempts to find the best subset of variables to summarise a larger dataset. 

Typically, a Genetic Algorithm (GA) starts with an initial population.  This initial population consists of 
chromosomes that are traditionally a string of zeros and ones, and is usually a randomly generated 
sample of the solution search space. For example, for a variable selection / reduction exercise where 
there are 30 variables to choose from, each chromosome will be 30 bits long. Each of these bits is called 
an allele and each of these 30 alleles will consist of either a randomly generated 0 (indicating the variable 
is not to be selected) or 1 (indicating the variable is to be selected). Figure 1 is a visual example of two 
chromosomes, each 30 alleles long, from a population encoded to represent variable selection or non-
selection from a total of 30 variables. 

 

Figure 1 Example chromosomes 
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The size of the initial population of chromosomes is only one of the control parameters that must be 
decided for a genetic algorithm. Recommendations in this area can suggest that the size of the initial 
population should represent the size of the problem space. There are suggested methods for finding 
optimal control parameters, for example Grefenstette (1986) suggests a two-stage process selecting 
firstly an appropriate GA to solve the problem and then secondly using further algorithms to find the 
optimal control parameters. Alternatively, as in Vinterbo (1999), a variety of parameters can be tried and 
the results evaluated in context. For example, increasing the population size may result in a better 
solution, but will also result in increased processing time. 

The next step is to choose an appropriate fitness function to evaluate each of the chromosomes. The 
fitness function is important as it determines how the 'best' or maximum of the solution space is 
measured. For example, if the aims of the analysis were to find the best subset of potential independent 
variables in terms of explaining a dependent variable, as well as creating the simplest subset possible, 
then Akaike's Information Criterion (AIC) may be a suitable measure as AIC can meet both of these aims 
(Bozdogan, 1987). If however, simplicity was not paramount, and there was more interest in the 
explanatory power of the variable subset, then Root Mean Square Error (Beal, 2005) may be an 
appropriate fitness function. 

The fitness function is evaluated for each member of the initial population. Using the example given, with 
30 potential independent variables, and choosing the AIC as the fitness function, we would build a 
regression model for each member of the initial population. We would use the alleles with a value of 1 
within each chromosome to decide which independent variables are in the model. Once the model has 
been run, the resultant AIC would be stored with the chromosome and this becomes the 'fitness' of that 
chromosome or solution. 

Once the members of the initial population have had their fitness calculated, a selection method is chosen 
to decide which individual will carry on to the next step in the process. This can be done using a number 
of methods including, for example, 'roulette-wheel selection', where there is a chance for all to be 
selected, but a greater chance of selection for individuals of greater fitness, or 'tournament selection' 
where a number of individuals compete in a tournament, or competition, and the winner, the fittest 
individual, is selected to proceed to the next step. The total number of individuals chosen to move onto 
the next stage is another user-controlled parameter in the algorithm. 

The winning chromosomes then undergo crossover and mutation. This is the method by which new 
potential solutions are generated. There are a number of crossover methods; the simplest is to randomly 
choose two parents from the winning group and swap their alleles from a random point on their 
chromosome to create two new offspring. The offspring may then undergo mutation that can also happen 
in a number of ways. The simplest way involves reversing the value of a random bit in a very small 
number of chromosomes, for example, changing a 0 to a 1 for 0.25% of chromosomes. Mutation helps to 
avoid local maxima (chromosomes with good, but not optimal fitness) and premature termination of the 
process, but the rate of mutation should be low.  Figure 2 is a pictorial representation of the process of 
crossover and mutation. Two chromosomes shown one on top of the other swap a section of alleles (A 
and B) at the crossover point. Section A, (which was formerly attached to the upper chromosome) is now 
attached to the bottom chromosome and the final allele of this section is subsequently mutated. 

 

Figure 2 A pictorial representation of the crossover and mutation processes within the genetic algorithm 
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The newly formed offspring are then evaluated in terms of their fitness, combined with the parent 
population, and a new winner selection process occurs. This selection, crossover, mutation, evaluation 
loop continues until the 'best' solution is reached. The point of termination can be decided in a number of 
ways, for example, if the average fitness of the offspring does not change for 20 generations and the 
solution could therefore be judged ‘stable’. 

In this next section a GA, written in SAS®, is used in conjunction with the REG procedure in order to 
undertake a data reduction exercise. 

REDUCING THE DATASET 

INTRODUCTION 

Regression is a tool for analysing the relationship between a dependent variable, and one or more 
independent variables. It is often used for predictive modeling, but can also be used to determine which of 
the independent variables are most closely associated with the dependent variable. There are multiple 
forms of regression analysis, and the form chosen can have a substantial impact on the result. For 
example, using stepwise selection in a regression analysis may produce different results to an analysis 
on the same data using forward selection (Zhang & Xu, 2001). Therefore, even with classical regression, 
there is a large potential solution space to be explored - 2n − 1 , where n is the number of variables to 
choose from. 

In this work we are attempting to find a subset of variables from which to define as yet undefined 
dimensions of Human Flourishing, from a larger set of data. The larger set (290 variables) is stored at 
country level and comes from multiple open data sources, including the World Bank and International 
Labour Organization, each relating to a specific area defined in Stiglitz (2009) as being important in the 
development of future measures of human progress. These areas are: 

1. Material living standards 

2. Health 

3. Education 

4. Personal activities including work 

5. Political voice and governance 

6. Social connections and relationships 

7. Environment 

8. Insecurity 

A GA written in BASE SAS®, is used to sample the solution space in order to find an optimal solution. 

The dependent variable chosen is a measure of ‘life satisfaction’.  This is a proxy for Human Flourishing. 
As life satisfaction is not expected to fully explain human flourishing, the GA is applied separately to the 
data associated with each of the areas in (Stiglitz, 2009). This is to ensure adequate representation from 
each of the areas when later calculating the Human Flourishing dimensions; as the data associated with 
each area has different levels of explanatory power in terms of life satisfaction. For example health 
related variables may be more closely associated with life satisfaction than variables relating to the 
environment, but variables related to the environment may be very important in the context of human 
flourishing. 

The Genetic Algorithm attempts to find the subset of variables that, together, have the closest relationship 
with the dependent variable. This subset, with adequate representation from each of the Stiglitz (2009) 
areas will then become the 'best' summary of the dataset. 

METHOD 

A residual analysis was carried out on a test dataset to check the suitability of using regression. 
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Treating each area defined by Stiglitz (2009) separately, the human flourishing proxy (life satisfaction) 
was matched by country and year to the relevant records of each dataset. The human flourishing proxy, 
life satisfaction, was available for two years only, however, as mentioned, the aim of this analysis is to 
reduce the original number of variables from which to build the human flourishing dimensions at a later 
time, of which life satisfaction is but a part. 

The GA written in BASE SAS® has user controlled parameters to allow multiple re-runs for each of the  
datasets. The parameters are: initial chromosome population size, chromosome length (number of 
independent variables), number of replicates being sampled from the population, number of replicates 
selected for crossover (the fittest x), number of elites (chromosomes retained from one generation to 
another without crossover), a ‘stable’ value (the number of iterations the average fitness function must 
remain the same before stability is deemed to be reached), maximum iterations (to prevent continuous 
running if no stable solution could be found), selection method (forward, backward or stepwise), 
significance level of (variable) entry and significance level of (variable to) stay. Although there are further, 
alternate forms of regression, for the sake of implementation simplicity, only the three mentioned are 
included in the analysis. 

Firstly an initial randomly generated population of chromosomes is created, each chromosome consisting 
of 0/1 alleles. Each chromosome is of a length equal to the number of independent variables in the 
dataset to be reduced. Population size of either 100 or 200 is used here to check consistency of results.  
The code used to build the population is shown below: 

data initpop (drop = i temp); 

  *&outvars = number of variables in dataset to be reduced; 

  array allele {&outvars} 3; 

  *e.g. %let initpop=200; 

  do until (_n_ = %eval(&initpop + 1)); 

    *number of variables in the dataset; 

    do i = 1 to &outvars;  

      temp=uniform(1); 

  if temp >=0.5 then allele[i] = 1; 

  else allele[i]=0; 

end;  

  *make a chromosome of the alleles; 

  chromosome = catt(of allele1-allele&outvars); 

  output; 

  _n_ + 1; 

end; 

run; 

 

The population is randomly sampled without replacement in its entirety to create a number of replicates 
equal to half of the population. Then a regression equation, as follows, is built for each member of each 
replicate (binary tournament), using the variables selected by the alleles of the chromosome. Only main 
effects are included.  That is: 

  

where Y is the response, or dependent, variable, and the proxy for human flourishing, life satisfaction; the 
Xs represent the p explanatory variables selected by the GA using PROC REG, forward, backwards or 
stepwise regression; the bs are the regression coefficients, and q is the number of variables selected by 
the initial chromosome. The Root Mean Square Error (RMSE) was selected as the fitness function, as the 
aim is to find the subset of variables (within each dataset) that has the most explanatory power in regards 
to the dependent variable. This fitness function is another parameter that can be easily changed in the 
code. The algorithm checks which of the two tournament opponents has the lowest RMSE (fitness 
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function), and retains that chromosome as the fittest (winner of the tournament). It performs this operation 
for all of the pairs to obtain the 'best' of each replicate.  

The fittest x replicates are selected for crossover as per the previously set parameter. A copy is taken of 
this group, as they become the ‘parents’ of the next generation. Then the average fitness of the parent 
group is retained in a macro variable. The ‘stable’ parameter value is set at 20, meaning the average 
fitness of the group needs to remain stable for 20 iterations before termination of the algorithm.   

At this point, (for each iteration), the two fittest chromosomes are preserved as ‘elites’. Then all of the 
remaining tournament winners, or fittest are re-sampled without replacement, again into replicates of 
sample size two. Crossover is performed at a random point along the chromosomes (the same point for 
each member of a pair and in 0.25% of cases mutation takes place.  

A regression model is again built using PROC REG for each member of each tournament pair and the 
fitness calculated. The fittest from each pair is retained and this group is combined with the parents of 
that respective generation. Again, the fittest (parameterised) x of the group are selected for crossover and 
the process continues for either 500 generations or until the average fitness is stable.  

As an example, shown in Figure 3, a population of 100 would divide into 50 replicates of sample size two, 
regression models would be built for each member of each group, and the fitness calculated. Forty 
(crossover parameter) of the fittest chromosomes would be selected for crossover. These would be 
copied (they are the parents), the average fitness of the whole group calculated and stored and the two 
fittest preserved as elites. The remaining 38 chromosomes would be re-sampled into 19 groups of two. A 
regression model built for each, the fitness calculated and the fittest 20 recombined with the 40 parents. 
The top 40 would be selected for crossover and the process begins again (copying the parents) until 
stability is reached.  

 

Figure 3 An example GA population evolution 

The algorithm was run multiple times for each dataset (each Stiglitz (2009) subject area) and varying 
population size, crossover amount and the regression type. The significance level for entry (SLE) of a 
variable into the model was set to 0.20 and the significance level for a variable to stay in the model (SLS) 
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was set to 0.15. The aim of this analysis is to choose variables to be subsequently analysed, it is not a 
predictive analysis, so these levels were chosen to avoid excluding potentially valuable variables.  

RESULTS 

Tables similar to that shown in Table 1 An example summary table of GA runs were produced for each of 
the 15 datasets.  

 

Table 1 An example summary table of GA runs 

The R-squared values differed for each dataset. For example the R- squared of the World Bank Health 
analysis, shown in Table 1, were relatively good compared to the environment dataset, containing 
variables such as carbon dioxide emissions. The variables in that dataset had almost no explanatory 
power for life satisfaction.  

This was to be expected and was the reason why each dataset was analysed separately. As mentioned, 
life satisfaction was only a proxy for human flourishing and it was important that variables from all of the 
areas outlined in 4 be included in the final dataset, for later calculation of the Human Flourishing 
dimensions.  

It is important to note that the variables selected by each chromosome are not necessarily those that end 
up as ‘selected’ in the table. The chromosome defines the ‘starting’ dataset, the forward, backward or 
stepwise process then determines what remains at the end. 

The variables selected within each of the subject areas were combined.  In this way the original 290 
variables were reduced to 107 variables retaining representation from each of the subject areas.  

CONCLUSION 

A GA can be successfully used to trim a large dataset; allowing a much more comprehensive search of 
the solution space (i.e. 2n-1 combinations of variables) than could be done manually. 

Using a GA allows the analyst to modify the search dependent on requirements e.g. parsimony vs. 
predictive ability.  

Splitting the large dataset into subject areas, and applying the GA to these ‘areas’ individually ensures all 
areas are represented in the final dataset (if required). 
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