Nowadays, most corporations build and maintain their own data warehouse, and an ETL (Extract, Transform, and Load) process plays a critical role in managing the data. Some people might create a large program and execute this program from top to bottom. Others might generate a SAS® driver with several programs included, and then execute this driver. If some programs can be run in parallel, then developers must write extra code to handle these concurrent processes. If one program fails, then users can either rerun the entire process or comment out the successful programs and resume the job from where the program failed. Usually the programs are deployed in production with read and execute permission only. Users do not have the priviledge of modifying codes on the fly. In this case, how do you comment out the programs if the job terminated abnormally? This paper illustrates an approach for managing ETL process flows. The approach uses a framework based on SAS, on a UNIX platform. This is a high-level infrastructure discussion with some explanation of the SAS codes that are used to implement the framework. The framework supports the rerun or partial run of the entire process without changing any source codes. It also supports the concurrent process, and therefore no extra code is needed.
Kevin Chung, Fannie Mae
Have you ever wished that with one click you could copy any SAS® data set, including variable names, so that you could paste the text into a Microsoft Word file, Microsoft PowerPoint slide, or spreadsheet? You can and, with just Base SAS®, there are some little-known but easy-to use methods that are available for automating many of your (or your users ) common tasks.
Tom Abernathy, Pfizer, Inc.
Matthew Kastin, I-Behavior, Inc.
Arthur Tabachneck, myQNA, Inc.
SAS® functions provide amazing power to your DATA step programming. Some of these functions are essential some of them save you writing volumes of unnecessary code. This paper covers some of the most useful SAS functions. Some of these functions might be new to you, and they will change the way you program and approach common programming tasks.
Ron Cody, Camp Verde Associates
This paper simply develops a new SAS® macro, which allows you to scrap user textual reviews from Apple iTunes store for iPhone applications. It not only can help you understand your customers experiences and needs, but also can help you be aware of your competitors user experiences. The macro uses API in iTunes and PROC HTTP in SAS to extract and create data sets. This paper also shows how you can use the application ID and country code to extract user reviews.
Goutam Chakraborty, Oklahoma State University
Meizi Jin, Oklahoma State University
Jiawen Liu, Qualex Consulting Services, Inc.
Mantosh Kumar Sarkar, Verizon
Finding groups with similar attributes is at the core of knowledge discovery. To this end, Cluster Analysis automatically locates groups of similar observations. Despite successful applications, many practitioners are uncomfortable with the degree of automation in Cluster Analysis, which causes intuitive knowledge to be ignored. This is more true in text mining applications since individual words have meaning beyond the data set. Discovering groups with similar text is extremely insightful. However, blind applications of clustering algorithms ignore intuition and hence are unable to group similar text categories. The challenge is to integrate the power of clustering algorithms with the knowledge of experts. We demonstrate how SAS/STAT® 9.2 procedures and the SAS® Macro Language are used to ensemble the opinion of domain experts with multiple clustering models to arrive at a consensus. The method has been successfully applied to a large data set with structured attributes and unstructured opinions. The result is the ability to discover observations with similar attributes and opinions by capturing the wisdom of the crowds whether man or model.
Masoud Charkhabi, Canadian Imperial Bank of Commerce
Ling Zhu, CIBC
In randomized experiments, it is generally assumed that the hierarchical structures and variances are the same in the treatment and control groups. In some situations, however, these structures and variance components can differ. Consider a randomized experiment in which individuals randomized to the treatment condition are further assigned to clusters in which the intervention is administered, but no such clustering occurs in the control condition. Such a structure can occur, for example, when the individuals in the treatment condition are randomly assigned to group therapy sessions or to mathematics tutoring groups; individuals in the control condition do not receive group therapy or mathematics tutoring and therefore do not have that level of clustering. In this example, individuals in the treatment condition have a hierarchical structure, but individuals in the control condition do not. If the therapists or tutors differ in efficacy, the clustering in the treatment condition induces an extra source of variability in the data that needs to be accounted for in the analysis. We show how special features of SAS® PROC MIXED and PROC GLIMMIX can be used to analyze data in which one or more treatment groups have a hierarchical structure that differs from that in the control group. We also discuss how to code variables in order to increase the computational efficiency for estimating parameters from these designs.
Sharon Lohr, Westat
Peter Schochet, Mathematica Policy Research
Sampling is widely used in different fields for quality control, population monitoring, and modeling. However, the purposes of sampling might be justified by the business scenario, such as legal or compliance needs. This paper uses one probability sampling method, stratified sampling, combined with quality control review business cost to determine an optimized procedure of sampling that satisfies both statistical selection criteria and business needs. The first step is to determine the total number of strata by grouping the strata with a small number of sample units, using box-and-whisker plots outliers as a whole. Then, the cost to review the sample in each stratum is justified by a corresponding business counter-party, which is the human working hour. Lastly, using the determined number of strata and sample review cost, optimal allocation of predetermined total sample population is applied to allocate the sample into different strata.
Yi Du, Freddie Mac
The Challenge: assigning outbound calling agents in a telemarketing campaign to geographic districts. The districts have a variable number of leads, and each agent needs to be assigned entire districts with the total number of leads being as close as possible to a specified number for each of the agents (usually, but not always, an equal number). In addition, there are constraints concerning the distribution of assigned districts across time zones in order to maximize productivity and availability. Our Solution: use the SAS/OR® procedure PROC CLP to formulate the challenge as a constraint satisfaction problem (CSP) since the objective is not necessarily to minimize a cost function, but rather to find a feasible solution to the constraint set. The input consists of the number of agents, the number of districts, the number of leads in each district, the desired number of leads per agent, the amount by which the actual number of leads can differ from the desired number, and the time zone for each district.
Kevin Gillette, Accenture
Stephen Sloan, Accenture
As IT professionals, saving time is critical. Delivering timely and quality-looking reports and information to management, end users, and customers is essential. SAS® provides numerous 'canned' PROCedures for generating quick results to take care of these needs ... and more. In this hands-on workshop, attendees acquire basic insights into the power and flexibility offered by SAS PROCedures using PRINT, FORMS, and SQL to produce detail output; FREQ, MEANS, and UNIVARIATE to summarize and create tabular and statistical output; and data sets to manage data libraries. Additional topics include techniques for informing SAS which data set to use as input to a procedure, how to subset data using a WHERE statement (or WHERE= data set option), and how to perform BY-group processing.
Kirk Paul Lafler, Software Intelligence Corporation
As complicated as the macro language is to learn, there are very strong reasons for doing so. At its heart, the macro language is a code generator. In its simplest uses, it can substitute simple bits of code like variable names and the names of data sets that are to be analyzed. In more complex situations, it can be used to create entire statements and steps based on information may even be unavailable to the person writing or even executing the macro. At the time of execution, it can be used to make queries of the SAS® environment as well as the operating system, and utilize the gathered information to make informed decisions about how it is to further function and execute.
Art Carpenter, California Occidental Consultants
Because the macro language is primarily a code generator, it makes sense that the code that it creates must be generated before it can be executed. This implies that execution of the macro language comes first. Simple as this is in concept, timing issues and conflicts are often not so simple to recognize in application. As we use the macro language to take on more complex tasks, it becomes even more critical that we have an understanding of these issues.
Art Carpenter, California Occidental Consultants
Macro variables and their values are stored in symbol tables, which in turn are held in memory. Not only are there are a number of ways to create macro variables, but they can be created in a wide variety of situations. How they are created and under what circumstances effects the variable s scope how and where the macro variable is stored and retrieved. There are a number of misconceptions about macro variable scope and about how the macro variables are assigned to symbol tables. These misconceptions can cause problems that the new, and sometimes even the experienced, macro programmer does not anticipate. Understanding the basic rules for macro variable assignment can help the macro programmer solve some of these problems that are otherwise quite mystifying.
Art Carpenter, California Occidental Consultants
This paper provides an overview of how to create a SAS® Enterprise Guide® process that is well designed, simple, documented, automated, modular, efficient, reliable, and easy to maintain. Topics include how to organize a SAS Enterprise Guide process, how to best document in SAS Enterprise Guide, when to leverage point-and-click functionality, and how to automate and simplify SAS Enterprise Guide processes. This paper has something for any SAS Enterprise Guide user, new or experienced!
Steven First, Systems Seminar Consultants
Jennifer First-Kluge, Systems Seminar Consultants
In many organizations the amount of data we deal with increases far faster than the hardware and IT infrastructure to support them. As a result, we encounter significant bottlenecks and I/O bound processes. However, clever use of SAS® software can help us find a way around. In this paper we will look at the clever use of PROC OLAP to show you how to address I/O bound processing spread I/O traffic to different servers to increase cube building efficiency. This paper assumes experience with SAS® OLAP Cube Studio and/or PROC OLAP.
Michael Brule, SAS
Yunbo (Jenny) Sun, Canada Post
Digital data has manifested into a classic BIG DATA challenge for marketers who want to push past the retroactive analysis limitations of traditional web analytics. The current groundswell of digital device adoption and variety of digital interactions grows larger year after year. The opportunity for 'digital intelligence' has arrived, as traditional web analytic techniques were not designed for the breadth of channels, devices, and pace that fuels consumer experiences. In parallel, today's landscape for data visualization, advanced analytics, and our ability to process very large amounts of multi-channel information is changing. The democratization of analytics for the masses is upon us, and marketers have the oppourtunity to take advantage of descriptive, predictive, and (most importantly) prescriptive data-driven insights. This presentation describes how organizations can use SAS® products, specifically SAS® Visual Analytics and SAS® Adaptive Customer Experience, to overcome the limitations of web analytics, and support data-driven integrated marketing objectives.
Suneel Grover, SAS
Merging or joining data sets is an integral part of the data consolidation process. Within SAS®, there are numerous methods and techniques that can be used to combine two or more data sets. We commonly think that within the DATA step the MERGE statement is the only way to join these data sets, while in fact, the MERGE is only one of numerous techniques available to us to perform this process. Each of these techniques has advantages, and some have disadvantages. The informed programmer needs to have a grasp of each of these techniques if the correct technique is to be applied. This paper covers basic merging concepts and options within the DATA step, as well as a number of techniques that go beyond the traditional MERGE statement. These include fuzzy merges, double SET statements, and the use of key indexing. The discussion will include the relative efficiencies of these techniques, especially when working with large data sets.
Art Carpenter, California Occidental Consultants
Paper 2044-2014:
Dataset Matching and Clustering with PROC OPTNET
We used OPTNET to link hedge fund datasets from four vendors, covering overlapping populations, but with no universal identifier. This quick tip shows how to treat data records as nodes, use pairwise identifiers to generate distance measures, and get PROC OPTNET to assign clusters of records from all sources to each hedge fund. This proved to be far faster, and easier, than doing the same task in PROC SQL.
Mark Keintz, Wharton Research Data Services
Evaluation of the efficacy of an intervention is often complicated because the intervention is not randomly assigned. Usually, interventions in marketing, such as coupons or retention campaigns, are directed at customers because their spending is below some threshold or because the customers themselves make a purchase decision. The presence of nonrandom assignment of the stimulus can lead to over- or underestimating the value of the intervention. This can cause future campaigns to be directed at the wrong customers or cause the impacts of these effects to be over- or understated. This paper gives a brief overview of selection bias, demonstrates how selection in the data can be modeled, and shows how to apply some of the important consistent methods of estimating selection models, including Heckman's two-step procedure, in an empirical example. Sample code is provided in an appendix.
Kenneth Sanford, SAS
Gunce Walton, SAS
New York City boasts a wide variety of cuisine owing to the rich tourism and the vibrant immigrant population. The quality of food and hygiene maintained at the restaurants serving different cuisines has a direct impact on the people dining in them. The objective of this paper is to build a model that predicts the grade of the restaurants in New York City. It also provides deeper statistical insights into the distribution of restaurants, cuisine categories, grades, criticality of violations, etc., and concludes with the sequence analysis performed on the complete set of violations recorded for the restaurants at different time periods over the years 2012 and 2013. The data for 2013 is used to test the model. The data set consists of 15 variables that capture to restaurant location-specific and violation details. The target is an ordinal variable with three levels, A, B, and C, in descending order of the quality representation. Various SAS® Enterprise Miner™ models, logistic regression, decision trees, neural networks, and ensemble models are built and compared using validation misclassification rate. The stepwise regression model appears to be the best model, with prediction accuracy of 75.33%. The regression model is trained at step 3. The number of critical violations at 8.5 gives the root node for the split of the target levels, and the rest of the tree splits are guided by the predictor variables such as number of critical and non-critical violations, number of critical violations for the year 2011, cuisine group, and the borough.
Pruthvi Bhupathiraju Venkata, Oklahoma State University
Goutam Chakraborty, Oklahoma State University
APP is an unofficial collective abbreviation for the SAS® functions ADDR, PEEK, PEEKC, the CALL POKE routine, and their so-called LONG 64-bit counterparts the SAS tools designed to directly read from and write to physical memory in the DATA step. APP functions have long been a SAS dark horse. First, the examples of APP usage in SAS documentation amount to a few technical report tidbits intended for mainframe system programming, with nary a hint how the functions can be used for data management programming. Second, the documentation note on the CALL POKE routine is so intimidating in tone that many potentially receptive folks might decide to avoid the allegedly precarious route altogether. However, little can stand in the way of an inquisitive SAS programmer daring to take a close look, and it turns out that APP functions are very simple and useful tools! They can be used to explore how things really work, to make code more concise, to implement en masse data movement, and they can often dramatically improve execution efficiency. The author and many other SAS experts (notably Peter Crawford, Koen Vyverman, Richard DeVenezia, Toby Dunn, and the fellow masked by his 'Puddin' Man' sobriquet) have been poking around the SAS APP realm on SAS-L and in their own practices since 1998, occasionally letting the SAS community at large to peek at their findings. This opus is an attempt to circumscribe the results in a systematic manner. Welcome to the APP world! You are in for a few glorious surprises.
Paul Dorfman, Dorfman Consulting
The health-care industry in the United States is going through a paradigm shift moving away from its focus on treating diseases and toward promoting health, wellness, and preventive public health programs, so that both the individuals and the government can maintain a healthy bottom line. The high-level business problem is to reduce the expected medical costs and number of medical services required by the people of New Hampshire by implementing successful disease prevention programs. The objective is to identify which among the six prevention programs will successfully improve the health of the residents of New Hampshire over nine future years (2012 2020). The business scenario of the case is to identify the preventive programs that are most effective in reducing the costs in New Hampshire and to invest the money in those programs so that the overall health-care overhead costs can be reduced or controlled. The effectiveness of implementing the preventive programs was evaluated using SAS® Enterprise Guide® 5.1 and SAS® Enterprise Miner™ 12. Time series analysis, in particular, forecasting, is used to project the future health-care services and costs for the years from 2012 to 2020. Our analysis showed that all the preventive programs should be implemented concurrently. The minimum anticipated savings in cost is approximately $572,111 or 3.3% of the expected baseline cost of $17,297,931. Therefore, our recommendation is to use this cost reduction figure, $572,111, as the initial funding investment toward initiating the six prevention programs concurrently, so that tangible results can be noticed by 2020.
Rakesh Karn, Oklahoma State University
Rom Khattri, Oklahoma State University
Pradeep Podila, Oklahoma State University
Linda Schumacher, Oklahoma State University
Response rates, churn models, customer lifetime value today's marketing departments are more analytically driven than ever. Marketers have had their heads down developing analytic capabilities for some time. The results have been game-changing. But it's time for marketers to look up and discover which analytic results from other departments can enhance the analytics of marketing. What if you knew the demand forecast for your products? What could you do? What if you understood the price sensitivity for your products? How would this impact the actions that your marketing team takes? Using the hospitality industry as an example, we explore how marketing teams can use the analytic outputs from other departments to get better results overall.
Natalie Osborn, SAS
Eric Peterson, PInnacle Entertainment
Given a time series data set, you can use automatic time series modeling software to select an appropriate time series model. You can use various statistics to judge how well each candidate model fits the data (in-sample). Likewise, you can use various statistics to select an appropriate model from a list of candidate models (in-sample or out-of-sample or both). Finally, you can use rolling simulations to evaluate ex-ante forecast performance over several forecast origins. This paper demonstrates how you can use SAS® Forecast Server Procedures and SAS® Forecast Studiosoftware to perform the statistical analyses that are related to rolling simulations.
Bruce Elsheimer, SAS
Michael Leonard, SAS
SAS® is an outstanding suite of software, but not everyone in the workplace speaks SAS. However, almost everyone speaks Excel. Often, the data you are analyzing, the data you are creating, and the report you are producing is a form of a Microsoft Excel spreadsheet. Every year at SAS® Global Forum, there are SAS and Excel presentations, not just because Excel isso pervasive in the workplace, but because there s always something new to learn (or re-learn)! This paper summarizes and references (and pays homage to!) previous SAS Global Forum presentations, as well as examines some of the latest Excel capabilities with the latest versions of SAS® 9.4 and SAS® Visual Analytics.
Andrew Howell, ANJ Solutions
Explore the various DATA step merge and PROC SQL join processes. This presentation examines the similarities and differences between merges and joins, and provides examples of effective coding techniques. Attendees examine the objectives and principles behind merges and joins, one-to-one merges (joins), and match-merge (equi-join), as well as the coding constructs associated with inner and outer merges (joins) and PROC SQL set operators.
Kirk Paul Lafler, Software Intelligence Corporation
Beginning with SA®S 9.2, ODS Graphics introduces a whole new way of generating graphs using SAS®. With just a few lines of code, you can create a wide variety of high-quality graphs. This paper covers the three basic ODS Graphics procedures SGPLOT, SGPANEL, and SGSCATTER. SGPLOT produces single-celled graphs. SGPANEL produces multi-celled graphs that share common axes. SGSCATTER produces multi-celled graphs that might use different axes. This paper shows how to use each of these procedures in order to produce different types of graphs, how to send your graphs to different ODS destinations, how to access individual graphs, and how to specify properties of graphs, such as format, name, height, and width.
Lora Delwiche, University of California, Davis
Susan Slaughter, Avocet Solutions
One of the most common questions about logistic regression is How do I know if my model fits the data? There are many approaches to answering this question, but they generally fall into two categories: measures of predictive power (like R-squared) and goodness of fit tests (like the Pearson chi-square). This presentation looks first at R-squared measures, arguing that the optional R-squares reported by PROC LOGISTIC might not be optimal. Measures proposed by McFadden and Tjur appear to be more attractive. As for goodness of fit, the popular Hosmer and Lemeshow test is shown to have some serious problems. Several alternatives are considered.
Paul Allison, University of Pennsylvania
Quite often when building web applications that use either the SAS® Stored Process Server or the SAS/IntrNet® Applications Dispatcher, it is necessary to create a custom user interface to prompt for the needed parameters. For example, generating a custom user interface can be accomplished by chaining stored processes together. The first stored process generates the user interface where the user selects the desired options and uses PROC STREAM to process and input SAS® Server Pages to display the user interface. The second (or later) stored process in the chain generates the desired output. This paper describes and shows several examples similar to those presented in the SAS® Press book SAS Server Pages: Generating Dynamic Content (http://support.sas.com/publishing/authors/extras/64993b.html) and on the author s blog Jurassic SAS in the BI/EBI World (http://hcsbi.blogspot.com/).
Don Henderson, Henderson Consulting Services
The SQL procedure contains many powerful and elegant language features for intermediate and advanced SQL users. This presentation discusses topics that will help SAS® users unlock the many powerful features, options, and other gems found in the SQL universe. Topics include CASE logic; a sampling of summary (statistical) functions; dictionary tables; PROC SQL and the SAS macro language interface; joins and join algorithms; PROC SQL statement options _METHOD, MAGIC=101, MAGIC=102, and MAGIC=103; and key performance (optimization) issues.
Kirk Paul Lafler, Software Intelligence Corporation
Many SAS® procedures use classification variables when they are processing the data. These variables control how the procedure forms groupings, summarizations, and analysis elements. For statistics procedures, they are often used in the formation of the statistical model that is being analyzed. Classification variables can be explicitly specified with a CLASS statement, or they can be specified implicitly from their usage in the procedure. Because classification variables have such a heavy influence on the outcome of so many procedures, it is essential that the analyst have a good understanding of how classification variables are applied. Certainly there are a number of options (system and procedural) that affect how classification variables behave. While you may be aware of some of these options, a great many are new, and some of these new options and techniques are especially powerful. You really need to be open to learning how to program with CLASS.
Art Carpenter, California Occidental Consultants
Can you juggle? Maybe. Can you shuffle a deck of cards? Probably. Can you do both at the same time? Welcome to the world of SAS® and LSF! Very few SAS Administrators start out learning LSF at the same time they learn SAS; most already know SAS, possibly starting out as a programmer or analyst, but now have to step up to an enterprise platform with shared resources. The biggest challenge on an enterprise platform? How to share! How to maximum the utilization of a SAS platform, yet still ensure everyone gets their fair share? This presentation will boil down the 2000+ pages of LSF documentation to provide an introduction into various LSF concepts: * Host * Clusters * Nodes * Queues * First-Come-First-Serve * Fairshare * and various configuration settings: UJOB_LIMIT, PJOB_LIMIT, etc. Plus some insight on where to configure all these settings which are set up by the installation process, and which can be configured by the SAS or LSF administrator. This session is definitely NOT for experts. It is for those about to step into an enterprise deployment of SAS, and want to understand how the SAS server sessions they know so well can run on a shared platform.
Andrew Howell, ANJ Solutions
Why would a SAS® administrator need a dashboard? With the evolution of SAS®9, the SAS administrator s role has dramatically changed. Creating a dashboard on a SAS environment gives the SAS administrator an overview on the environment health, ensures resources are used as predicted, and provides a way to explore. SAS® Visual Analytics allows you to quickly explore, analyze, and visualize data. So, why not bring the two concepts together? In this session, you will learn tips for designing dashboards, loading what might seem like impossible data, and building visualizations that guide users toward the next level of analysis. Using the dashboard, SAS administrators will learn ways to determine the system health and how to take advantage of external tools, such as the Metacoda software, to find additional insights and explore problem areas.
Tricia Aanderud, And Data Inc
Michelle Homes, Metacoda
This discussion uses SAS® Office Analytics as an example to demonstrate the importance of preparing for the SAS® installation. There are many nuances as well as requirements that need to be addressed before you do an installation. These requirements are basically similar, yet they differ according to the target installation operating system. In other words, there are some differences in preparation routines for Windows and *Nix flavors. Our discussion focuses on these three topics: 1. Pre-installation considerations such as sizing, storage, proper credentials, and third-party requirements; 2. Installation steps and requirements; and 3. Post-installation configuration. In addition to preparation, this paper also discusses potential issues and pitfalls to watch out for, as well as best practices.
Rafi Sheikh, Analytiks International, Inc.
Linear regression has been a widely used approach in social and medical sciences to model the association between a continuous outcome and the explanatory variables. Assessing the model assumptions, such as linearity, normality, and equal variance, is a critical step for choosing the best regression model. If any of the assumptions are violated, one can apply different strategies to improve the regression model, such as performing transformation of the variables or using a spline model. SAS® has been commonly used to assess and validate the postulated model and SAS® 9.3 provides many new features that increase the efficiency and flexibility in developing and analyzing the regression model, such as ODS Statistical Graphics. This paper aims to demonstrate necessary steps to find the best linear regression model in SAS 9.3 in different scenarios where variable transformation and the implementation of a spline model are both applicable. A simulated data set is used to demonstrate the model developing steps. Moreover, the critical parameters to consider when evaluating the model performance are also discussed to achieve accuracy and efficiency.
Ning Huang, University of Southern California
SAS® OLAP technology is used to organize and present summarized data for business intelligence applications. It features flexible options for creating and storing aggregations to improve performance and brings a powerful multi-dimensional approach to querying data. This paper focuses on managing security features available to OLAP cubes through the combination of SAS metadata and MDX logic.
Stephen Overton, Overton Technologies, LLC
The Purchasing Department is considering contracting with your team for a new SAS® Enterprise BI application. He's already met with SAS® and seen the sales pitch, and he is very interested. But the manager is a tightwad and not sure about spending the money. Also, he wants his team to be the primary developers for this new application. Before investing his money on training, programming, and support, he would like a proof-of-concept. This paper will walk you through the seven steps to create a SAS Enterprise BI POC project: Develop a kick-off meeting including a full demo of the SAS Enterprise BI tools. Set up your UNIX file systems and security. Set up your SAS metadata ACTs, users, groups, folders, and libraries. Make sure the necessary SAS client tools are installed on the developers machines. Hold a SAS Enterprise BI workshop to introduce them to the basics, including SAS® Enterprise Guide®, SAS® Stored Processes, SAS® Information Maps, SAS® Web Report Studio, SAS® Information Delivery Portal, and SAS® Add-In for Microsoft Office, along with supporting documentation. Work with them to develop a simple project, one that highlights the benefits of SAS Enterprise BI and shows several methods for achieving the desired results. Last but not least, follow up! Remember, your goal is not to launch a full-blown application. Instead, we ll strive toward helping them see the potential in your organization for applying this methodology.
Sheryl Weise, Wells Fargo
Nowadays, in the Big Data era, Business Intelligence Departments collect, store, process, calculate, and monitor massive amounts of data. Nevertheless, sometimes hundreds of metrics built on the structured data are inefficient to explain why the offered deal sold better or worse than expected. The answer might be found in text data that every company owns and yet is not aware of its possible usage or neglects its value. This project shows text mining methods, implemented in SAS® Text Miner 12.1, that enable the determination of a deal's success or failure factors based on in-house or Internet-scattered customers' views and opinions. The study is conducted on data gathered from Groupon Sp. z o.o. (Polish business unit) - e-commerce company, as it is assumed that the market is by and large a customer-driven environment.
Rafal Wojdan, Warsaw School of Economics
'Can I have that in Excel?' This is a request that makes many of us shudder. Now your boss has discovered Microsoft Excel pivot tables. Unfortunately, he has not discovered how to make them. So you get to extract the data, massage the data, put the data into Excel, and then spend hours rebuilding pivot tables every time the corporate data is refreshed. In this workshop, you learn to be the armchair quarterback and build pivot tables without leaving the comfort of your SAS® environment. In this workshop, you learn the basics of Excel pivot tables and, through a series of exercises, you learn how to augment basic pivot tables first in Excel, and then using SAS. No prior knowledge of Excel pivot tables is required.
Peter Eberhardt, Fernwood Consulting Group Inc.
For decades, SAS® has been the cornerstone of many organizations for business reporting. In more recent times, the ability to quickly determine the performance of an organization through the use of dashboards has become a requirement. Different ways of providing dashboard capabilities are discussed in this paper: using out-of-the-box solutions such as SAS® Visual Analytics and SAS® BI Dashboard, through to alternative solutions using SAS® Stored Processes, batch processes, and SAS® Integration Technologies. Extending the available indicators is also discussed, using Graph Template Language and KPI indicators provided with Base SAS®, as well as alternatives such as Google Charts and Flash objects. Real-world field experience, problem areas, solutions, and tips are shared, along with live examples of some of the different methods.
Mark Bodt, The Knowledge Warehouse (Knoware)
The SAS® Enterprise Guide® Query Builder is one of the most powerful components of the software. It enables a user to bring in data, join, drop and add columns, compute new columns, sort, filter data, leverage the advanced expression builder, change column attributes, and more! This presentation provides an overview of the major features of this powerful tool and how to leverage it every day.
Steven First, Systems Seminar Consultants
Jennifer First-Kluge, Systems Seminar Consultants
This is the way I have always done it and it works fine for me. Have you heard yourself or others say this when someone suggests a new technique to help solve a problem? Most of us have a set of tricks and techniques from which we draw when starting a new project. Over time we might overlook newer techniques because our old toolkit works just fine. Sometimes we actively avoid new techniques because our initial foray leaves us daunted by the steep learning curve to mastery. For me, the PRX functions and the SAS® hash object fell into this category. In this workshop, we address possible objections to learning to use the SAS hash object. We start with the fundamentals of setting up the hash object and work through a variety of practical examples to help you master this powerful technique.
Peter Eberhardt, Fernwood Consulting Group Inc.
SAS® Add-In for Microsoft Office remains a popular tool for people who are not SAS® programmers due to its easy interface with the SAS servers. In this session, you'll learn some of the many tricks that other organizations use for getting more value out of the tool.
Tricia Aanderud, And Data Inc
The new Markov chain Monte Carlo (MCMC) procedure introduced in SAS/STAT® 9.2 and further exploited in SAS/STAT® 9.3 enables Bayesian computations to run efficiently with SAS®. The MCMC procedure allows one to carry out complex statistical modeling within Bayesian frameworks under a wide spectrum of scientific research; in psychometrics, for example, the estimation of item and ability parameters is a kind. This paper describes how to use PROC MCMC for Bayesian inferences of item and ability parameters under a variety of popular item response models. This paper also covers how the results from SAS PROC MCMC are different from or similar to the results from WinBUGS. For those who are interested in the Bayesian approach to item response modeling, it is exciting and beneficial to shift to SAS, based on its flexibility of data managements and its power of data analysis. Using the resulting item parameter estimates, one can continue to test form constructions, test equatings, etc., with all these test development processes being accomplished with SAS!
Yi-Fang Wu, Department of Educational Measurement and Statistics, Iowa Testing Programs, University of Iowa
There are yearly 2.35 million road accident cases recorded in the U.S. Among them, 37,000 were considered fatal. Road crashes cost USD 230.6 billion per year, or an average of USD 820 per person. Our efforts are to identify the important factors that lead to vehicle collisions and to predict the injury risk involved in them. Data was collected from National Automotive Sampling System (NASS), containing 20,247 cases with 19 variables. Input variables describe the factors involved in an accident like Height, Age, Weight, Gender, Vehicle model year, Speed limit, Energy absorption in Collision & Deformation location, etc. The target variable is nominal showing levels of injury. Missing values in interval variables were imputed using mean and class variables using the count method. Multivariate analysis suggests high correlation between tire footprint and wheelbase (Corr=0.97, P<0.0001) and original weight of car and curb weight of car (Corr=0.79, P<0.0001). Variables having high kurtosis values were transformed using range standardization. Variables were sorted using variable importance using decision tree analysis. Models like multiple regression, polynomial regression, neural network, and decision tree were applied in the dataset to identify the factors that are most significant in predicting the injury risk. Multilinear perception neural network came out to be the best model to predict injury risk index, with the least Average Squared Error 0.086 in validation dataset.
Prateek Khare, Oklahoma State University
Vandana Reddy, Oklahoma State University
When reading data files or writing SAS® programs, we are often hunting for the right format or informat. There are so many to choose from! Does it seem like too many to search the manual? Let SAS help find the right one! We use the SAS dictionary table VFORMAT and a very small SAS program. This presentation demonstrates how two simple functions unlock the potential of this great resource: SASHELP.VFORMAT.
Peter Crawford, Crawford Software Consultancy Limited
A European utility company has several thousand service engineers who provide its customers with services that range from performing routine maintenance to handling emergency breakdowns. Each service engineer is assigned to a work area that consists of a set of postal sectors. The company wants to understand how it should configure its work areas to improve customer satisfaction, minimize travel time for its full-time service engineers, and minimize the costs of overtime and subcontractor hours. This paper describes the use of SAS/OR® optimization procedures to model this problem and configure optimal work areas, and the use of SAS® Simulation Studio to simulate how the optimal configurations might satisfy the customer service requirements. The experimental results show that the proposed solution can satisfy customer demand within the desired service-time window, with significantly less travel time for the engineers, and with lower overtime and subcontractor costs.
Colin Gray, SAS
Emily Lada, SAS
Anne Smith, SAS
Jinxin Yi, SAS