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ABSTRACT

The NLIN procedure fits a wide variety of nonlinear models. However, some models can be so nonlinear
that standard statistical methods of inference are not trustworthy. That’s when you need the diagnostic and
inferential features that were added to PROC NLIN in SAS/STAT® 9.3, 12.1, and 13.1. This paper presents
these features and explains how to use them. Examples demonstrate how to use parameter profiling and
confidence curves to identify the nonlinear characteristics of the model parameters. They also demonstrate
how to use the bootstrap method to study the sampling distribution of parameter estimates and to make
more accurate statistical inferences.

This paper highlights how measures of nonlinearity help you diagnose models and decide on potential
reparameterization. It also highlights how multithreading is used to tame the large number of nonlinear
optimizations that are required for these features.

INTRODUCTION

Nonlinear regression models are formally defined as models in which at least one of the model parameters
occurs nonlinearly in the model expression. Consequently, the derivatives of the model expression with
respect to the parameters depend on at least one of the parameters. Nonlinear models are used to model
complex interrelationships among variables. Common examples of nonlinear models include growth, yield-
density, and dose-response models and various models that are used to describe industrial and econometric
processes (Ratkowsky 1983; Seber and Wild 1989).

The NLIN procedure fits univariate nonlinear models by using the least squares method. The stochastic
structure of models that are fit by the NLIN procedure is given by

Y D f.�I z/C �

EŒ�� D 0

VarŒ�� D �2Iw

where f is the mean function, � refers to the model parameters, z is the vector of regressors, and Y is the
response. The model errors, �, are assumed to be uncorrelated. For homoscedastic errors, which are errors
with equal yet usually unknown variance, Iw is the identity matrix and �2 is the variance. If the errors are
assumed to have unequal variances (heteroscedastic), Iw can be a nonidentity diagonal weight matrix.

BENEFITS OF CLOSE-TO-LINEAR NONLINEAR REGRESSION MODELS

Statistical inference (such as constructing confidence intervals, correlation matrices, and covariance matrices
of the parameter estimates) that remains valid under finite sample size is more challenging for nonlinear
regression models than for linear regression models.1 For example, if the error, �, is assumed to be
independent and identically distributed normal random variables, then the corresponding least squares
parameter estimators of a linear regression model are unbiased and normally distributed and have minimum
variance among regular estimators (Seber and Wild 1989). These are important properties that standard
statistical inferences, which assume normality of the parameter estimates, use in practice. In contrast, least
squares parameter estimates of nonlinear regression models acquire these properties only asymptotically as
the sample size approaches infinity (Seber and Wild 1989). Consequently, for finite sample size, standard

1Henceforth, the phrase nonlinear regression model stands for the totality of the model expression and the data.
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inference might not be trustworthy for a particular nonlinear regression model. In addition, prediction of the
response for specified regressor values can suffer from significant bias in nonlinear regression models.

The validity of standard inference in nonlinear regression models depends on both the model expression
and the data (Ratkowsky 1983). Close-to-linear nonlinear regression models are those for which standard
inference works. In contrast, far-from-linear nonlinear regression models are those for which standard
inference does not work. After the parameter estimates are obtained for a particular nonlinear regression
model, the first task is to assess whether the nonlinear regression model is a close-to-linear or a far-from-
linear model. It is usually considered self-evident that a close-to-linear nonlinear regression model is preferred
to a far-from-linear nonlinear regression model (Ratkowsky 1983). The advantages of a close-to-linear model
are as follows:

• parameter estimates that are unbiased and have a close-to-minimal variance

• unbiased predicted values of the response

• faster convergence of the least squares minimization

• simplicity of the standard inference in computation, verification, and interpretation

A far-from-linear nonlinear regression model requires additional steps to draw valid statistical inference and
prediction. An essential first step is reparameterization of the model,

� D g.ˇ/

which consists of defining the old parameters, �, in terms of new parameters, ˇ, by using a one-to-one
mapping function, g. The goal is to obtain a close-to-linear model that has ˇ as its parameters. If the
reparameterization yields a close-to-linear model, performing standard inference and prediction with the
new model suffices. In nonlinear models that have significant intrinsic curvature, reparameterization might
not yield a close-to-linear model (Bates and Watts 1980). Such nonlinear regression models ultimately
require the use of inferential approaches such as the bootstrap that, in general, have better finite sample
size properties than the standard methods of inference (DiCiccio and Efron 1996)

DIAGNOSING A FAR-FROM-LINEAR NONLINEAR MODEL IN PROC NLIN

Before SAS/STAT 9.3, the NLIN procedure provided estimates of the confidence intervals, standard errors,
and correlation matrix based on the standard inference. It provided no features to check the reliability of
these estimates. Neither did it provide alternative options to make more dependable estimates. This is no
longer the case. Global measures of curvature, Box’s bias, and ODS graphics were added in SAS/STAT
9.3; the PROFILE statement for parameter profiling was added in SAS/STAT 12.1; and the BOOTSTRAP
statement for bootstrapping the parameter estimates was added in SAS/STAT 13.1. You can use these
options to assess the reliability of the standard inference and to make better statistical inference in cases
where the standard inference fails.

In the following sections, a nonlinear regression model based on the Mitscherlich equation,

y D �3 C �2 exp.�1x/

is used to demonstrate the utility of these features of the NLIN procedure. The data set, taken from Clarke
(1987), is reproduced using the following statements:

data clarke1987;
input x y;
datalines;
1 3.183
2 3.059
3 2.871
4 2.622
5 2.541
6 2.184
7 2.110
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8 2.075
9 2.018
10 1.903
11 1.770
12 1.762
13 1.550

;

Standard Inference in the NLIN Procedure

By default, the NLIN procedure produces statistical results based on the standard inference. The following
statements fit a Mitscherlich equation to the preceding data set:

proc nlin data=clarke1987;
parms theta1=-0.15 theta2=2.0 theta3=0.80;
model y = theta3 + theta2*exp(theta1*x);

run;

In addition to showing the parameter estimates, Figure 1 and Figure 2 show the 95% standard confidence
intervals and correlation matrix, respectively. The reliability of these estimates is assessed in the following
sections. Intuitively, �1, which occurs nonlinearly in the model expression, is expected to have the least
dependable estimates, because the standard inference is based on linear approximation. The next few
sections show whether this intuitive expectation holds or not.

Figure 1 Parameter Estimates and Standard Confidence Intervals

The NLIN ProcedureThe NLIN Procedure

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

theta1 -0.1031 0.0255 -0.1599 -0.0462

theta2 2.5190 0.2658 1.9268 3.1112

theta3 0.9631 0.3216 0.2466 1.6797

Figure 2 Standard Correlation Matrix

Approximate Correlation Matrix

theta1 theta2 theta3

theta1 1.0000000 0.9233045 -0.9841058

theta2 0.9233045 1.0000000 -0.9723891

theta3 -0.9841058 -0.9723891 1.0000000

Global Measures of Nonlinearity: The NLINMEASURES Option

Relative intrinsic and parameter-effects curvatures can be used to quantify the global nonlinearity of a
nonlinear regression model (Bates and Watts 1980). These measures are scale-invariant with respect to
both the parameters and the data. The intrinsic curvature measures the curvature of the expectation surface
at the parameter estimates, and the parameter-effects curvature measures the lack of parallelism of parallel
parameter lines that are projected onto the expectation surface. As a result, the parameter-effects curvature
can be reduced by reparameterization of the model, whereas intrinsic curvature is an inherent property of
the model that cannot be affected by reparameterization.
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A critical curvature value, Cr, given by

Cr D 1=
p
F.p; n � pI˛/

can be used to gauge the statistical significance, at the significance level ˛, of the relative intrinsic and
parameter-effects curvatures of a nonlinear regression model (Bates and Watts 1980). In the preceding
expression, n and p stand for the number of observations and number of parameters, respectively. The
value of Cr can be considered the radius of curvature of the 100.1 � ˛/% confidence region. A value
of either relative curvature that exceeds the critical value signals a far-from-linear model. If the intrinsic
curvature exceeds the critical value, it indicates an inherently far-from-linear model that cannot be made a
close-to-linear model by reparameterization.

The NLIN procedure provides the NLINMEASURES option in the PROC NLIN statement to produce the
nonlinearity measures table. In addition to the maximum intrinsic and parameter-effects curvatures, the
nonlinearity measures table contains the root mean square intrinsic curvature, parameter-effects curvature,
and critical curvature values. Figure 3 displays this table, which is generated by the following statements:

proc nlin data=clarke1987 nlinmeasures;
parms theta1=-0.15 theta2=2.0 theta3=0.80;
model y = theta3 + theta2*exp(theta1*x);

run;

Figure 3 Global Measures of Nonlinearity

The NLIN ProcedureThe NLIN Procedure

Global Nonlinearity Measures

Max Intrinsic Curvature 0.0935

RMS Intrinsic Curvature 0.0418

Max Parameter-Effects Curvature 7.0183

RMS Parameter-Effects Curvature 3.1301

Curvature Critical Value 0.5193

Raw Residual Variance 0.0053

Projected Residual Variance 0.0059

Figure 3 shows that for the relative parameter-effects curvature, both the maximum value, 7.0183, and the
root mean square value, 3.1301, greatly exceed the critical curvature value, 0.5193. In contrast, the relative
intrinsic curvature’s maximum value, 0.0935, and the root mean square value, 0.0418, are significantly less
than the critical value. These values imply that although the nonlinear regression model is a far-from-linear
model, it is not an inherently far-from-linear model because the intrinsic curvature values are well below
the critical value. As a result, reparameterizations of the model in terms of new parameters can yield a
close-to-linear model.

Which Parameters Dominate the Global Nonlinearity? The BIAS and HOUGAARD Options

In practice, only a few of the parameters might dominate the global nonlinearity, in which case these param-
eters are the reparameterization parameters of interest. Unfortunately, the global nonlinearity measures
discussed in the preceding section do not differentiate the parameters based on their contribution to the
overall curvature. Manifestations of strong nonlinear behavior include significant bias and skewness. Hence,
it is essential to estimate at least these basic statistical properties of the parameter estimates in order to
identify the reparameterization parameters of interest. You can estimate the bias and skewness of the
parameter estimates of a nonlinear regression model by using Box’s bias measure and Hougaard’s skewness
measure (Box 1971; Hougaard 1982). These measures are based on beyond-linear approximation of the
expectation surface.
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The NLIN procedures provides the BIAS and HOUGAARD options, which add to the parameter estimates
table columns that correspond to Box’s bias and Hougaard’s skewness measures. You can invoke these
options as follows:

proc nlin data=clarke1987 bias hougaard;
parms theta1=-0.15 theta2=2.0 theta3=0.80;
model y = theta3 + theta2*exp(theta1*x);

run;

Figure 4 displays the estimated bias and skewness in addition to the parameter estimates. The guideline,
according to Ratkowsky (1983), is that percentage bias greater than 1% is considered to be significantly
nonlinear. Similarly, a value of the standardized Hougaard skewness measure greater than 0.25 in absolute
value indicates nonlinear behavior. Based on these guidelines, the estimates of both �2 and �3 are significantly
biased and skewed, whereas the bias and skewness of estimate of �1 are negligible. This makes the
application of standard inference to �2 and �3 unreliable, and it conflicts with the intuitive expectation that the
estimates for �1 would show the strongest effects of nonlinearity.

Figure 4 Box’s Bias and Hougaard’s Skewness Measures

The NLIN ProcedureThe NLIN Procedure

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits Skewness Bias

Percent
Bias

theta1 -0.1031 0.0255 -0.1599 -0.0462 -0.0619 -0.00026 0.26

theta2 2.5190 0.2658 1.9268 3.1112 1.5428 0.0802 3.18

theta3 0.9631 0.3216 0.2466 1.6797 -1.3956 -0.0772 -8.02

Impact of Nonlinearity on Parameter Uncertainty: The PROFILE Statement

Table 1 summarizes the options available in the PROFILE statement.2

Table 1 Summary of Options in PROFILE Statement

Option Description

ALL Produces all profiling-related plots and statistics
CONFCURV Produces confidence curves for the listed parameters
JACKKNIFE Produces plots of the absolute relative percentage change by observation

for the listed parameters
PROFDATA= Specifies the profile output data set
RANGE= Specifies a profiling range
TPLOT Produces profile t plots for the listed parameters

The impact of nonlinearity on the uncertainty of individual parameters can be efficiently summarized by
parameter profiling (Bates and Watts 1988; Cook and Weisberg 1990). Parameter profiling consists of
constraining a specified profile parameter, � , at a range of values around the original least squares estimate
and performing least squares minimization on the rest of the parameters, ‚. The results are collected to
produce the likelihood ratio pivotal statistic, �.�/,

�.�/ D sign.� � O�/

 
SSE.�; Q‚/ � SSE. O�; O‚/

MSE

!1=2

2For information about these options, see the NLIN procedure documentation. This paper concentrates on diagnosing nonlinearity
and reparameterization of nonlinear regression models. Only the options highly relevant to this purpose are discussed.
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and the Wald pivotal statistic, �.�/,

�.�/ D
� � O�

StdErr�

where � , O� , and StdErr� are, respectively, the constrained value, the original least squares estimate, and the
standard error for the profile parameter; MSE is the mean square error; SSE.�; Q‚/ is the least squares sum
of squares error with � constrained at a certain value; and SSE. O�; O‚/ is the original least squares sum of
squares error. For linear models, �.�/ matches �.�/.

A profile t plot for parameter � is a plot of the likelihood ratio pivotal statistic, �.�/, versus the Wald pivotal
statistic, �.�/. In contrast, a confidence curve contains a scatter plot of the constrained parameter values
versus sign.� � O�/ �.�/. The standard confidence intervals are overlaid as two straight lines that pass
through .0; O�/ with a slope of ˙StdErr� . Hence, for different levels of significance, you can easily compare
the standard confidence intervals to the corresponding confidence intervals that are based on the likelihood
ratio (Cook and Weisberg 1990).

The following statements include the PROFILE statement to generate the profile t plots and confidence
curves of the parameters:3

ods graphics on;
proc nlin data=clarke1987 bias hougaard;

parms theta1=-0.15 theta2=2.0 theta3=0.80;
model y = theta3 + theta2*exp(theta1*x);
profile theta1 / range = -4 to 4 by 0.2 all;
profile theta1 theta2 theta3 / range = -2 to 2 by 0.2 all;

run;

The profile t plots (Figure 5, Figure 7, and Figure 9) and confidence curves (Figure 6, Figure 8, and
Figure 10) of the parameters corroborate the conclusions from Box’s bias and Hougaard’s skewness
measures. Specifically, �1 behaves so linearly that the likelihood ratio statistic, �.�1/, and the Wald pivotal
statistic, �.�1/, are practically indistinguishable. As for �2 and �3, there is a strong discrepancy between the
two statistics that invalidates the standard inference. It is recommended that you avoid reporting a single
confidence interval based on the standard inference unless there is good agreement between the standard
interval and the likelihood intervals up to at least the 99% confidence level (Cook and Weisberg 1990). �1
satisfies this criterion, but �2 and �3 violate it strongly. This contradicts the intuitive expectation.

Figure 5 Profile t Plot of �1 Figure 6 Confidence Curve of �1

3The profile range of �1 is different from that of �2 and �3 so that the same range of significance levels in all three confidence
curves is covered. Also, the titles from the individual profile t plot and confidence curves have been turned off to conserve space.
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Figure 7 Profile t Plot of �2 Figure 8 Confidence Curve of �2

Figure 9 Profile t Plot of �3 Figure 10 Confidence Curve of �3

Distribution of the Parameter Estimates: The BOOTSTRAP Statement

Table 2 summarizes the options available in the BOOTSTRAP statement.4

Table 2 Summary of Options in BOOTSTRAP Statement

Option Description

BOOTCI Produces bootstrap confidence intervals of the parameters
BOOTCORR Produces a bootstrap correlation matrix estimate table
BOOTCOV Produces a bootstrap covariance matrix estimate table
BOOTDATA= Specifies the bootstrap output data set
BOOTPLOTS Produces plots of the bootstrap parameter estimates
DGP= Specifies the bootstrap data generating process (DGP)
NSAMPLES= Specifies the number of bootstrap sample data sets (replicates)
SEED= Provides the seed that initializes the random number stream

The data generating process (DGP) that the NLIN procedure uses during the bootstrap process can be
represented by

QYi D f . O�I z0
i /C Q�i

4For information about these options, see the NLIN procedure documentation. This paper concentrates on diagnosing nonlinearity
and reparameterization of nonlinear regression models. Only the options highly relevant to this purpose are discussed.
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where QYi is the ith simulated response, O� is the original least squares parameter estimate, z0
i is the ith

regressor vector, and Q�i is the ith simulated error.

PROC NLIN makes several bootstrap DGP types available in the DGP option in the BOOTSTRAP statement.
The different bootstrap DGPs differ only in how they obtain the ith simulated error, Q�i . Succinctly, Q�i can be
represented as

Q�i D sr Oer

where r is a uniform random integer between 1 and the number of usable observations, sr is a scale factor
that depends on the chosen bootstrap DGP option, and Oer is the rth residual obtained from the rth usable
observation of the original least squares fit.

The following statements invoke the BOOTSTRAP statement to produce the bias-corrected bootstrap
confidence intervals of the parameter estimates (DiCiccio and Efron 1996) and generate histograms and
pairwise scatter plots of the parameter estimates:5

ods graphics on;
proc nlin data=clarke1987;

parms theta1=-0.15 theta2=2.0 theta3=0.80;
model y = theta3 + theta2*exp(theta1*x);
bootstrap / seed=123 nsamples=5000 bootci bootplots(all);

run;

Figure 11 shows that the BOOTCI option of the BOOTSTRAP statement includes columns that contain
the bias-corrected bootstrap confidence intervals in the parameter estimates table. The 95% standard
confidence interval of �1, [–0.1599, –0.0462], tightly covers the corresponding bias-corrected confidence
interval, [–0.1508, –0.0535]. In contrast, the 95% standard confidence intervals of �2, [1.9268, 3.1112],
and �3, [0.2466, 1.6797], have only loose and lower coverage of their respective bias-corrected confidence
intervals, [2.1838, 3.5162] and [–0.2531, 1.3731]. Both in theory and in practice, the coverage of bootstrap-
based confidence intervals is usually very close to the nominal value (DiCiccio and Efron 1996). Thus,
taking the bias-corrected bootstrap confidence interval as a reference, you can conclude that the standard
confidence intervals for �2 and �3 are unreliable.

Figure 11 Parameter Estimates, Standard Confidence Intervals, and Bootstrap Confidence Intervals

The NLIN ProcedureThe NLIN Procedure

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

Bootstrap
Std Dev

Bootstrap
Bias-Corrected

95%
Confidence

Limits

theta1 -0.1031 0.0255 -0.1599 -0.0462 0.0250 -0.1508 -0.0535

theta2 2.5190 0.2658 1.9268 3.1112 0.4123 2.1838 3.5162

theta3 0.9631 0.3216 0.2466 1.6797 0.4608 -0.2531 1.3731

The histogram of estimates of �1 (Figure 12) closely follows the normal distribution. In contrast, the histogram
of �2 (Figure 14) has a long right tail, and the histogram of �3 (Figure 16) has a long left tail. In addition, the
pairwise scatter plots (Figure 13, Figure 15, and Figure 17) show strong deviations from the elliptical shape
of pairwise scatter plots of normally distributed random variables.

These findings support the earlier assertion, based on Box’s bias, Hougaard’s skewness, and the parameter
profiling, that �2 and �3 show significant nonlinear behavior but �1 does not. The section “Bootstrap-Based
Reparameterization” on page 10 explains how you can use distribution of the parameter estimates to gain
insight into a reparameterization that can reduce the parameter-effects curvature and bring the model closer
to linearity.

5The titles from the individual histogram and pairwise scatter plots have been turned off to conserve space.
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Figure 12 Histogram of Estimates of �1 Figure 13 Scatter Plot of Estimates of �2 by �1

Figure 14 Histogram of Estimates of �2 Figure 15 Scatter Plot of Estimates of �3 by �2

Figure 16 Histogram of Estimates of �3 Figure 17 Scatter Plot of Estimates of �3 by �1
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DEMONSTRATION OF REPARAMETERIZATION TECHNIQUES

The ultimate objective of diagnosing a far-from-linear nonlinear model is to reparameterize the model so
that it becomes a close-to-linear model. This is possible only for nonlinear regression models that have
insignificant intrinsic curvature. Fortunately, most nonlinear regression models that are used in practice
seem to have very small relative intrinsic curvatures (Bates and Watts 1980; Ratkowsky 1990).

The first step in reparameterization is to identify the reparameterization parameters of interest. For the
nonlinear regression model at hand, the bias and skewness measures, the parameter profiling, and the
bootstrap consistently identify �2 and �3 as parameters that show strong nonlinear behavior. Consequently,
these two parameters are the reparameterization parameters of interest. After you identify the parameters of
interest, you can use several different approaches to systematically reparameterize a nonlinear regression
model (Hougaard 1982; Ratkowsky 1990). The following sections demonstrate two of these approaches:
bootstrap-based reparameterization and expected-value reparameterization.

Bootstrap-Based Reparameterization

Distribution of estimates of the parameters, produced by the bootstrap method and depicted as histograms,
can be used to devise a reparameterization. This is especially true if the resulting distributions are long-tailed.
If a parameter estimate’s distribution has a long right tail, indicating that it is closer to a lognormal distribution
than to a normal distribution, Ratkowsky (1990) recommends replacing the old parameter with its exponential
or positive power. If the distribution has a long left tail, replacing the old parameter with its logarithm or
fractional power is recommended.

The distribution of estimates of �2 (Figure 14) has a long right tail. Thus �2 is replaced by an exponential of a
new parameter, ˇ2,

�2 D exp.ˇ2/

In contrast, the distribution of estimates of �3 (Figure 16) has a long left tail. Hence, it is replaced by a
logarithm of a new parameter, ˇ3,

�3 D log.ˇ3/

The newly parameterized model expression is given by

y D log.ˇ3/C exp.ˇ2 C �1x/

The following statements fit this newly parameterized model, with the starting parameter values adjusted
accordingly:

proc nlin data=clarke1987 nlinmeasures;
parms theta1 = -0.15 beta2 = 0.69 beta3 = 2.23;
theta2 = exp(beta2);
theta3 = log(beta3);
model y = theta3 + theta2*exp(theta1*x);

run;

Figure 18 shows the nonlinearity measures table for the new parameterization. Both the maximum and
root mean square relative parameter-effects curvatures (2.6825 and 1.2308, respectively) are only about a
third of their original values in Figure 3 (7.0183 and 3.1301, respectively). As expected, the relative intrinsic
curvature measures do not change.6 Even with these significant drops in their values, the new maximum
and root mean square relative parameter-effects curvature are far above the critical curvature value, 0.5193.
Although the new parameterization failed to make the model a close-to-linear model, it has significantly
reduced the relative parameter-effects curvature. As a result, the newly parameterized model can be deemed
to have better inferential and predictive properties.

6Of course, the residual variances do not change, either.
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Figure 18 Global Measures of Nonlinearity

The NLIN ProcedureThe NLIN Procedure

Global Nonlinearity Measures

Max Intrinsic Curvature 0.0935

RMS Intrinsic Curvature 0.0418

Max Parameter-Effects Curvature 2.6825

RMS Parameter-Effects Curvature 1.2308

Curvature Critical Value 0.5193

Raw Residual Variance 0.0053

Projected Residual Variance 0.0059

Expected-Value Reparameterization

Let m be the number of reparameterization parameters of interest. Expected-value reparameterization
involves the following steps:

1. Choose m regressor vectors, z1; : : : ; zm, from the observation.

2. Set the values of z in the mean function, f.�I z/, for each of the m regressor vectors and generate m
equations of the form EŒYi � � yi D f.�I zi /. Do not replace � and EŒYi � with their numeric values.

3. Analytically solve the resulting simultaneous equations for the reparameterization parameters of interest
in terms of yi and the parameters that are not to be reparameterized.

Expected-value reparameterization is so called because the new parameters that result from the preceding
steps are the expected values, yi , for the chosen regressor values, zi . If you can complete these steps,
in most cases this approach succeeds in producing a close-to-linear model (Ratkowsky 1990). However,
lack of an analytical solution for the expected-value parameters, in the third step, can limit the universal
applicability of expected-value reparameterization.

Because the reparameterization parameters of interest for the nonlinear regression at hand are �2 and
�3, the expected-value reparameterization can be applied by choosing two regressor values, z1 � x1 and
z2 � x2. The resulting simultaneous equation can be solved for �2 and �3 as

�2 D
ˇ3 � ˇ2

exp.�1x2/ � exp.�1x1/

�3 D
ˇ2

1 � exp.�1.x1 � x2//
�

ˇ3

exp.�1.x2 � x1// � 1

where, for convenience, ˇ2 and ˇ3 stand for the expected value parameters, y1 � E.Y jx1/ and y2 � E.Y jx2/,
respectively.7

Setting x1 and x2 to the minimum and maximum values of the regressor, x, the following statements fit
this newly parameterized model with parameters �1, ˇ2, and ˇ3, and with starting values of the parameters
adjusted accordingly:

proc nlin data=clarke1987 nlinmeasures bias hougaard;
parms theta1 = -0.15 beta2 = 2.52 beta3 = 1.09;
x1 = 1;
x2 = 13;
theta2 = (beta3 - beta2)/(exp(theta1*x2) - exp(theta1*x1));

7For the sake of brevity, the model expression, in terms of the new parameter set �1, ˇ2, and ˇ3, is omitted.
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theta3 = beta2/(1 - exp(theta1*(x1 - x2))) -
beta3/(exp(theta1*(x2 - x1)) - 1);

model y = theta3 + theta2*exp(theta1*x);
profile theta1 beta2 beta3 / range = -4 to 4 by 0.2 all;
bootstrap / seed=123 nsamples=5000 bootci bootplots(all);

run;

Figure 19 shows that the new parameterization succeeds in making the nonlinear regression model a
close-to-linear model. This is supported by the relative intrinsic and parameter-effects curvature values
(0.0935, 0.0418, 0.2080, 0.0949) being significantly less than the critical curvature value (0.5193). Further
manifestations of the new close-to-linear model include the following:

• The percentage bias and skewness of the parameter estimates are significantly less than the bias and
skewness threshold values, 1% and 0.25, that can be used to deem parameters biased and skewed.

• The 95% standard confidence intervals of all parameters (not only �1) show very tight coverage of the
bias-corrected bootstrap confidence intervals.

• The profile t plots (Figure 21, Figure 23, and Figure 25) and confidence curves (Figure 22, Figure 24,
and Figure 26) of the parameters show practically no difference between the likelihood ratio pivotal
statistic, �.�/, and the Wald pivotal statistic, �.�/, over the wide profiling range.

• The histograms of ˇ2 (Figure 29) and ˇ3 (Figure 31) are notably closer to the normal curve than are
the long-tailed histograms of �2 (Figure 14) and �3 (Figure 16). This is in spite of the slight deviations
of the histograms of ˇ2 and ˇ3 from the normal curve, compared to that of �1 (Figure 27).

• The pairwise scatter plots of the parameters (Figure 28, Figure 30, and Figure 32) are elliptical in
shape, matching the expectation from the pairwise scatter plot of two normally distributed random
variables. These are in clear contrast with the corresponding plots (Figure 13, Figure 15, and Figure 17)
of the original far-from-linear nonlinear model, which have curled and elongated shapes.

Figure 19 Global Measures of Nonlinearity

The NLIN ProcedureThe NLIN Procedure

Global Nonlinearity Measures

Max Intrinsic Curvature 0.0935

RMS Intrinsic Curvature 0.0418

Max Parameter-Effects Curvature 0.2080

RMS Parameter-Effects Curvature 0.0949

Curvature Critical Value 0.5193

Raw Residual Variance 0.0053

Projected Residual Variance 0.0059
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Figure 20 Parameter Estimates, Standard Confidence Intervals, and Bootstrap Confidence Intervals

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

Bootstrap
Std Dev

Bootstrap
Bias-Corrected

95%
Confidence
Limits Skewness Bias

Percent
Bias

theta1 -0.1031 0.0255 -0.1599 -0.0462 0.0250 -0.1508 -0.0535 -0.0619 -0.00026 0.26

beta2 3.2355 0.0574 3.1077 3.3632 0.0564 3.1081 3.3242 0.0378 0.000860 0.027

beta3 1.6229 0.0473 1.5174 1.7284 0.0469 1.5154 1.7006 -0.0585 -0.00092 -0.06

Figure 21 Profile t Plot of �1 Figure 22 Confidence Curve of �1

Figure 23 Profile t Plot of ˇ2 Figure 24 Confidence Curve of ˇ2
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Figure 25 Profile t Plot of ˇ3 Figure 26 Confidence Curve of ˇ3

Figure 27 Histogram of Estimates of �1 Figure 28 Scatter Plot of Estimates of ˇ2 by �1

Figure 29 Histogram of Estimates of ˇ2 Figure 30 Scatter Plot of Estimates of ˇ3 by ˇ2
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Figure 31 Histogram of Estimates of ˇ3 Figure 32 Scatter Plot of Estimates of ˇ3 by �1

MULTITHREADING IN THE NLIN PROCEDURE

The BOOTSTRAP and PROFILE statements in PROC NLIN result in a large number of independent nonlinear
least squares minimizations. For the BOOTSTRAP statement, the number of minimizations that must be
carried out is equal to the value of the NSAMPLES option in the BOOTSTRAP statement. The number of
independent minimizations that the PROFILE statement generates depends on the number of parameters to
be profiled and the number of constrained values in the specified profiling range (of each profile parameter).

The independence of these minimization tasks is very favorable for parallelization on modern multicore
machines. Even though, in theory, both data-based parallelization and task-based parallelization are possible,
the NLIN procedure uses task-based parallelization, simultaneously working on as many minimization
problems as there are CPU cores. This approach helps the procedure efficiently use all available CPU cores
and eliminates most of the reproducibility issues that can arise in data-based parallelization.

SUMMARY AND CONCLUSION

The NLIN procedure added several diagnostic and inferential features, such as the relative measures of
curvature, Box’s bias, the bootstrap, and parameter profiling, in SAS/STAT 9.3, 12.1, and 13.1. Focusing on
nonlinearity and its effects on statistical inference and prediction, this paper demonstrates how you can use
these features to progressively diagnose and reparameterize a far-from-linear nonlinear regression model.

The NLINMEASURES option in the PROC NLIN statement produces global measures of nonlinearity that
can diagnose a far-from-linear nonlinear regression model. Box’s bias and Hougaard’s skewness measures,
produced by the BIAS and HOUGAARD options in the PROC NLIN statement, estimate the bias and
skewness of parameter estimates. The bias and skewness estimates can identify the parameters that show
strong nonlinear behavior. The PROFILE and BOOTSTRAP statements, which were added in SAS/STAT
12.1 and 13.1, respectively, can be used to provide a more extensive understanding of the inferential
and distributional properties of the parameter estimates in a nonlinear regression model. The paper also
demonstrates approaches to reparameterization that are based on the distribution of the bootstrap parameter
estimates and the technique of expected-value parameterization.

In conclusion, the NLIN procedure, with a host of added features, enables you to make better statistical
inference. In situations where a nonlinear regression model needs reparameterization, you can also use
these features to iteratively perform and gauge reparameterizations, progressively improving the inferential
and predictive properties of the model. Furthermore, by using task-based parallelization, the NLIN procedure
tames the plethora of independent minimizations that have to be performed during parameter profiling and
the bootstrap. Hence, the oft-stated reason to shun these features—computational cost—should be less of a
concern.
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