Paper SAS330-2014
Toe to Toe: Comparing ODS LAYOUT and the ODS Report Writing Interface
Daniel Kummer, SAS Institute Inc., Cary, NC

ABSTRACT

Two new production features offered in the Output Delivery System (ODS) in SAS® 9.4 are ODS LAYOUT and the
ODS Report Writing Interface. This one-two punch gives you power and flexibility in structuring your SAS® output.
What are the strengths for each? How do they differ? How do they interact? This paper highlights the similarities and
differences between the two and illustrates the advantages of using them together. Why go twelve rounds? Make
your report a knockout with ODS LAYOUT and the Report Writing Interface.

INTRODUCTION

Reporting in general, and arranging SAS output on a page in particular, has always been challenging and somewhat
limited within SAS. For the longest time you could display your output in one column only or use PROC
GSLIDE/GREPLAY or PROC DOCUMENT to somehow arrange it. Even the addition of the COLUMNS= option for
the ODS PDF statement left the user with limited control about the placement of output. With the introduction of ODS
LAYOUT and the ODS Report Writing Interface (RW1), these challenges and limitations are now a thing of the past.

In short, ODS LAYOUT provides a set of new ODS statements to arrange output objects that come from various
sources (for example SAS procedures) with a never before experienced flexibility and control. The ODS Report
Writing Interface lives within the DATA step, and displays individual, computed, or aggregated values from an input
data set with the same flexibility and control as ODS LAYOUT allows it for procedure output. The next few pages first
describe the concept behind each feature, followed by examples that visualize what all of it actually means.

Both ODS LAYOUT and the ODS Report Writing Interface are independent features that can be used stand-alone.
Considering the flexibility and control they offer, there are situations where it is useful to use them as a partner-in-
crime so to speak. By first understanding the different concepts behind each feature, you will get a clearer
understanding of the possibilities each of them has to offer. While advancing through this paper, it will get pretty
obvious where each of these features can be useful in creating reports. Both features support the HTML and the
PRINTER ODS output destinations for all output that is generated. The only exception is the use of an absolute
layout. This type of layout is supported only for the PRINTER destinations.

Within the context of this paper, the term output objects refers to output from SAS procedures (for example graphs
and tables), the DATA step, and also to plain text and images.

All SAS code that generates the example reports is attached at the end of this paper. As a common theme, a fictitious
real estate company doing business in the Pacific region of the United States is used. The data for all examples is
randomly generated, so all examples provided can be reproduced by simply submitting the attached code within SAS.
Notice that all images used in the example reports are not provided and will be missing when executing the code.

ODS LAYOUT

As mentioned before, ODS LAYOUT consists of a set of new ODS statements: ODS LAYOUT and ODS REGION.
These statements do not produce any output by themselves. They merely define a grid or area in which the output
objects are placed. Following ODS standards, those statements wrap around the SAS code that produces the various
output objects.

There are two types of layouts available within ODS LAYOUT: the absolute layout and the gridded layout. But in
general, starting a layout (no matter the type) with the ODS LAYOUT statement creates what we call a layout
container. This container defines the space where the different kinds of output objects can be arranged in. The ODS
LAYOUT statement controls the type, size, and placement of the container, but also the behavior within it. Depending
on the type of layout, this container can have a fixed size and position, or it can be sized and positioned dynamically.

Individual region containers are specified inside this layout container. These region containers are controlled with the
ODS REGION statement. Again, depending on the type of layout, these region containers can have a fixed size and
position or they can be sized and positioned dynamically.

The actual output objects are displayed inside the individual region containers. A single region can display one-to-
many output objects.

The code structure of a layout follows an easy pattern.
e Start a layout with an ODS LAYOUT statement.

o Define a region with an ODS REGION statement, followed by the code to produce the output object or objects
that are supposed to be displayed in this region. This step is repeated as often as needed to populate the report.

e Close the layout with the ODS LAYOUT END statement.

The following code snippet is an example of the basic structure of the program. It also indicates the wrapping of the
ODS LAYOUT statements around the SAS code.

ods pdf file="..";
ods layout ..;
ods region ..;

SAS code to produce output objects
ods region ..;
SAS code to produce output objects

ods layout end;
ods pdf close;

To provide near endless customization, layouts can be nested, too. This means that a new layout grid can be defined
within an existing region container of a parent layout. The scope of this nested layout is limited in size to the region
container in which it is defined. Also, the user is not limited to a single layout type. The two types of layouts can
coexist in the same report either by following each other or by being nested (for example a gridded layout can contain
an absolute one and vice versa).

GRIDDED LAYOUT

A gridded layout arranges your output objects in a very dynamic fashion and reflects a two-dimensional grid structure
similar to a spreadsheet or table. The regions of a gridded layout are arranged in columns and rows. Every single
item in this grid can be customized: From column and row spanning, to the vertical and horizontal space between the
regions, but also the size and position of the regions themselves. The big strength of a gridded layout is the automatic
alignment and sizing of the respective regions. Regions in a gridded layout will always be centered within the layout
container and are by default just as high and wide as needed to display the output object or objects.

The integrity of the grid is always honored. Meaning, that if the report has multiple rows, then the widest region in a
column controls the width of the whole column. The same concept applies to the height of a row.

Another feature that makes a gridded layout very dynamic is the possibility to automatically advance to new regions
based on certain criteria like BY-groups among others. For example, each table or graph result from a BY-group is
displayed in its own region without specifically using an ODS REGION statement for each BY-group.

The layout grid is generally populated in a row wise direction (Display 1). All regions in the first row are populated first
before moving on to the next row. This pattern is repeated until the last region is reached. As a single gridded layout
can span multiple pages, there really is no restriction on how many regions are specified or dynamically generated.

TITLE

Layout Container

Region 1 Fegion 2

/

Region 3 Region Container

\

Region 4 Region

-

Region &

FOOTNOTE

Display 1: Concept of the Row Wise Population of a Gridded Layout

All these characteristics allow for a lot of flexibility in a report with ever changing data. The syntax is fairly simple and
usually does not need to be altered because the data changes over time. Even if those data changes potentially alter
the dimensions of individual output objects by adding new variables or BY-group values. The layout regions will adapt
accordingly as the layout grid as well as the regions alignment and sizes are newly calculated each time the program
runs. It is always important to remember page constraints in the PRINTER destinations. While an HTML page has no
true limitations in its width and height, there is only so much space on a piece of paper. When the dynamically
defined grid gets too wide to fit on a page, the result will panel and in most cases, not look pretty at all. In those
cases, it is necessary to change the syntax of the gridded layout to adapt to the changes in the data.

The syntax for a gridded layout can be very simple. With just a few extra statements in the code, a report can be
upgraded to look much more professional than just one graph on a page. The first example is a bar chart that
displays the number of units sold for a set of property types. The procedure code for the bar chart uses the BY
statement to display a separate chart for each property group (commercial or residential) in each of the five states in
which the company does business. Running just the procedure by itself simply wrapped with the ODS PDF statement
generates a 10 page document with one chart on each page. Adding the STARTPAGE=NO option to the ODS PDF
statement displays up to three charts on one page instead of just one. Still, all the charts are displayed only in one
column.

Using a gridded layout, each separate chart can be displayed in its own region of a defined grid. As there are two
charts per state, they could be displayed side-by-side so that each state consumes only one row in the report. The
following ODS LAYOUT GRIDDED statement defines such a grid. The COLUMNS= option indicates the number of
columns in the grid. The COLUMN_GUTTER= option specifies the horizontal space between the columns. The
ADVANCE-= option controls for which output type to move to the next region in the grid.

ods layout gridded columns=2 column gutter=0in advance=bygroup;

To make the report look more professional, an extra region is defined to create something like a header before
displaying all the charts. This region is not dynamically populated. It gets a specific height, spans both columns of the
grid, has a blue background color, and all the contents inside the region are right aligned. The only output objects that
are displayed inside the region are two lines of text mimicking a company logo.

ods region height=1in column_span=2 style={background=&backBlue. just=right};
ods text=""S={background=&backBlue. foreground=white font size=50pt}ACME";
ods text=""S={background=&backBlue. foreground=white font size=10pt}Sales Report
Pacific Region";

Another ODS REGION statement creates the second region container. As the first region spans two columns, this
one is in the first column of the second row. No additional options are specified to maintain maximum flexibility when
aligning and sizing the region container. As this region is supposed to display the first chart, all code to generate the
charts follows next.

ods region;

goptions ..;

axis pattern & label statements;

proc gchart code to generate bar charts;
The first chart that is produced is displayed in this region. All other charts that are generated by the procedure are
placed in new regions with the same characteristics. Each new region is aligned within the defined grid. As this is all
the output that is displayed in this example, an ODS LAYOUT END statement is used to close the gridded layout.
ods layout end;

Display 2 shows the final report. Also, notice that individual regions can display titles and footnotes. In this case, the
BY-line displays the BY-group values for each chart.

StanesCregen | Proparty GroupsComem—cial StatwsOrugon | Propety Geospaftasidantial
oL oL
ACME e e
Sales Report Pacifc Region
2,000 2,000 []
Stute=Alasha | Property GroupsComemmecial Stemtlaska | Property Grous=eskiestisl - ‘ I 20001 ‘ I . |—I
‘ | I i I
i T . Difice . O M

a0 a0
i MW HOMES SingiRamiy

Bz W - Bz W
nao co
0000 20 '
0o e
Statemtashisgton | Preperty Sezup=Commarul [T —
- - e o
" |_|’_l I ’—I . ’—I’—I I I|_I N
; : 204 a0
izl stare ifice wrdumirium Mok Hones Singe Fardy

Ll | T

Statns bl | Progerty GeoepsCommsarial Suatatuwal | Property GrospsRusidutisl

sl th

Display 2: Result of the Gridded Layout Example

ke wr

ABSOLUTE LAYOUT

While a gridded layout is very dynamic in populating a report, an absolute layout is more static in nature. Static when
talking about the placement of the region containers. An absolute layout is not restricted to columns and rows, but
rather follows the concept of layers. The regions are generally defined by an X and Y coordinate and a width and
height. When not specifying values for those options, they resolve to their default values (X and Y = 0, width and
height = max). The X and Y coordinate’s zero position is the upper left corner of the layout container.

Correct use and order of specifying the region position and dimensions are crucial with this type of layout, as regions
can overlap each other. Therefore, some type of design phase is beneficial before starting to write code. This can
help to avoid resizing one or more regions whenever changing the position and dimension of preceding ones.

While a region in a gridded layout can dynamically adjust to the size of the output object or objects that are displayed,
an absolute layout region is empty if it is not sized properly. In addition, a warning is displayed in the log.

The scope of an absolute layout is one single page. However, a new layout can always be started on the next page to
continue the report.

The structure of the statements for an absolute layout is similar to the one for a gridded layout. It is usually a lot more
code as the regions are not dynamically populated. Hence, each region needs to be addressed specifically. The
following absolute layout example is a one page report that compares last year’s sales numbers with the ones from
previous years (Display 3 below). Multiple output objects are displayed, including a bar chart, pie charts, tables, an
image, and text.

The absolute layout is started with a single ODS LAYOUT ABSOLUTE statement. No additional options are used on
the statement itself. Hence, the default values for X (0), Y (0), WIDTH (max), and HEIGHT (max) are used. As no
tittes and footnotes are used the rendered layout container takes up the whole available space that is defined by the
page margins.

ods layout absolute;

Next, each region and its contents are defined. Individual regions are rendered in the order in which they appear in
the code. The options used to define a region or the contents displayed inside this region can have an influence on
the order it appears in the code. The first two regions generate the company header. The first one generates a blue
box (a region container with a blue background color). As this region is supposed to start at the top left corner of the
report and be as wide as the whole layout container, no X, Y, and WIDTH options are needed. The default values
take care of this. However, the header is supposed to have a specific height of 1 inch. An absolute layout region
needs to contain at least one output object. Otherwise, the region is not rendered. In this case, the ODS TEXT
statement displays a blank, making sure the region is rendered.

ods region height=1lin style={background=&backBlue.};
ods text=" ";

The second region does not specify a Y option and starts at the top of the layout container as well. However, as it
uses the X option, the region starts 5.5 inches to the right of the left border of the layout container. This region is
rendered after the first one and sits on top of it. It uses the same height and background color as the previous region
to make it look as one unit. The reason for the second region is to offset the text a little bit from the right border.

ods region x=5.5in width=2.5in height=1in style={background=&backBlue.};
ods text=""S={background=&backBlue. foreground=white font size=50pt}ACME";
ods text=""S={background=&backBlue. foreground=white font size=10pt}Sales Report
Pacific Region";

The other regions in this layout follow the same pattern. The next region displays text on the left side right under the
header.

ods region y=1.25in width=4.75in height=1.25in;
ods text=""S={font size=8pt}Commercial property sales accelerated in 2013, ..";

Right below the text, another region with the same width is rendered to display a bar chart.

ods region y=2.75in width=4.75in height=2.75in;
goptions ..;
axis pattern & label statements;
proc gchart code to generate bar chart;

The next two regions populate the space to the right of the text and bar chart. The first region displays a description
for the image that is displayed in the second region right below it. Notice that the values for the X and WIDTH option
are the same in both regions to align them in the report. The ODS Report Writing Interface is used to display the
image in the second region.

ods region x=5in y=1.25in width=3in height=0.18in style={background=&backBlue.};
ods text=""S={just=center background=&backBlue. foreground=white
font size=10pt}States of the Pacific Region";

ods region x=5in y=1.6in width=3in;
data NULL ;
dcl odsout dak();
dak.image (file: "pacificMed.jpg");
run;

Looking at the finished report (Display 3), someone could guess that the next region addresses the blue box with the
description for the pie chart and table below it. However, when generating the pie chart with outside labels, the result
has a rather big area of white space around it. For this reason, the region that contains the pie chart is rendered first,
and the other regions are put on top of it to maximize the space for the pie chart.

ods region y=5.5in height=2.5in width=3in;
goptions ..;
proc gchart code to generate pie chart;

ods region y=5.5in width=8in height=0.18in style={background=&backBlue. };
ods text=""S={just=center background=&backBlue. foreground=white
font size=10pt}2013 Numbers for Commercial Properties";

ods region x=3.5in y=5.8in height=2.2in;
ODS RWI code to generate table;

The same logic is applied to the last section of regions. Again, the region for the pie chart is defined first, followed by
the region for the description, and finally the one for the table. To show the flexibility in positioning the output objects
on the page, the table and the pie chart are displayed on the opposite side compared to the section before.

ods region x=4in y=8in height=2.5in width=4in;
goptions ..;
proc gchart code to generate pie chart;

ods region y=8in width=8in height=0.18in style={background=&backBlue. };
ods text=""S={just=center background=&backBlue. foreground=white

font size=10pt}2013 Numbers for Residential Properties";

ods region y=8.3in width =4.25in height=2.2in;
ODS RWI code to generate table;

As all the regions for the report are defined, the ODS LAYOUT END statement ends the absolute layout.

ods layout end;

Comirircial property saks scsleried in 2003, continuing 1 yaar's recoary aher scihity ‘Staies o he Packc Regon
e s i sl 1 2912 ki Lhe Bl e5iiis v recaiaion
By by amatying jub growsh, irproing meal eslate funcamentabs and sage: capilal, buyen
hvmighenst foa frst 11 mortes of 20713 porsasd s mors B $305 billon ko scsuire offos

s, indhotrial properies. o] cemers, hotsls, apanments & sites around the i
LS., accneding 1o ACME Ansfylics, which Facks compercial real estue sakes of mon fan 35
milin
Usits Sold by Propafty Sroup in B Lasl 4 Years

W

1,150,000,

Carmmaral

1,102,000,

Festertal
1060, 000
1,508,000,
950,000,
90, D00,
€50 000,
H
Cediv] L
F] 211 . iE
2013 Nurmbers for Commencial Properiies
Fatai il
20.00% 1006 g Ut Sakd lduchias Lt Prics
=)
L] % Charga * L] % Charngs *
Maka nasay ERlE)] R
Lant
L Caliiorria a8 7T 1. L34 595 A=
=i proding) TTAiEs S 82 13087
Otfics
It Lesute Oregen IS 6 TALEn SIT0EN 14115
1137
‘tasbington s 060 L 5888 Troae
"'“1":4;_';'\' [———
2013 Mumbers & Residental Propartes
Towrfsm Candominums
Units Sold Madian List Prica o Dé 18
Stata
. % Chiaings . o g
Meha A ERr Y SI00pA% 10 BGEN
Cakborria P 1704 saEr s 401
Farm Housas
Hinmid 2B 17 e 307 303 1.724% Smn—F-av_w 0%
AT
Cvigen 25773 AT 3T 14.230%
s hinghon TEAIO 19.265% SIA2184 4%
e 1 bt Vibia Riskills Moduiar Fores Muble Homes

AT 535

Display 3: Result of the Absolute Layout Example

ODS REPORT WRITING INTERFACE

The ODS Report Writing Interface could be described as the DATA step’s PUT statement on steroids. It uses the
ODSOUT object in combination with a set of methods to create reports within a DATA _NULL_ step. It is designed to
display individual, computed, or aggregated values from an input data set in the shape of a table, a gridded layout, or
an absolute layout. In addition, titles, footnotes, and page breaks can be controlled within the DATA step.

The syntax for a DATA step using the ODS Report Writing Interface can be very simple. But as soon as an input data
set is involved, the complexity increases quite a bit. A basic understanding of the DATA step is beneficial and
recommended. The length and complexity of the DATA step highly depends on how sophisticated the final result is
supposed to be, and more importantly, on the structure of the data used.

Sometimes it can be easier and faster to use the established procedures like PRINT, TABULATE, and REPORT;
however, often those reports need a final modification or more customization than the procedures can provide. These
customized reports are the strength of the ODS Report Writing Interface. The combination of all the statements of the
DATA step, including conditional processing and by group processing, and the integration of ODS through the
methods used in the ODS Report Writing Interface can create reports you previously only dreamed about.

The result of a DATA step using the ODS Report Writing Interface is also considered an output object. Pretty much
the same as the result of any procedure is an output object. It can stand by itself like any PROC PRINT for example.
It can also be used in combination with ODS LAYOUT to populate regions within a gridded or absolute layout. The
table structure that is displayed in the previous example for the absolute layout has been generated with the ODS
Report Writing Interface.

The data set that is used to generate the table structure is pre-aggregated and has two observations for each state.
The first of those two observations stores the numbers of sold units and the median house price for the year 2012.
The second one stores the same information for the year 2013. The resulting table should display only the 2013
numbers, but should also contain an additional column that displays the percentage of change of the respective
variable compared to the previous year.

The first few lines of the DATA step are standard statements. The SET statement specifies the data set (pacificSum).
A WHERE-= option reads only certain rows from the input data set and the END= option flags the last observation of
the data set. BY-group processing is used to retain the values of two variables for the 2012 observation of each state
and have them available when processing the observation for the year 2013.

data NULL ;
set pacificSum
by state year;
retain unitsl2 pricel2;

(where= (propGroup="Commercial”)) end=done;

As the result contains only one table for the whole data set, the table structure is started at the beginning of the DATA
step and for the first observation only. Without this condition, a new table would be started for each observation. The
next two rows in the table act as the header section for the table.

if N =1 then do;
dcl odsout dak();
dak.table start();
dak.row start();
dak.format cell (data:

row_span:

"State",
2,

vjust:

style

dak.format cell (data:

column span:
style

dak.format cell (data:

"center",
attr: "font weight=bold");
"Units Sold",
2,
attr: "font weight=bold");
"Median List Price",

column span: 2,

style

dak.row end();
dak.row start();
dak.format cell (data:

style

width:
dak.format cell (data:

style

width:
dak.format cell (data:

style

width:
dak.format cell (data:

style

width:
dak.row end();
end;

attr: "font weight=bold");

"#",

attr: "font weight=bold",
".75in") ;

"% Change *",

attr: "font weight=bold",
".75in") ;

"#"’

attr: "font weight=bold",

".75in") ;

"% Change *",

attr: "font weight=bold",
".75in") ;

For the first observation of the BY-groups (a specific state and the year 2012), the only action that is required is to
update the values for the variables that need to be retained for later processing in another observation.

if first.state and first.year then do;
unitsl2 = sUnits;
pricel2 mPrice;

end;

For the last observation of the BY-groups (a specific state and the year 2013), the percentage of change variables
are computed first. Then a table row is displayed populating all five cells of the row with their respective values.
Traffic lighting is used for the percentage of change values to put a stronger emphasis on the results.

if last.state and last.year then do;
changeUnits = ((sUnits - unitsl2) / unitsl2);
changePrice = ((mPrice - pricel2) / pricel2);

dak.row start();
dak.format cell (data: state, Just: "left");
dak.format cell(data: sUnits, format: "commal2.");
if changeUnits GE 0 then dak.format cell (data: changeUnits,
format: "percentnl0.3",
style attr: "foreground=green");
else dak.format cell(data: changeUnits,
format: "percentnl0.3",
style attr: "foreground=red");
dak.format cell (data: mPrice, format: "dollarl2.");
if changePrice GE 0 then dak.format cell(data: changePrice,
format: "percentnlO0.3",
style attr: "foreground=green");
else dak.format cell (data: changePrice,
format: "percentnl0.3",
style attr: "foreground=red");
dak.row end();
end;

To add a footnote under the table row for the last observation and to end the table, the following section of the code
has to be executed last and only for the last observation of the data set.

if done then do;
dak.row start();
dak.format cell (data: "* compared to last Years Results",
just: "left",
column span: 5,
inhibit: "LBR");
dak.row end();
dak.table end();
end;

End the DATA step with a RUN statement.
run;

Submitting this DATA step by itself creates the table structure that is pictured in Display 4. It features a defined
header section that uses row and column spanning, a body that displays the values for the year 2013 that includes
computed columns, and a footer that displays additional text but no table borders.

Units Sold Median List Price
State
% Change * # % Change *
Alaska 212,587 3.193% $312,690 -1.316%
California 166,787 1.289% $294,515 -4.259%
Hawaii 22207 T7.445% $294.362 -13.067%
QOregon 225676 2.493% $279.621 -14.115%
Washington 244,060 13.689% $315.886 7.184%

* compared to last Years Results

Display 4: Table Created with the Above DATA Step Example Using the ODS Report Writing Interface

The biggest strength of the ODS Report Writing Interface is the possibility to display any variable that is available
within the DATA step anywhere inside the defined space of a report. Besides presenting the data in tabular form, the
ODS Report Writing Interface can also use a gridded or absolute layout. The concept is exactly the same as for ODS
LAYOUT. Instead of specifying ODS LAYOUT and ODS REGION statements, the respective methods of the Report
Writing Interface are used. The biggest difference between the two is the type of output that is displayed within the
regions of the layout. The ODS Report Writing Interface is confined to the information available within the DATA step.
It can display only individual, computed, or aggregated values from variables available in the Program Data Vector
(PDV). In addition, images can be displayed, too.

Display 5 shows the two page result of an absolute layout generated with the ODS Report Writing Interface. The
whole report is data driven. The absolute layout defines the look of a single page. As each observation from the data
set creates one page in the PDF document, the look of each page is the same. However, the data displayed on each
page depends on the observation that populated the specific page.

:-;lzl:;!;zussnie : AC M E The Famsworth House AC M E

Pariic R 1800 Fancy Drive Pk R

This Buer spper 3 seandy e you. This e plartatn hovse with 4 low
maisierance yurd st neec & i TLC. Full Discisiare: A night apert here
ek o o an etemity

Bed Rooma: 1 Bath Reora: e

House Stze (SgFU: 2483 Lot Ske(Acar *x
Price: Lrssa Year Bult: s
Property Type: SigleFarly Sty Trastona

Forcsd badeClty Limbs: %o Extarior Finlsh: SweelaGlass # Garages: o

Neow Inside Chy Limis: o

HighSchosk: Han Solo High

Display 5: Result of an Absolute Layout Generated with the ODS Report Writing Interface

10

At first glance, the DATA step code to generate the example shown in Display 5 seems long and complicated. But on
a second glance, the code is pretty straightforward. Hardly any conditional processing is used, resulting in almost
every line of the DATA step being executed for each observation of the input data set.

The fictitious real estate company has a data set that contains detailed information for each active property. The
information for each individual property is stored in one observation at a time. The idea is to create a one page report
for each active property that displays all the information available.

The DATA step starts with a SET statement that defines the input data set and flags the last observation for
conditional processing. Next, one of only two IF statements in the whole DATA step declares the ODSOUT object.
The other IF statement is used at the end of the DATA step to add a page break for all observations but the last one.

data NULL ;
set acmeHouses end=done;

if N =1 then do;
dcl odsout dak();
end;

Next, the absolute layout is started. The first few regions of the layout generate a header similar to the ones that were
used in the previous examples. An extra addition to this header is the display of values from two variables (name and
streetl). The concept of overlapping regions is again used to define correct placement of the text within the header.
The whole header appears as one unit as the background color of all regions and text displayed matches.

dak.layout absolute();

dak.region(width: "8in",height: "1lin", style attr: "background=&backBlue.");
dak.format text(data: "", style attr: "background=&backBlue.");

dak.region(x: ".5in", y: ".2in", width: "3in", height: "1in");
dak.format text (data: name,
style attr: "background=&backBlue.
foreground=white
font size=20pt");
dak.format text (data: streetl,
style attr: "background=&backBlue.
foreground=white
font size=15pt");

dak.region(x: "5.5in", width: "2in", height: "1in");
dak.format text (data: "ACME",
just: "right",
style attr: "background=&backBlue.
foreground=white
font size=50pt");

dak.region(x: "5.5in", y: ".7in", width: "2in", height: ".5in");
dak.format text(data: "Pacific Region",
just: "right",
style attr: "background=&backBlue.
foreground=white
font size=10pt");

The region that follows the header section uses only the left side of the page to display an image.

dak.region(y: "1.25in", width: "4in", height: "3in");
dak.image (file: ""&imageLoc." || strip(listNum) || ".jpg");

11

The next region addresses the space to the right side of the image. Using ODS style definitions, the appearance of
the first text output is altered to achieve the impression of a section header. An empty line separates the following text
from the section header.

dak.region(x: "4in", y: "1.25in", width: "4in", height: "3in");
dak.format text (data: "General Information",
style attr: "font size=12pt

font weight=bold

width=100%

just=c

background=&backGray") ;
dak.format text(data: "");
dak.format text (data: desc);

Inside the same region, a table structure with no borders (frame=void rules=none) is created to display the labels and
values of eight variables. The table has four rows that contain four cells. The first cell displays the variable’s label and
the second cell displays the actual value of the variable. This setup is repeated for cells three and four using a
different variable. All other table rows are defined the same way just displaying different variables from the data set.

dak.table start(style attr:"frame=void rules=none width=4in");
dak.row start();
dak.format cell (data: vlabel (brooms) || ":",
just: "left",
style attr: "font weight=bold");
dak.format cell(data: brooms, just: "left");
dak.format cell (data: vlabel (bath) || ":",
just: "left",
style attr: "font weight=bold");
dak.format cell(data: bath, just: "left");
dak.row _end();
dak.row start();
dak.format cell (data: vlabel (houseSize) || " (SgFt):",
just: "left",
style attr: "font weight=bold");
dak.format cell(data: houseSize, just: "left", format: "commal2.");
dak.format cell (data: vlabel (lotSize) || " (Acres):",
just: "left",
style attr: "font weight=bold");
dak.format cell(data: lotSize, just: "left");
dak.row _end();
dak.row start();
dak.format cell (data: vlabel(price) || ":",
just: "left",
style attr: "font weight=bold");
dak.format cell (data: price, format: "dollarl4.", just: "left");
dak.format cell (data: vlabel (ybuilt) || ":",
just: "left",
style attr: "font weight=bold");
dak.format cell (data: ybuilt, just: "left");
dak.row end();
dak.row start();
dak.format cell (data: vlabel (propType) || ":",
just: "left",
style attr: "font weight=bold");
dak.format cell (data: propType, just: "left");
dak.format cell (data: vlabel(style) || ":",
just: "left",
style attr: "font weight=bold");
dak.format cell (data: style, just: "left");
dak.row end();
dak.table end();

12

To maintain readability, not all DATA step code is displayed here. Defining the other regions follows the same
concept as for the region above. First, a REGION method defines the space for the content. Then a FORMAT_TEXT
method displays a section header, followed by a table structure that displays the labels and values of variables from
the input data set inside this space.

After all the regions for the one page report are defined, the absolute layout is ended with the LAYOUT_END method.

dak.layout end();

The last step for each observation is to decide if a page break is necessary. The IF statement below adds a page
break for each observation that is not flagged as the last one. Using this logic avoids an empty page after the last
observation.

if not done then do;
dak.page () ;
end;

End the DATA step with a RUN statement.

run;

CONCLUSION

ODS LAYOUT provides an easy way to arrange output objects from multiple sources in a report. The ODS Report
Writing Interface provides methods inside the DATA step to arrange data values from an input data set.

If and how you use ODS LAYOUT or the ODS Report Writing Interface depends on your reporting needs. Both
provide new ways to arrange different types of output within a report with ease. Before ODS LAYOUT and the ODS
Report Writing Interface were available, reports like the ones presented in this paper were just not possible. Perhaps
the use of macros, data manipulation, and reporting procedures would get you close but the code necessary is large,
complicated, and hard to maintain.

ODS LAYOUT and the ODS Report Writing Interface are great features by themselves. There are almost no
constraints about using one but not the other or both together. When using them together, the ODS Report Writing
Interface can be used to provide content for a region in an ODS LAYOUT. However, it is not possible to use ODS
LAYOUT statements inside the DATA step to arrange data set values. For this reason, the ODS Report Writing
Interface has its own set of methods to arrange the data in a gridded or absolute way.

The possibilities ODS LAYOUT and the ODS Report Writing Interface offer are countless and this paper literally only
showed the tip of the iceberg. Both will elevate your reports to new heights were not the sky but your imagination is
the limit.

REFERENCES

e (O’Connor, Daniel. 2013. “Take Home the ODS Crown Jewels: Master the New Production Features of ODS
LAYOUT and Report Writing Interface Techniques.” Proceedings of the SAS Global Forum 2013 Conference.
Cary, NC: SAS Institute Inc. Available at http://support.sas.com/resources/papers/proceedings13/015-2013.pdf.

e O’Connor, Daniel and Scott Huntley. 2009. “Breaking New Ground with SAS® 9.2 ODS Layout Enhancements.”
Proceedings of the SAS Global Forum 2009 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings09/043-2009.pdf.

e O’Connor, Daniel. 2009. “The Power to Show: Ad Hoc Reporting, Custom Invoices, and Form Letters.”
Proceedings of the SAS Global Forum 2009 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/rnd/base/datastep/dsobject/Power_to_show_paper.pdf.

ACKNOWLEDGMENTS

The author would like to thank Allison Crutchfield and Susan Owenby for their contributions to this paper.

13

RECOMMENDED READING

e SAS®94 Output Delivery System: User's Guide
e Chapter 19: Report Writing Interface
e Chapter 21: ODS LAYOUT

e Step-By-Step Programming with Base SAS® 9.4

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author:

Daniel Kummer

100 SAS Campus Drive
Cary, NC 27513

SAS Institute Inc.

daniel. kummer@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

14

mailto:daniel.kummer@sas.com

APPENDIX

Please notice that copying multiple pages of code at once will include the page numbers, too. They need to be
removed before submitting the code. Otherwise the code will generate errors and will not run successfully.

ODS LAYOUT EXAMPLES

Sample Data

/* custom formats are used to translate do loop numbers into actual data */
proc format;
value stateP
1="Alaska" 2="Washington" 3="Oregon" 4="California" 5="Hawaii";
value propG
1="Residential" 2="Commercial";
value resT
1="Condominiums" 2="Modular Homes" 3="Single-Family"

4="Townhouses" 5="Mobile Homes" ©6="Farm Houses";
value comT

1="0ffice" 2="Land" ="Industrial"

4="Retail" 5="Leisure" 6="Multi-Family";
run;

/* this data set is used to create all bar & pie charts */

data acmePacific;

length year 8 region division state propGroup propType $30.
soldUnits medianListPrice 8;

format soldUnits commal?2. medianListPrice dollarl?2.;

do year=2010 to 2013;

regionN = 4;

region = "West";
divisionN = 9;
division = "Pacific";

do stateN = 1 to 5;
state = put(stateN, stateP.);
do propGroupN =1 to 2;
propGroup = put (propGroupN, propG.) ;
do propTypeN = 1 to 6;
if propGroupN = 1 then propType = put (propTypeN,resT.);
else propType = put (propTypeN,comT.) ;
soldUnits = 45000*ranuni (10000)+10000;
medianListPrice = 200000*ranuni (199000)+199000;
output;
end;
end;
end;
end;
run;

/* aggregated data from previous data step, this one is used for
the table structure displayed in the absolute layout example */
proc sqgl;
create table pacificSum as
select state,
year,
propGroup,
sum(soldUnits) as sUnits format=commal2.,
avg (medianListPrice) as mPrice format=dollarl?2.
from acmePacific
where year in (2012, 2013)
group by state, year, propGRoup

quit;

15

Gridded Layout Example

/* define general options */
options nodate nonumber papersize=letter
topmargin=.25in bottommargin=.25in leftmargin=.25in rightmargin=.25in;

ods escapechar=""";

title;
footnote;

/* define colors used for the background */
%let backBlue = cx007DC3;

/* sort data for by-group processing */

proc sort data=acmePacific out=acmeSorted;
by state propGroup;

run;

/* close all ODAs and open the PDF one */
ods ALL close;

ods pdf file="pacificGridded.pdf" notoc nogtitle;

/* start a gridded layout */
ods layout gridded columns=2 column gutter=0in advance=bygroup;

/* define header section of the report - blue bar with company logo */
ods region height=1in column span=2 style={background=&backBlue. just=right};
ods text=""S={background=&backBlue. foreground=white font size=50pt}ACME";
ods text=""S={background=&backBlue. foreground=white font size=10pt}Sales Report
Pacific Region";

/* define generic region to display individual charts */
ods region;
/* define goptions, axis pattern & legend settings */
goptions reset=goptions noborder device=SASPRTC target=SASPRTC
ftext="Helvetica' htext=.9 ftitle='Helvetica/bold'
hsize=4in vsize=2.5in;

axisl label=none value=none;
axis2 label=none minor=none offset=(0,0);
axis3 label=none offset=(1,1) stagger;

patternl v=s color=cx9ACI1CF; /* light blue */
pattern2 v=s color=cx245397; /* medium blue */

legendl label=none across=2 position=(top right inside) mode=protect
shape=bar(.lin, .lin) value=(j=1);

/* gchart procedure to generate bar charts */
proc gchart data=acmeSorted;

vbar year / discrete type=sum

group=propType
sumvar=soldUnits

subgroup=year /* this controls the coloring */
maxis=axisl /* midpoint axis */

raxis=axis2 /* response/numeric axis */

gaxis=axis3 /* group axis */

legend=legendl /* assign the legend statement to graph */
noframe /* no frame around graph */

coutline=black /* outline color of bars */

16

space=0 /* bar spacing */
gspace=.5 /* group spacing */

by state propGroup;

label state="State" propGroup="| Property Group";
where year in (2012, 2013);

run;

quit;

/* end the gridded layout */
ods layout end;

ods ALL close;

Absolute Layout Example

/* define general options */
options nodate nonumber papersize=letter
topmargin=.25in bottommargin=.25in leftmargin=.25in rightmargin=.25in;

ods escapechar=""";

title;
footnote;

/* define colors used for the background */
$let backBlue = cx007DC3;

/* define image path */

%let imagePath = c:\temp\sgfl\pacificMed.jpg;

/* close all ODAs and open the PDF one */
ods ALL close;
ods pdf file="pacificAbsolute.pdf" notoc;

/* start a absolute layout */
ods layout absolute;
/* define header section of the report - blue bar with company logo */
ods region height=1lin style={background=&backBlue.};
ods text=" ";

ods region x=5.5in width=2.5in height=1in style={background=&backBlue.};
ods text=""S={background=&backBlue. foreground=white font size=50pt}ACME";
ods text=""S={background=&backBlue. foreground=white font size=10pt}Sales Report
Pacific Region";

/* region to display text above the bar chart */
ods region y=1.25in width=4.75in height=1.25in;
ods text=""S={font size=8pt}Commercial property sales accelerated in 2013,
continuing this year’s recovery after activity came to a near-halt in 2012 during the
financial crisis and recession.";
ods text=" ";
ods text=""S={font size=8pt}Buoyed by steadying job growth, improving real estate
fundamentals and eager capital, buyers throughout the first 11 months of 2013 ponied
up more than $305 billion to acquire office buildings, industrial properties, retail
centers, hotels, apartments and development sites around the U.S., according to ACME
Analytics, which tracks commercial real estate sales of more than $5 million.";

/* region for the bar chart */
ods region y=2.75in width=4.75in height=2.75in;
/* define goptions, axis pattern & legend settings for bar chart */
goptions reset=goptions noborder device=SASPRTC target=SASPRTC
ftext="Helvetica' htext=.9 ftitle='Helvetica/bold';

17

axisl label=none value=none;
axis2 label=none minor=none offset=(0,0) order=(800000 to 1150000 by 50000);
axis3 label=none offset=(1,1);

patternl v=s color=cx245397; $* medium blue #245397;
pattern?2 v=s color=cx9ACI1CF; %$* light blue #9ACI1CF;

legendl label=none across=1 position=(top right outside) mode=protect
shape=bar (.25in, .15in) value=(j=c);

/* define title - region containers can display titles & footnotes */
titlel j=left 'Units Sold by Property Group in the Last 4 Years';

/* gchart procedure to generate bar chart */
proc gchart data=acmePacific;

vbar propGroup / discrete type=sum
group=year
sumvar=soldUnits /* */
subgroup=propGroup/* this controls the coloring */

maxis=axisl /* midpoint axis */
raxis=axis2 /* response/numeric axis */
gaxis=axis3 /* group axis */
legend=legendl /* asign the legend statement to graph */
noframe /* no frame around graph */
coutline=black /* outline color of bars */
space=1 /* bar spacing */
gspace=2 /* group spacing */
run;
quit;

/* region to display the header above the image */
ods region x=5in y=1.25in width=3in height=0.18in style={background=&backBlue.};
ods text=""S={just=center background=&backBlue. foreground=white
font size=10pt}States of the Pacific Region";

/* region to display image of the pacific census region */
ods region x=5in y=1.6in width=3in;
data NULL ;
dcl odsout dak();
dak.image (file: "&imagePath.");
run;

/* region to display first pie chart */
ods region y=5.5in height=2.5in width=3in;

/* define goptions & pattern statements for pie charts */
goptions reset=goptions noborder device=sasprtc
ftext="Helvetica' htext=.9 ftitle='Helvetica/bold';

title;

patternl v=s color=cxlElElE;
pattern2 v=s color=cx03658C;
pattern3 v=s color=cxF1B33C;
pattern4 v=s color=cxDADFE2;
patternb v=s color=cxD94D3E;
pattern6 v=s color=cx6B8E23;

/* gchart procedure to generate pie chart */
proc gchart data=acmePacific;
pie propType / sumvar=soldUnits

18

clockwise
slice=outside
percent=outside
value=none

noheading;
where year=2013 and propGroup = "Commercial";
run;
quit;

/* region to display the header for 2013 & commercial */
ods region y=5.5in width=8in height=0.18in style={background=&backBlue.};
ods text=""S={just=center background=&backBlue. foreground=white
font size=10pt}2013 Numbers for Commercial Properties";

/* region to display the first custom RWI table */
ods region x=3.5in y=5.8in height=2.2in;
data kumma;
set pacificSum (where=(propGroup="Commercial")) end=done;
by state year;
retain unitsl2 pricel2;

if N =1 then do;
dcl odsout dak();
dak.table start();
dak.row start();
dak.format cell (data: "State", row span: 2, vjust: "center",
style attr: "font weight=bold");
dak.format cell(data: "Units Sold", column span: 2,
style attr: "font weight=bold");
dak.format cell (data: "Median List Price", column span: 2,
style attr: "font weight=bold");
dak.row _end();
dak.row start();
dak.format cell(data: "#", style attr: "font weight=bold",

width: ".75in");

dak.format cell (data: "% Change *", style attr: "font weight=bold",
width: ".75in");

dak.format cell(data: "#", style attr: "font weight=bold",
width: ".75in");

dak.format cell(data: "% Change *", style attr: "font weight=bold",
width: ".75in");

dak.row end();
end;

if first.state and first.year then do;

unitsl2 = sUnits;
pricel2 = mPrice;
end;

if last.state and last.year then do;
changeUnits = ((sUnits - unitsl2) / unitsl2);
changePrice = ((mPrice - pricel2) / pricel2);

dak.row start(style attr: "just=left");
dak.format cell (data: state, just: "left");
dak.format cell (data: sUnits, format: "commal2.");
if changeUnits GE 0 then dak.format cell (data: changeUnits,
format: "percentnl0.3",
style attr: "foreground=green");
else dak.format cell (data: changeUnits,
format: "percentnl0.3",
style attr: "foreground=red");
dak.format cell (data: mPrice, format: "dollarl2.");

19

if changePrice GE 0 then dak.format cell (data: changePrice,
format: "percentnl0.3",
style attr: "foreground=green");
else dak.format cell(data: changePrice,
format: "percentnl0.3",
style attr: "foreground=red");
dak.row end();
end;

if done then do;
dak.row start();
dak.format cell(data: "* compared to last Years Results",
just: "left", column span: 5, inhibit: "LBR");
dak.row end();
dak.table end();
end;

run;

/* region to display second pie chart */
ods region x=4in y=8in height=2.5in width=4in;
/* gchart procedure to generate pie chart */
proc gchart data=acmePacific;
pie propType / sumvar=soldUnits
clockwise
slice=outside
percent=outside
value=none

noheading;
where year=2013 and propGroup = "Residential";
run;
quit;

/* region to display the header for 2013 & residential */
ods region y=8in width=8in height=0.18in style={background=&backBlue.};
ods text=""S={just=center background=&backBlue. foreground=white
font size=10pt}2013 Numbers for Residential Properties";

/* region to display the second custom RWI table */
ods region y=8.3in width=4.25in height=2.21in;
data kumma;
set pacificSum (where=(propGroup="Residential")) end=done;
by state year;
retain unitsl2 pricel2;

if N =1 then do;
dcl odsout dak();
dak.table start();
dak.row start();
dak.format cell (data: "State", row span: 2, vjust: "center",
style attr: "font weight=bold");
dak.format cell (data: "Units Sold", column span: 2,
style attr: "font weight=bold");
dak.format cell (data: "Median List Price", column span: 2,
style attr: "font weight=bold");
dak.row end();
dak.row start();
dak.format cell(data: "#", style attr: "font weight=bold",

width: ".75in");

dak.format cell (data: "% Change *", style attr: "font weight=bold",
width: ".75in");

dak.format cell(data: "#", style attr: "font weight=bold",
width: ".75in");

20

dak.format cell (data: "% Change *", style attr: "font weight=bold",
width: ".75in");
dak.row end();
end;

if first.state and first.year then do;

unitsl2 = sUnits;
pricel2 = mPrice;
end;

if last.state and last.year then do;
changeUnits = ((sUnits - unitsl2) / unitsl2);
changePrice = ((mPrice - pricel2) / pricel2);

dak.row start(style attr: "just=left");
dak.format cell (data: state, Jjust: "left");
dak.format cell(data: sUnits, format: "commal2.");
if changeUnits GE 0 then dak.format cell (data: changeUnits,
format: "percentnl0.3",
style attr: "foreground=green");
else dak.format cell(data: changeUnits,
format: "percentnl0.3",
style attr: "foreground=red");
dak.format cell (data: mPrice, format: "dollarl2.");
if changePrice GE 0 then dak.format cell(data: changePrice,
format: "percentnlO0.3",
style attr: "foreground=green");
else dak.format cell (data: changePrice,
format: "percentnl0.3",
style attr: "foreground=red");
dak.row end();
end;

if done then do;
dak.row start();
dak.format cell(data: "* compared to last Years Results",
just: "left", column span: 5, inhibit: "LBR");
dak.row _end();
dak.table end();
end;

run;

/* end the absolute layout */
ods layout end;

ods pdf close;

21

ODS REPORT WRITING INTERFACE EXAMPLE

Sample Data

data acmeHouses;

length state $2 basement porch inCity fire deck porch $3
zip sizeMBed size2Bed size3Bed size4d4Bed sizeKitchen sizeFamRoom sizeDinRoom
sizeOffice sizeSunRoom sizeBase sizeDeck sizePorch sizeEnt $5
listNum listArea $6 extFinish roof floor foundation cool heat style area
county $20 name streetl city propType elemSchool middleSchool highSchool
contact email webUrl $50 desc $250;

1istNum="000001"; listArea="666"; name="Hill House"; streetl="1328 Elm Street";
city="Springwood"; zip="23487"; state="OH"; price=275643; propType="Single-Family";
yBuilt=1823; extFinish="Wood"; roof="Shingles"; floor="Hardwood";
foundation="Concrete"; numGarage=0; numlLevel=4; heatArea=2453; addArea=.;
basement="Yes"; cool="Forced"; heat="Fireplace"; bRooms=1; bath=0; lotSize=25;
houseSize=2453; style="Traditional"; assocFee=.; inCity="No"; area="Made Up Area";
county="Fake"; fire="Yes"; deck="Yes"; porch="Yes"; sizeMBed="20X20"; size2Bed="";

size3Bed=""; sized4Bed=""; sizeKitchen="15x10"; sizeFamRoom="20x20"; sizeDinRoom="";
sizeOffice="15x10"; sizeSunRoom=""; sizeBase="45x30"; sizeDeck=""; sizePorch="20x5";
sizeEnt=""; elemSchool="Voorhees Elementary"; middleSchool="Myers Middle";

highSchool="Krueger High"; contact="Laurie Strode"; officePhone="(666)999-0000 ext.
2"; officeFax="(666)999-0006"; cellPhone="(666)999-6666";
eMail="laurie@smithsgrove.com"; webUrl="www.smithsgrove.com";

desc="This fixer upper is ready for you. This large plantation house with a low
maintenance yard just needs a little TLC. Full Disclosure: A night spent here could
turn into an eternity";

output;

1istNum="000002"; listArea="555"; name="The Farnsworth House"; streetl="1800 Fancy
Drive"; city="Fancy Town"; zip="66666"; state="CA"; price=2500000; propType="Vacation
Home"; yBuilt=1951; extFinish="Steel & Glass"; roof="Metal"; floor="Tile";
foundation="Steel Columns"; numGarage=0; numLevel=1; heatArea=.; addArea=.;
basement="No"; cool="None"; heat="Fireplace"; bRooms=1; bath=1; lotSize=60;
houseSize=1554; style="Modern"; assocFee=.; inCity="No"; area="Made Up Area";
county="Fake"; fire="Yes"; deck="Yes"; porch="No"; sizeMBed="20X10"; size2Bed="";

size3Bed=""; sizedBed=""; sizeKitchen="20x4"; sizeFamRoom="30x20"; sizeDinRoom="";
sizeOffice=""; sizeSunRoom=""; sizeBase=""; sizeDeck="15x40"; sizePorch="20x20";
sizeEnt=""; elemSchool="Peter Parker Elementary"; middleSchool="Bruce Wayne Middle

School"; highSchool="Han Solo High"; contact="Wile E. Coyote"; officePhone="(666)999-
0000 ext. 1"; officeFax="(666)999-0006"; cellPhone="(666)999-6661";
eMail="wile.e.coyote@acmefakecorp.com"; webUrl="www.acmefakecorp.com";

desc="As the perfect family vacation retreat the Farnsworth House is lying in a once-
rural setting and seems to float weightlessly above the ground it occupies. It has
become an iconic expression of 20th century modernist architecture.";

output;

label listNum="Listing Number" listArea="Listing Area" propType="Property Type"
bRooms="Bed Rooms" bath="Bath Rooms" houseSize="House Size" lotSize="Lot Size"
style="Style" price="Price" yBuilt="Year Built" extFinish="Exterior Finish"
roof="Roof" floor="Floor" foundation="Foundation" heatArea="Heated Area"
numGarage="# Garages" numLevel="# Levels" addArea="Additional Areas" area="Area"
basement="Basement" cool="Cooling" heat="Heating" inCity="Inside City Limits"
county="County" fire="Fireplace" deck="Deck" porch="Screened Porch";

run;

22

ODS RWI Absolute Layout Example

/* define general options */
options nodate nonumber papersize=letter
topmargin=.25in bottommargin=.25in leftmargin=.25in rightmargin=.25in;

ods escapechar=""";

title;
footnote;

/* define colors used for the background */
%let backBlue = cx007DC3;
%$let backGray = cxA9A9A9;

/* define location of images */
%let imageLoc = c:\temp\sgf\;

/* close all ODAs and open the PDF one */
ods ALL close;

ods pdf file="pacificRWI.pdf" notoc;
data NULL ;
set acmeHouses end=done;

/* declare the odsout output object only once */
if N =1 then do;

dcl odsout dak();
end;

/* start a gridded layout */
dak.layout absolute();

/* define header section of the report - blue bar with company logo */
dak.region(width: "8in",height: "1lin", style attr: "background=&backBlue.");
dak.format text(data: "", style attr: "background=&backBlue.");
dak.region(x: ".5in", y: ".2in", width: "3in", height: "1in");
dak.format text(data: name, style attr: "background=&backBlue.
foreground=white
font size=20pt");
dak.format text (data: streetl, style attr: "background=&backBlue.
foreground=white
font size=15pt");
dak.region(x: "5.5in", width: "2in", height: "1in");
dak.format text (data: "ACME", just: "right", style attr: "background=&backBlue.
foreground=white
font size=50pt");
dak.region(x: "5.5in", y: ".7in", width: "2in", height: ".5in");
dak.format text (data: "Pacific Region", just: "right",
style attr: "background=&backBlue.
foreground=white
font size=10pt");

/* region to display image */
dak.region(y: "1.25in", width: "4in", height: "3in");
dak.image (file: "&imageLoc." || strip(listNum) || ".Jjpg");

/* region to display description & general information */
dak.region(x: "4in", y: "1.25in", width: "4in", height: "3in");
/* display text that is formatted to appear as section header */
dak.format text (data: "General Information",

23

style attr: "font size=12pt font weight=bold width=100%
just=c background=&backGray") ;
/* add empty row to create space between header text and description */
dak.format text(data: "");
/* display description */
dak.format text (data: desc);
/* arrange the data labels & values using a table */
dak.table start(style attr:"frame=void rules=none width=4in");
dak.row start();
dak.format cell (data: vlabel (brooms) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: brooms, Jjust: "left");
dak.format cell (data: vlabel (bath) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: bath, just: "left");
dak.row end();
dak.row start();

dak.format cell (data: vlabel (houseSize) || " (SgFt):", just: "left",
style attr: "font weight=bold");

dak.format cell (data: houseSize, just: "left", format: "commal2.");

dak.format cell(data: vlabel (lotSize) || " (Acres):", Jjust: "left",

style attr: "font weight=bold");
dak.format cell(data: lotSize, just: "left");
dak.row end();
dak.row start();
dak.format cell (data: vlabel(price) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: price, format: "dollarl4.", just: "left");
dak.format cell(data: vlabel (ybuilt) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell(data: ybuilt, just: "left");
dak.row _end();
dak.row start();
dak.format cell (data: vlabel (propType) || ":", Jjust: "left",
style attr: "font weight=bold");
dak.format cell (data: propType, just: "left");
dak.format cell(data: vlabel (style) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell(data: style, just: "left");
dak.row end();
dak.table end();

/* region to display building features */
dak.region(y: "4.5in", width: "8in", height: "3in");
/* display text that is formatted to appear as section header */
dak.format text(data: "Building Features",
style attr: "font size=12pt font weight=bold width=100%
just=c background=&backGray") ;
dak.format text(data: "");
/* arrange the data labels & values using a table */
dak.table start(style attr:"frame=void rules=none width=8in");
dak.row start();
dak.format cell (data: vlabel (extFinish) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: extFinish, just: "left");
dak.format cell (data: vlabel (numGarage) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: numGarage, just: "left");
dak.format cell (data: vlabel(cool) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell(data: cool, just: "left");
dak.format cell (data: vlabel (inCity) || ":", just: "left",
style attr: "font weight=bold");

24

dak.format cell (data: inCity, just: "left");
dak.row _end();
dak.row start();
dak.format cell (data: vlabel(roof) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell(data: roof, just: "left");
dak.format cell (data: vlabel (numLevel) || ":", just: "left",
just: "left", style attr: "font weight=bold");
dak.format cell (data: numLevel, just: "left");
dak.format cell (data: vlabel (heat) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: heat, just: "left");
dak.format cell (data: vlabel (area) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: area, Jjust: "left");
dak.row end();
dak.row start();
dak.format cell(data: vlabel (floor) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: floor, Just: "left");
dak.format cell(data: vlabel (heatArea) || " (SgFt):", just: "left",
style attr: "font weight=bold");
dak.format cell(data: heatArea, just: "left");

dak.format cell (data: vlabel (assocFee) || ":", just: "left",
style attr: "font weight=bold");

dak.format cell (data: assoc, Just: "left");

dak.format cell(data: vlabel (county) || ":", just: "left",

style attr: "font weight=bold");
dak.format cell(data: county, just: "left");
dak.row end();
dak.row start();
dak.format cell (data: vlabel (foundation) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: foundation, just: "left");
dak.format cell(data: vlabel (addArea) || " (SgFt):", just: "left",
style attr: "font weight=bold");
dak.format cell(data: addArea, just: "left");
dak.format cell (data: vlabel(deck) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell(data: deck, just: "left");
dak.format cell (data: vlabel (listNum) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: listNum, just: "left");
dak.row end();
dak.row start();
dak.format cell(data: vlabel (basement) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: basement, just: "left");
dak.format cell (data: vlabel(fire) || ":", just: "left",
just: "left", style attr: "font weight=bold");
dak.format cell(data: fire, just: "left");
dak.format cell (data: vlabel (porch) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell (data: porch, just: "left");
dak.format cell (data: vlabel(listArea) || ":", just: "left",
style attr: "font weight=bold");
dak.format cell(data: listArea, just: "left");
dak.row end();
dak.table end();

/* region to display room dimensions */

dak.region(y: "6.5in", width: "8in", height: "3in");
/* display text that is formatted to appear as section header */

25

dak.format text (data: "Room Dimensions",
style attr: "font size=12pt font weight=bold width=100%
just=c background=&backGray") ;
dak.format text(data: "");
/* arrange the data labels & values using a table */
dak.table start(style attr:"frame=void rules=none width=8in");
dak.row start();
dak.format cell (data: "Master Bedroom:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: sizeMBed, just: "left");
dak.format cell (data: "Kitchen:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: sizeKitchen, just: "left");
dak.format cell (data: "Sun Room:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: sizeSunRoom, just: "left");
dak.format cell(data: "Deck:", just: "left",
style attr: "font weight=bold");
dak.format cell(data: sizeDeck, just: "left");
dak.row end();
dak.row start();
dak.format cell (data: "2nd Bedroom:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: size2Bed, just: "left");
dak.format cell(data: "Family Room:", just: "left",
style attr: "font weight=bold");
dak.format cell(data: sizeFamRoom, just: "left");
dak.format cell (data: "Entrance:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: sizeEnt, just: "left");
dak.format cell(data: "Porch:", just: "left",
style attr: "font weight=bold");
dak.format cell(data: sizePorch, just: "left");
dak.row _end();
dak.row start();
dak.format cell(data: "3rd Bedroom:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: size3Bed, just: "left");
dak.format cell(data: "Dining Room:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: sizeDinRoom, just: "left");
dak.format cell(data: "Basement:", just: "left",
style attr: "font weight=bold");

dak.format cell(data: sizeBase, just: "left");
dak.format cell (data: "");
dak.format cell (data: "");

dak.row _end();
dak.row start();
dak.format cell(data: "4th Bedroom:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: sized4Bed, just: "left");
dak.format cell (data: "Office:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: sizeOffice, just: "left");

’

(

(
dak.format cell (data: ""

(

(

dak.format cell(data: "");
)

dak.format cell(data: "");
)

dak.format cell (data: ""
dak.row _end();
dak.table end();

/* region to display school information */
dak.region(y: "8.25in", width: "8in", height: "1lin");

26

/* display text that is formatted to appear as section header */
dak.format text (data: "School Information",
style attr: "font size=12pt font weight=bold width=100%
just=c background=&backGray") ;
dak.format text(data: "");
/* arrange the data labels & values using a table */
dak.table start(style attr:"frame=void rules=none width=8in");
dak.row start();
dak.format cell (data: "Elementary School:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: elemSchool, just: "left");
dak.format cell(data: "Middle School:", just: "left",
style attr: "font weight=bold");
dak.format cell (data: middleSchool, just: "left");
dak.format cell(data: "High School:", just: "left",
style attr: "font weight=bold");
dak.format cell(data: highSchool, just: "left");
dak.row end();
dak.table end();

/* region to display contact information */
dak.region(y: "9.2in", width: "8in", height: "1.25in");
/* display text that is formatted to appear as section header */
dak.format text(data: "Contact",
style attr: "font size=12pt font weight=bold width=100%
just=c background=&backGray") ;
/* arrange the data labels & values using a table */
dak.table start(style attr:"frame=void rules=none width=5in");
dak.row start();
dak.format cell (data: contact, just: "left",
style attr: "font size=10pt font weight=bold",
column_ span: 4);
dak.row end();
dak.row start();

dak.format cell(data: "Office: " || strip(officePhone), just: "left");
dak.format cell(data: "Cell: " || strip(cellPhone),

just: "center", column span: 2);
dak.format cell (data: "Fax: " || strip(officeFax), Jjust: "right");

dak.row end();
dak.row start();

dak.format cell (data: "eMail: " || strip(eMail),
just: "left", column span: 2);
dak.format cell (data: strip(webUrl) || "/" || strip(listNum),
just: "right", column span: 2);

dak.row _end();
dak.table end();

/* close the absolute layout */
dak.layout end();

/* add a page break for each obs but the last */
if not done then do;
dak.page () ;
end;
run;

ods ALL close;

27

