
1 

 Paper 179-2014 

Check It Out! Versioning in SAS® Enterprise Guide® 

Joe Flynn, Casey Smith, Alex Song, SAS Institute Inc., Cary, NC 

ABSTRACT 

The life of a SAS® program can be broken down into sets of changes made over time. Programmers are generally 
focused on the future, but when things go wrong, a look into the past can be invaluable. Determining what changes 
were made, why they were made, and by whom can save both time and headaches. This paper discusses version 
control and the current options available to SAS® Enterprise Guide® users. It then highlights the upcoming Program 
History feature of SAS Enterprise Guide. This feature enables users to easily track changes made to SAS programs.  
Properly managing the life cycle of your SAS programs will enable you to develop with peace of mind. 

INTRODUCTION 

Tracking changes made to a program over time is very useful, particularly when collaborating with others. 
Sometimes, it is even a requirement for auditing purposes. One way this can be accomplished is by manually saving 
additional copies of programs as they change. Though effective, this is a very tedious and inefficient approach. We 
will explore more elegant solutions.  

BACKGROUND 

To employ version control in your day-to-day work in Enterprise Guide, you first need some basic knowledge of 
Enterprise Guide projects and how SAS programs are stored. 

PROJECT FORMAT 

An Enterprise Guide project file (.egp) is an archive in a proprietary format that stores SAS programs, SAS logs, ODS 
results, references to data, task states, and all the other information needed to reconstitute the state of an Enterprise 
Guide project. The project file often contains both embedded content and references to external content.  Embedded 
content is stored wholly within a project file. For example, SAS logs and ODS results are usually embedded directly in 
a project file, whereas only references (or shortcuts) are stored within a project for externally referenced content; the 
actual content still exists outside the Enterprise Guide project. For example, references to data are stored in a project 
file, but the data itself lives in a data file or server. See Figure 1.

 

Figure 1: Embedded versus External Content in Enterprise Guide Projects 

EMBEDDED VERSUS EXTERNAL PROGRAMS 

Two different storage options exist when working with SAS programs in Enterprise Guide. Programs can be 
embedded in the project or externally referenced. 

Embedded SAS programs are stored inside the Enterprise Guide project. When saving a project, imagine the SAS 
programs being added to an archive file for storage. Upon closing the project, the SAS programs can no longer be 
accessed directly. To access the SAS programs, the project must be opened (or unzipped). Note: When you create a 

new program in Enterprise Guide, it is initially embedded. 

External Content 
(in file systems, databases, etc.) 

 

 

 

Enterprise Guide Project File 

 

 

 

 

 

 

 

Embedded Content 

 

 

References to External Content 

 



2 

Alternatively, a SAS program can be stored externally to a location on disk (typically as a .sas file). In this scenario, 
the project stores the path to the SAS program as part of the project XML. No portion of the SAS code exists inside 
the project. All open and save operations are performed by directly reading from and writing to the SAS program on 
disk. When using this option, the program is available at all times, not only when the Enterprise Guide project is open.  

There are a few ways to determine whether a program is embedded or referenced externally in a project. The first 
clue is in the Project Tree or in a Process Flow. When you examine the program icons, external programs have an 
arrow in the bottom left corner, as seen in Figure 2.  

              

Figure 2: Shortcut Icon Indicating an Externally Referenced Program 

Examining the programôs properties is another way to determine how it is being stored. To access a programôs 
properties, right-click a program icon and select Properties. By default, the General section is displayed, which 
contains a File path label. In Figure 3, the path is listed as (Embedded In Project). As stated, this program is 
embedded in the project. The Save As button can be used to save the program externally. After doing so, the 

program in the project becomes a reference to the program file you saved externally. The program code is no longer 
stored in the project. 

 

 

Figure 3: File Path of an Embedded Program 

If the program is stored externally, the programôs properties will display the File path location similar to Figure 4. Click 
Embed to embed the program code inside the project. The program is then an internal copy and no longer references 
the external file. The Save As button is also available to save a copy of the program to a new location and update the 

project reference.  

 

Figure 4: File Path of an External Program 

Embedded programs cannot be easily managed in version control, because they are archived in Enterprise Guide 
projects. Enterprise Guide projects are binary files, which are inefficient to store inside version control systems. Also, 
the ability to see meaningful differences between versions is not available. This makes using version control with 
embedded SAS programs impractical. Using version control with externally referenced programs enables you to 
separate the source code from your project and is the recommended approach.  

VERSION CONTROL 

Version control provides the facility to manage and track changes to source files during the development process. 
Some SAS users manually save a new version of their program with each update. For example, you will find a 
directory with program1 to program32, all representing incremental changes made to the same program. Users 
manually save to prevent loss of work and to have a track record. It provides a safety net and enables them to make 



3 

modifications with the confidence that they can always roll back to the previous version. This process is an inefficient 
version control system. In the following example, we explore using a more formal version control system in 
conjunction with SAS Enterprise Guide. 

VERSION CONTROL IN SAS ENTERPRISE GUIDE 

Currently, there are no features implemented within Enterprise Guide that directly interact with version control 
systems. To use source control management with Enterprise Guide, save SAS programs that are external to the 
project and manage the source files independently. Many tools exist that are developed specifically for this purpose. 
We will walk you through an example using Git. However, the concept remains the same for any version control 
system.  

SET UP DIRECTORY STRUCTURE 

Begin by creating the folder structure in Figure 5 under the root directory of your hard drive.  

 

Figure 5: Folder Structure for Walk-through 

OPEN THE TOPNCATEGORIES PROGRAM 

The TopNCategories sample program, which is provided with all Enterprise Guide installations, is used as a 

template. To access this program in Enterprise Guide: 

1. Select File > Open > Program. 

2. In the browse dialog box, navigate to the Enterprise Guide sample code directory. By default, this is located 
under C:\Program Files\SASHome\SASEnterpriseGuide\<version>\Sample\Code. 

3. Select the TopNCategories.sas program and click Open.  

SAVE TOPNCATEGORIES INTO THE PROGRAMS DIRECTORY 

After opening the program, it is displayed inside the editor. It is important to note that File > Open > Program was 
used to access the program. (Creating a new program by selecting File > New > Program would result in an initially 
embedded program.) This means that the project is externally referencing the TopNCategories program. This can be 
verified by clicking Properties on the editor toolbar, or by right-clicking the program in the process flow and selecting 
Properties. On the General page, the File path field indicates the full path to the SAS program. This is shown in 
Figure 6. Remember, if it were embedded it would say (Embedded In Project). 

 

 

Figure 6: File Path of Externally Referenced Program 

Save a copy of TopNCategories inside the programs directory created in the Set Up Directory Structure section. 
You can do this by clicking Save As inside the properties dialog box, or by closing the properties dialog box and 
selecting File > Save TopNCategories as and navigating to the proper location. 

USE RELATIVE PATHS  

Next, instruct Enterprise Guide to store the reference to this program as a relative path: 

1. Select File > Project Properties. 
2. Select File References. 
3. Check the Use paths relative to the project for programs and importable files box, as seen in Figure 7. 



4 

Avoiding absolute path references grants you the freedom to store the project in any subdirectory, assuming the 
relative path from the project to the program remains the same. This ensures that the project remains flexible and is 
easy to share with coworkers.   

 

Figure 7: Option for Using Relative Paths for File References 

SAVE PROJECT 

Finally, save the project: 

1. Select File > Save Project. 
2. Navigate to the projects folder created in the Set Up Directory Structure section. 
3. Enter the name Top Categories. 
4. Click Save. 

INITIALIZE GIT REPOSITORY 

We are now ready to add version control to our externally referenced SAS program. To create a Git repository: 

1. Install Git on your system if not already installed. (See http://git-scm.com/.) 
2. Open the Git Gui utility. 
3. Click Create New Repository on the main page, as shown in Figure 8. 
4. Click Browse. 
5. Navigate to the programs directory created in the Set Up Directory Structure section and select it as the 

location for the new repository. It should look similar to Figure 9. 
6. Click Create. 

 

 

Figure 8: Create New Repository in Git Gui 

 

Figure 9: Specify Repository Location 

COMMIT INITIAL VERSON OF TOPNCATEGORIES 

When you create the repository, you will notice TopNCategories.sas is located in the Unstaged Changes area. We 

are happy with the state of the program and we want to save this version into the history. Complete these steps, 
which are also labeled in Figure 10: 

http://git-scm.com/


5 

1. Select TopNCategories.sas and review the changes. 
2. Click Stage Changed. 

3. Provide a message describing the changes. 
4. Click Commit. 

 

Figure 10: Initial Commit of TopNCategories Program 

This version of the file has now been committed to Git and is part of the history. Select Repository > Visualize 
masters history to view the current history. The current history consists of a single commit of TopNCategories.sas, 
as seen in Figure 11. 

 

Figure 11: Viewing Repository History 

MAKE CHANGES TO TOPNCATEGORIES 

Now that we have a good first pass of the TopNCategories program in version control, we want to refactor the code 
a bit. Back in Enterprise Guide, open the Top Categories project and access the TopNCategories program. 

Suppose we want to refactor the first ódataô macro variable into three separate macro variables. We decide we would 



6 

rather have separate macros for the libref and data set, but still keep the data macro that is referenced throughout the 
program. To do this, we replace the following line of code: 

%let data=SASHELP.CARS; 
 
We replace that single line of code with the following three lines of code: 

 
%let libref=SASHELP; 
%let dataset=CARS; 
%let data=&libref.&dataset; 

 
Without rerunning the program (we are very confident in our changes), save your program by selecting File > Save 
TopNCategories and close the project. Saving the program writes the changes to the TopNCategories program on 

disk so that they can be committed. 

COMMIT CHANGES TO TOPNCATEGORIES 

To commit these changes to the Git repository, begin by opening the Git Gui utility. On the main page, you now see 

an Open Recent Repositories area. Click the link displaying the path to the repository created in the  
Initialize Git Repository section, as shown in Figure 12. This opens the repository. 

 

 

Figure 12: Open Recent Repository 

Once in the repository you should see TopNCategories.sas in the Unstaged Changes area. When you select the 
program, you will see the file contents displayed as one red line and three green lines, as shown in Figure 13. 

 

 

Figure 13: Changes Made to TopNCategories 

This shows how the program has changed since the last time a version was committed. Everything looks as 
expected, so we can go ahead and commit the changes.  

1. Select TopNCategories.sas in the Unstaged Changes area and click Stage Changed.  

2. Review changes to the program in the Staged for commit area. 

3. Provide a meaningful commit message detailing what was accomplished. For example, you can enter 
ñRefactored data macro variable to reference new libref and data set macro variables.ò  

4. Click Commit to finalize these changes and add them to the repository history.  



7 

 

Figure 14: Committing Changes to TopNCategories 

REVIEWING HISTORY 

Suppose some amount of time passes and you have not revisited the TopNCategories program. To your surprise 

when running the program, 17 errors are returned in the log. You are certain it was functioning properly when the 
initial version was committed, but you do not recall exactly what was changed. To view the history of the program: 

1. Open Git Gui. 

2. Select the programs repository from the recent repositories list.  

3. Select Repository > Visualize Masterôs History.  

There are two commits listed, so it can be determined the only change made since the program was functioning must 
be part of the òRefactored data macro variableò commit. When you select the commit, the changes show exactly how 
the program was modified between commits, as seen in Figure 15. 

 

 

Figure 15: Viewing Repository History 

To recap using source management control in Enterprise Guide today: 



8 

1. Store your SAS programs as (.sas) files. 

2. Reference them in your Enterprise Guide projects. 

3. Develop them using Enterprise Guide. 

4. Track changes to them in an external version control system. 

Although the example was extremely simple, version control is vital when working with complex source code. It helps 
determine when and why a problem was introduced into the code. Knowing the intent of the changes made to the 
program can save time. Sometimes changes are made to fix one bug but unintentionally introduce another. With this 
knowledge, you can target a fix for both issues. 

PROGRAM HISTORY FEATURE 

Beginning in the next release of Enterprise Guide (post 6.1), a new feature is being implemented to assist users with 
tracking changes made to embedded SAS programs. This program history will be embedded in the project and will 
provide invaluable debugging information to programmers. This feature will work out of the box, with no additional 
configuration steps required. 

A distinction must be made between the internal program history feature and actual version control. Generally, 
version control has a centralized copy of all of the source and is frequently backed up. Unlike version control, the 
Program History feature is entirely embedded in the project and no centralized backup exists. If the project is lost, the 
history is lost along with it. This makes the importance of backing up projects even more vital. 

The Program History feature will also provide some integration with external SAS programs that are under Git version 
control. Simple actions such as accessing a specific programôs history, diffing versions, and committing new changes 
are all available from within Enterprise Guide. More in-depth operations such as push/pull/merge/branching/cherry-
pick are not currently available and must be done outside of Enterprise Guide. 

Note: Because the Program History feature and related functionality covered in the rest of this paper is still in 

development, the final implementation is subject to change. Although these features are not yet available, we will 
demonstrate how they are expected to work. 

GETTING STARTED WITH PROGRAM HISTORY 

Here, we point out where you can find the new Program History feature in Enterprise Guide. First, we create a new 
project by selecting File > New > Project. Name this project Top Categories. Next, we work with the sample 
program TopNCategories again. To add this program to your project, select File > Open > Program and navigate to 

your installed Enterprise Guide directory.   

By default, it is located under C:\Program 
Files\SAS\EnterpriseGuide\<version>\Sample\Code\TopNCategories.sas. 

Next, we need to embed this program into the Top Categories project. Right-click TopNCategories from the Project 
Tree and select Properties. Under the General section, click Embed. When a program is embedded in the project, 

you can take full advantage of the program history functionality. To learn more about the feature differences between 
an external and an embedded program, see the External files section later in this paper. 

Save the project by selecting File > Save Project Top Categories. 

PROGRAM ACTION TOOLBAR 

Once you have the TopNCategories program open, look at the set of actions available immediately above the 
programôs SAS code window. It should look like Figure 16.  

Notice that there are three new action buttons located just before the Properties button: 

¶ Changes 

¶ Commit 

¶ History 

 

Figure 16: Program Toolbar with New Changes, Commit, and History Action 



9 

PREVIEW CHANGES 

The Changes button shows you a quick view of the changes in your program since your last committed version. This 

lets you easily see what has been added or removed most recently. 

To demonstrate this feature, make the following changes to your TopNCategories program: 

Replace the following line of code: 

%let data=SASHELP.CARS; 
 
We replace that single line of code with the following three lines of code: 

%let libref=SASHELP; 
%let dataset=CARS; 
%let data=&libref.&dataset; 

After finishing the modifications, click Changes. A dialog box appears similar to the one in Figure 17. This dialog box 

highlights any changes made to the program since the last commit. Additions are highlighted in green, and removed 
code is highlighted in red.   

 

Figure 17: Changes Dialog Box 

This is a quick and easy way to see what has changed since your last commit. If you want more robust functionality, 
you can install a third-party file comparison tool for features such as side-by-side comparison. For more information, 
see the File Comparison Options section. 

COMMIT CHANGES 

The next new feature on the program toolbar is the Commit button. If you have used Git as a source control provider 

in the past, you might be familiar with this functionality. The commit action is essentially how you create new versions 
of your program. As a best practice, commit your programsô changes at meaningful work boundaries. 

Committing a Single Program 

We just made some changes to TopNCategories, and we want to commit the changes. Click Commit from the 
program toolbar. You should see a commit dialog box, as seen in Figure 18. 



10 

 

Figure 18: Commit Dialog Box 

In the commit dialog box, you can see a preview of the changes to TopNCategories and a field for adding a 

description to describe your changes. It is required that you add a brief description of your changes for each commit. 
This makes it easier to find a previous version if you need to revert or look up changes. It also gives context to what 
was accomplished by the changes. 

Committing Multiple Programs at Once 

Over the course of your project, you might have multiple programs that are being modified at once. In this case, you 
will want to be able to commit multiple programs in your project at one time. When you have several modified 
programs, they will all appear in a list, grouped by process flow, when you click Commit. It should look like Figure 
19. 

 

Figure 19: Committing Multiple Changes Simultaneously 

Use the check boxes to select the programs you would like to include in the commit. It is a good idea to commit 
programs together when they are all part of a related change. For example, if you were to rename a macro variable in 
four different programs, you could commit them all at one time with a commit message similar to ñRenamed the data 
macro variable to XXX.ò  A preview of each programôs changes is available by selecting it in the list view. A 



11 

description to label your commit applies to all programs selected at that time. 

VIEW PROGRAM HISTORY 

Once you have committed a version of your program, you might want to see the history of changes to your program. 
Click History to open a program history dialog box, similar to the one in Figure 20. 

 

Figure 20: Program History Dialog Box 

From your program history, you can see a list of committed versions of your program. You will see an assigned 
version number, the date on which the version was created, the author of the committed changes, and the added 
description for the version. 

In the lower half of the dialog box, you will see two tabs. The first tab contains the full program as it was at that point 
in history. The second tab provides the differences comparing the selected version to its previous version, as seen in 
Figure 21. 

 

Figure 21: Default Comparison View 

The following actions are available from the top of the program history dialog box: 

¶ Compare 

¶ Compare with Editor 

¶ Edit Description 

¶ Revert 



12 

Compare 

When you select two versions (hold down the Ctrl key and select the versions you want to compare) from your 
program history list and click Compare, by default, you get a preview of the changes between the selected versions 

using the Enterprise Guide file comparison tool. The preview highlights added code as green and removed code as 
red, similar to clicking Compare from the program toolbar. In Figure 22, the first and third versions of the program 

have been selected. This highlights the changes between Version 1 and Version 3, which include the changes made 
in Version 2.  

 

Figure 22: Comparing Selected Versions of a Program 

If you have a third-party file comparison tool installed, clicking Compare launches the application and provides more 
robust comparison options, as seen in Figure 23. For more information, see the File Comparison Options section. 

 

Figure 23: Example Results from a Third-Party Comparison Tool 

Compare with Editor 

The Compare with Editor action enables you to compare the selected version with the program that you are 



13 

currently working on.   

Note: This is not necessarily the same as comparing the selected version with the most recent version because the 

program you are currently working on might not yet be committed. This enables you to compare your work-in-
progress with a committed version. 

Another Note: If you select the most recent version from the list and click Compare with Editor, this is the same as 
clicking Compare from the program toolbar! 

Edit Description 

When a version is selected from the list, clicking Edit Description enables you to edit the description field. As a best 

practice, provide a description of the changes you made to your program. This enables you to easily locate an older 
version later on. It also gives context for why you made the changes in the first place. 

Revert 

If, at any point, you need to go back to an earlier version, you can select an older version from the program history 
and click Revert. This action replaces your current program in the Enterprise Guide Program Editor with the selected 

version.   

When you click Revert, a warning message appears, asking if you are sure that you want to replace your current 

program with the selected version. You will lose any unsaved and uncommitted work. 

Collaborating on Changes 

The program history keeps track of versions created by different Enterprise Guide users. In our TopNCategories 

example, you need some help with getting your project to run successfully. You decide to send your project to Sam, 
the residential expert on SAS programming. Sam opens your Top Categories project, opens the program history, and 
sees the changes you have made so far. He notices that there is an extra period missing from the data variable 
assignment. 

He replaces the following line of code: 

%let data=&libref.&dataset; 

Here is the new line of code:    

%let data=&libref..&dataset; 

He commits the changes and sends the project back to you. You look at his changes in the program history and see 
that Samôs name now appears as the author of the latest version of TopNCategories.  

Note: The authorôs name is derived from metadata. If you are connected to the server using shared credentials, this 

name might not be as meaningful. 

COMMIT HISTORY 

Earlier, we mentioned how you can commit multiple programs at once. When you do this, you might want to go back 
and see what files were committed at which point. The program history gives you the past versions for a single 
program only. To view a history of your commits for the current project, select Program > Commit History. 

From the Commit History dialog box, you see a list at the top of the dialog box similar to the version list in the 
program history. This is a list of your commit actions for this project. The most recent commits appear at the top of the 
list. If you select a commit from the list, you will see a list of committed programs at the bottom of the dialog box.  
From the list of programs, you can select one and see the program code on the File Contents tab and a quick view 
of the changes that were made on the Changes tab. See Figure 24. 



14 

 

Figure 24: Commit History Dialog Box 

From the projectôs commit history, you can also quickly navigate to the program history for the selected file. Click 
View History next to the name of the program above the File Contents and Changes tabs. You can also double-
click on the programs listed under the process flow or right-click on a program and select View History. In addition, 

you can double-click on a version from the program history to open the commit history and see other programs that 
were committed at the same time. 

CONFIGURING 

The program history and file comparison tools can be configured by navigating to Tools > Options. There are two 

new sections: File Comparison and Program History. In File Comparison, we can specify a third-party file comparison 
tool (such as WinMerge) that handles side-by-side comparisons between versions. In Program History, we can 
manually or automatically commit new versions and clear the program history. 

File Comparison Options 

By default, Enterprise Guide offers a very basic view of your programôs changes when you click Changes on your 

program toolbar. You can also select up to two versions of a program in the history dialog box and see a basic 
highlight of the changes. 

Enterprise Guide also supports any number of third-party file comparison tools for a richer experience, including side-
by-side comparisons and more robust navigational controls. You can use any third-party tool you want, but here are a 
few that you can try: 

¶ WinMerge 

¶ KDiff 3 

¶ Beyond Compare 3 

Specifying a Path to the File Comparison Tool 

Once you have installed your third-party file comparison tool of choice, you need to tell Enterprise Guide which file 
comparison tool you are using. Navigate to Tools > Options > File Comparison and select your installed 
comparison tool from the drop-down list (Figure 25). If you have installed one of the tools from the list, the path to the 

tool is already filled in for you. You need to specify the path yourself if you installed the comparison tool in another 
location on your computer or if you installed another third-party tool that is not listed. 



15 

 

Figure 25: File Comparison Options 

Program History Options 

By default, the new Program History feature is enabled in Enterprise Guide so that you can manually commit changes 
to your programs. If you select Tools > Options > Program History (Figure 26), you can perform these tasks: 

¶ enable or disable the program history 

¶ choose to manually or automatically commit changes to your programs 

¶ clear your entire program history 






