
1

 Paper 1854-2014

Exporting formulas to Excel using the ODS ExcelXP tagset
Joseph K Skopic, Federal Government, Washington, DC

ABSTRACT

SAS® can easily perform calculations and export the result to Microsoft Excel in a report. However, sometimes you
need Excel to have a formula or a function in a cell and not just a number. Whether it’s for a boss who wants to see a
SUM formula in the total cell or to have automatically updating reports that can be sent to people who don’t use SAS
to be completed, exporting formulas to Excel can be very powerful. This paper illustrates how, by using PROC
REPORT and PROC PRINT along with the ExcelXP tagset, you can easily export formulas and functions into Excel
directly from SAS. The method outlined in this paper requires Base SAS® 9.1 or higher and Excel 2002 or later and
requires a basic understanding of the ExcelXP tagset.

INTRODUCTION

This paper will introduce using the ODS ExcelXP tagset to export formulas into Excel instead of just values from SAS
using the REPORT and PRINT procedures. You may ask, “If SAS can perform all the calculations that I need, why I
would want to export a formula into Excel and perform the calculation there?” There could be many reasons you want
to do this including a supervisor who just likes to see the SUM formula in total lines or the need for a dynamically
updating workbook. This second reason is the one that originally interested me in this subject, I needed to produce a
series of reports on a bi-weekly basis that would be filled with to-date information which would then be sent to 15
operating divisions to be completed with projections and returned. I could have programmed an Excel Macro to fill in
all the total lines so they would automatically calculate, but then I would have to remember to run the Macro on each
workbook every two weeks. I hoped there was an easier way to do this using SAS and that’s when I found the
ExcelXP tagset.

SAMPLE DATA

For the purpose of this paper I put together a short example to illustrate the technique of exporting formulas into
Excel. In the example there are four operating divisions and we are given the number of employees (Num_Emp) and
the total salary of all the employees in each division (Total_Sal). We are then going to calculate the average salary
(Avg_Sal) in each division and export the results into Excel.

DATA Staffing;
 INPUT Unit $ Num_Emp Total_Sal;
 DATALINES;
Sales 5 250000
Manufacturing 20 700000
Engineering 7 560000
Support 8 600000
;
RUN;

DATA Staffing;
 SET Staffing;
 Avg_Sal = Total_Sal/Num_Emp;
RUN;

ODS tagsets.ExcelXP PATH='C:\Users\Desktop' FILE='Staffing.xml'
 STYLE=analysis;

PROC REPORT DATA=Staffing NOWD;
 COLUMNS Unit Num_Emp Total_Sal Avg_Sal;
RUN;

ODS tagsets.ExcelXP CLOSE;

2

The first DATA step inputs the sample data, then in the second DATA step the average salary is calculated; finally
using PROC REPORT and ODS the information is exported to Excel. This produces a very simple report that shows
the input information along with the calculated average salary.

Display 1. Excel export #1

Looking at the average salary field in cell D2 we see that SAS exported the value calculated in the second DATA
step, but what if you wanted to see the formula calculating the average and not just the value?

Display 2. Excel export #1 detail

NOTE: If you use an .xls or .xlsx file extension you may get a warning when opening the Excel file “The file you are
trying to open is in a different format than specified…. Do you want to open the file now?” respond yes and it should
not cause any issues. This is because the ExcelXP tagset actually creates a XML file even if you call for an .xls or
.xlsx file in ODS.

BASICS OF EXPORTING FORMULAS

For the purpose of this example I am going to assume that you have a basic understanding of how the ExcelXP
tagset works. The ExcelXP tagset is a very powerful tool which many options and attributes but the one I am going to
use is the TAGATTR= style attribute. The TAGATTR= style attribute is used to send Excel instructions into cells.

The syntax to export a formula using the TAGATTR= style attribute is “formula: ” after the equals with the formula
you want exported placed after the colon before the closing quotation mark. In the example to export the average
salary calculation as a formula I added the formula to calculate the average salary with the TAGATTR= style attribute.

tagattr="formula:RC[-1]/RC[-2]"

I then added this new code to the PROC REPORT using a DEFINE statement and STYLE option for the Avg_Sal
variable and reran the code.

ODS tagsets.ExcelXP PATH='C:\Users\Desktop' FILE='Staffing.xml'
 STYLE=analysis;

PROC REPORT DATA=Staffing NOWD;
 COLUMNS Unit Num_Emp Total_Sal Avg_Sal;
 DEFINE Avg_Sal / STYLE={tagattr="formula:RC[-1]/RC[-2]"};
RUN;

ODS tagsets.ExcelXP CLOSE;

3

The output in Excel looks the same on the surface.

Display 3. Excel export #2

But looking again at the average salary field in cell D2 this time we see that cell contains the actual formula for the
average salary calculation and not just the value. So now if the number of employees or total salary were changed
the average salary would automatically recalculate in Excel. This same method can also be used for many other
formulas and functions in Excel.

Display 4. Excel export #2 detail

This same method can be used in PROC PRINT to produce the same output. In PROC PRINT you would use a VAR
statement along with the style option to define the variable to export a formula.

PROC PRINT data=Staffing noobs;
 var Unit Num_Emp Total_Sal;
 var Avg_Sal / style={tagattr="formula:RC[-1]/RC[-2]"};

run;

R1C1 REFERENCE STYLE

You must use the R1C1 reference style in any formula exported from SAS using the ExcelXP tagset, using the more
familiar A1 style with will not work. This reference style refers to the row R and column C number so R1C1 is the
same as A1. If no number is put after the R or C then it will use the row or column started in. Using [] around the
number makes the reference relative, if not it is absolute (similar to using $), for example if you place a formula into
cell B2, the relative reference referring to cell A1 would be R[-1]C[-1] or the absolute reference referring to cell C3
would be R[1]C[1]. Another example is a formula using R1C1 reference style SUM(R[-5]C:R[-1]C) would be the sum
of the 4 cells above the formula cell. I find that it is often helpful to export the report to Excel without formulas, lay out
my formulas in the Excel report, and then go back to build the formulas in SAS.

MISSING VALUES

The ExcelXP tagset will only export a formula into the cell in Excel if the observation in SAS for the chosen variable
has a non-missing value, for example 0 not “.” This can be used to create a dummy variable in a data set that will be
filled with formulas when exported so you can control which cells receive a formula. For example you could place any
non-missing value where you want a formula and a missing values for the where you don’t want a formula.

This method of using missing values could be applied if I wanted to know what the average salary would be after a
20% pay raise but only for sales personnel. I can build a new variable (Pay_Raise) in SAS but instead of performing
the calculation in SAS I will use an IF/THEN statement to put a non-missing value in the new variable for the Sales

4

observation and leave the rest of the observations as missing.

IF Unit = 'Sales' THEN Pay_Raise = 0;

I will then DEFINE the new variable as part of the PROC REPORT and use the TAGATTR= style attribute to export
the formula used to calculate the average salary after a 20% pay raise.

 DEFINE Pay_Raise / STYLE={tagattr="formula:RC[-1]*1.2"};

Now looking at the output in Excel you see that the formula was only exported for the Sales unit which had a non-
missing value but the remaining units which had missing values for Pay_Raise did not receive the formula.

Display 5. Excel export #3

CONCLUSION
In a work environment requiring that Excel tables have formulas and calculations that automatically update. You can
easily meet this requirement using SAS without resorting to updating Excel files manually or utilizing Excel Macros by
using the ExcelXP tagset.

ACKNOWLEDGEMENTS
The assistance provided by Elizabeth Schreiber for both this paper and my journey of learning SAS has been greatly
appreciated.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Joseph Skopic
jskopic@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

	Abstract
	Introduction
	SAMPLE DATA
	BASICS OF EXPORTING FORMULAS
	run;
	R1C1 Reference Style
	Missing Values
	Conclusion
	ACKNOWLEDGEMENTS
	Contact Information

