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ABSTRACT 

Inference of variance components in linear mixed effect models (LMEs) is not always straightforward. I introduce and 
describe a flexible SAS

®
 macro (%COVTEST) that uses the likelihood ratio test (LRT) to test covariance parameters 

in LMEs by means of the parametric bootstrap. Users must supply the null and alternative models (as macro strings), 
and a data set name. The macro calculates the observed LRT statistic and then simulates data under the null model 
to obtain an empirical p-value. The macro also creates graphs of the distribution of the simulated LRT statistics. The 
program takes advantage of processing accomplished by PROC MIXED and some SAS/IML

®
 functions. I 

demonstrate the syntax and mechanics of the macro using three examples. 

INTRODUCTION 

Mixed models are a popular tool among statistical modellers. This is evidenced by the fact that there are five 
SAS/STAT

®
 procedures available to fit mixed models in SAS

®
 9.3: PROC GLM (sort of), PROC MIXED, PROC 

HPMIXED, PROC GLIMMIX and PROC NLMIXED. To keep on track, this presentation will focus entirely on linear 
mixed models even though the ‘problem’ described below also affects linear, generalized linear, and nonlinear mixed 
effects models.  

Inference of variance components in linear mixed effect models (LMEs) is generally straightforward for simple 
designs. When the data are balanced and the expected mean squares can be arranged in such a way as to isolate 
the effect of interest, the ratio of these mean squares will have an exact F distribution. 

However, inference for variance components can be challenging for more complicated cases (e.g. unusual designs, 
data that involve imbalance, missing cells, incompletely crossed factors, etc.) because an exact F-test cannot be 
constructed. Instead the Wald, score or likelihood ratio test (LRT) are usually turned to. But when variance 
components are constrained to be nonnegative and the null hypothesis lies on the boundary of the parameter space 

(e.g.     
   ), the classical null distribution for all of the above tests no longer holds - see for example Stram and 

Lee (1994, 1995).   

Under these constrained conditions, the distribution of the LRT statistic has been given much attention, so I will focus 
on it in particular. At best the distribution of the LRT statistic is approximated by a mixture of chi-square distributions 
with different degrees of freedom (Stram and Lee ibid, Verbeke and Molenberghs 2000). At worst it cannot be 

described analytically. What then? 

One solution is to approximate the sampling distribution of the LRT statistic using simulation – namely the parametric 
bootstrap (Efron 1979). The idea is to first calculate the LRT statistic using the observed data. That is, we calculate 
the value of -2logLML (or -2logLREML) for the reduced (i.e. null) and full (i.e. alternative) models, and then take the 
difference. We then simulate many datasets using the estimated parameters from the reduced model, and for each 
simulated dataset, estimate both models and calculate the LRT statistic. Naturally the distribution of the simulated 
LRT statistic forms the required reference distribution because the datasets were generated under the null 
hypothesis. The p-value for the LRT is estimated using the proportion of the simulated LRT statistics that exceed the 
observed LRT statistic.      

Taking advantage of PROC MIXED, ODS and SAS/IML
®
, I present a macro program to conduct the parametric 

bootstrap in SAS
®
. I use three linear model examples to demonstrate the mechanics and capabilities of macro. 

THE %COVTEST MACRO 

The %covtest macro has three components: 

First, the %str() macro function is utilized to define the full model (m1) that represents the model under the alternative 
hypothesis. Usually this model would have already been fit successfully and the user was content with its fit, model 
diagnostics, etc. To define m1, the user copies the relevant lines from some successful PROC MIXED code, pastes it 
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between the parentheses of %str(), and removes any unnecessary options. Since the %covtest macro only requires 
the final value of the -2logLML (or -2logLREML), most procedure options are unnecessary and will only slow (or 
potentially crash) macro processing. 

Second, the user must define the reduced model m0 that represents the model with the null hypothesis imposed. It is 
very important that m0 is a nested version of m1 because (a) it is a requirement for the LRT, and (b) little error 
checking exists in the macro to verify it. Here nested means that m1 can be transformed into m0 by imposing a set of 
linear constraints on the parameters of m1. The null model may have one, some or all of the random (and/or 
repeated) statement terms removed from full model. Fixed terms can be removed too, but only when using maximum 
likelihood as the estimation method.  

Third, the user must call the %covtest macro which includes m1 and m0 as arguments, and it also requires the user 
to specify a dataset name. I recommend including only those variables in the dataset that are absolutely necessary 
because any observations with at least one missing value get removed near the start of the macro. Optionally the 
user may also supply the estimation method (REML or ML), the number of bootstrap simulated samples, a starting 
seed (so results can be repeated), and a particular graphing option (described below). 

Now let’s look at a few examples...  

EXAMPLE 1 

Consider the simple hierarchical linear model taken from Example 3.4 of Littell et. al. (2006). The “semiconductor 
data” involve measurements on the thickness of the oxide layer on silicon wafers.  The wafers come from 8 different 
randomly chosen lots, with 3 random wafers selected per lot, and 3 measurements taken at random sites on each 
wafer.  

The model is:                        where      is the thickness of the oxide layer, and               

                 index the lots, wafers, and sites on the wafers respectively. Also,          
  ,             

  , and 

              , with all three of these random variables being independent and identically distributed. 

Say we wish to test that the wafer-to-wafer variation is zero:      
    versus      

   . 

Because the design is simple and balanced, an exact F-test is available to test   . So if we fit PROC GLM or PROC 

MIXED (with method=type1 or type3), we see that    
       , and that F=9.56 and p<0.0001 (i.e. the wafer-to-wafer 

variation is significant). A comparison with the %covtest macro now follows. 

First, somewhere early in the SAS
®
 code we need to point to the location where the macro is stored: 

%include 'G:\...\covtest macro v2013.1.SAS'; 

Then we need to set-up the full and null models:  

*full model; 

%let m1=%str( 

  class lot wafer site; 

  Model Thick=; 

  random lot wafer(lot); 

); 

 

*null model; 

%let m0=%str( 

  class lot wafer site; 

  Model Thick=; 

  random lot; 

); 

The dataset name is called “semicon”, so here’s how to invoke the macro: 

%covtest(&m1, &m0, ds_name=semicon, estm=REML, nsim=1000, seed=123, mixture=T); 

 

The output is in four parts. The first part (Figure 1.1) shows the distribution of the LRT statistics (denoted lambda) 
simulated under the null hypothesis, and it also charts the observed LRT statistic as a pink vertical line. We see from 
Figure 1.1 that the observed LRT is far out in the right tail of the reference distribution (i.e. an unusually large value). 
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Figure 1.1. Distribution of the Simulated LRT Statistic (lambda), and the Observed LRT Statistic (vertical line) 
for Example 1 

 

The second part (Figure 1.2) shows the empirical cumulative distribution function (CDF) for the simulated LRT 
statistics. We see that about 50% of them are zero, which is not unusual for cases where the variance component(s) 
in the alternative model are constrained to be nonnegative. 

 

 

Figure 1.2. Empirical CDF for the Simulated LRT Statistic (lambda) for Example 1 

 

The third part (Figure 1.3) is a probability-probability plot on the p-value scale (Pinheiro and Bates 2000). The 
nominal p-values for the simulated LRT statistics are plotted against the empirical p-values. The purpose of this plot 
is to show how well a nominal LRT distribution matches the empirical one. The nominal p-values in the plot can be 
calculated two different ways, which is what the last argument of the macro controls. With mixture=T (the default), the 
macro uses a 50:50 mixture of chi-square distributions having q0 and q1 degrees of freedom (where q is the number 
of covariance parameters in each model). With mixture=F, the macro uses a simple chi-square distribution with k df 
(where k is the difference in the total number of parameters (fixed + covariance) between the two models). Often 
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neither will be perfect but the latter situation would be more appropriate for cases where the covariance parameter 
being tested is unconstrained (e.g. a correlation coefficient). For this example using a chi-square mixture of 1 and 2 df 
for the nominal distribution, we see from Figure 1.3 that the nominal p-values are consistently too large (i.e. 
conservative). 

 

 

Figure 1.3. Nominal p-values (nom_p) for the Simulated LRT Statistic Plotted Against the Empirical p-values 
(emp_p) for Example 1 

 

The final part of output shows the observed LRT statistic and the empirical p-value for testing   . From Output 1.1 we 

see that none of the simulated test statistics exceed the observed one, which is consistent with the exact F-test. 

 

The observed LRT statistic and associated simulated/empirical p-value via 

parametric bootstrap 

 

Observed LRT statistic  Empirical p-value 

37.1096    0 

 

Output 1.1. Observed LRT Statistic and Empirical p-value for Example 1 

EXAMPLE 2 

This next illustration is another type of hierarchical model, but this time taken from example 58.5 of the online help for 
PROC MIXED. 

The observed responses are replicate assay results, expressed in percent of label claim (y), at various shelf ages, 
expressed in months (x). The desired mixed model involves three batches of product that differ randomly in intercept 
(initial potency) and slope (degradation rate). 

The model is:                           where                      index the batches and observations 

within each batch.  

Also   
  

  
     

 
 
      where     

  
    

     
   and            .   

Say we wish to test whether the among-batch variation is negligible:      
    versus      

   . Note also that with 

  
    there is no need for    . So m1 has three covariance parameters and m0 has only one. 
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We could fit the above model and test    using PROC GLIMMIX: 

proc glimmix data=rc; 

 class Batch; 

 model Y = Month / s; 

 random int Month / type=un sub=Batch; 

 covtest . 0 0 / df=1,3; *testing both sigma2b and sigmaab zero; 

run; 

Using PROC GLIMMIX,     
             
            

  and the observed LRT statistic is 8.67 with p=0.0186 using a 50:50 

mixture of    and    as the null reference distribution. Another possibility is to try a 50:50 mixture of    and    - it 

yields p=0.0082. 

Let’s compare the PROC GLIMMIX LRT results with the %covtest macro. Setting up m1 and m0, and then invoking 
the macro is straightforward, but notice how the /s option is removed from both m1 and m0: 

*full model; 

%let m1=%str( 

  class Batch; 

  model Y = Month; 

  random Int Month / type=un sub=Batch; 

); 

 

*null model; 

%let m0=%str( 

  class Batch; 

  model Y = Month; 

  random Int / type=un sub=Batch; 

);  

 

%covtest(&m1, &m0, ds_name=rc, estm=REML, nsim=1000, seed=123, mixture=T); 

 

For this example, during implementation the log window indicates a warning that approximately 50 of the model fits to 
the simulated data failed to converge, which is generally not a problem unless they represent a large fraction of the 
targeted number of simulations. The output in this case will be based on approximately 950 simulations instead of the 
requested 1000. Note also that the empirical p-value remains valid at only three significant digits with n ≈ 1000. 

The output illustrates that:  

(i) the observed LRT statistic falls in the tail of the simulated distribution (Figure 2.1),  

(ii) very few (maybe none) of the simulated LRT statistics are zero (Figure 2.2),  

(iii) the nominal (1,3) mixture-based p-value is slightly too low for the full range of empirical p-values (Figure 2.3), 
and 

(iv) the p-value is (correctly) higher than the nominal p-value provided by PROC GLIMMIX (Output 2.1). 
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Figure 2.1. Distribution of the Simulated LRT Statistic (lambda), and the Observed LRT Statistic (vertical line) 
for Example 2 

 

 

Figure 2.2. Empirical CDF for the Simulated LRT Statistic (lambda) for Example 2 
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Figure 2.3. Nominal p-values (nom_p) for the Simulated LRT Statistic Plotted Against the Empirical p-values 
(emp_p) for Example 2 

 

 

The observed LRT statistic and associated simulated/empirical p-value via 

parametric bootstrap 

 

Observed LRT statistic  Empirical p-value 

8.66894    0.054679 

 

Output 2.1. Observed LRT statistic and empirical p-value for Example 2 

 

Given the choice, I would be more comfortable using the empirical p-value (0.055) rather than one based on a 
nominal distribution that is less reliable. 

EXAMPLE 3 

This final example, taken from Stroup (1989), is outlined in example 58.1 from the PROC MIXED online help. The 
data arise from a balanced split-plot design with the whole plots arranged in a randomized complete block design. 
The whole-plot factor A has three levels, and the split-plot factor B has two levels. I will also pretend that A and hence 
A×B are random effects. The model is:                                    where              

             index the blocks, and the levels for factors A and B. As usual the random effects are mutually 

independent and normally distributed:          
  ,          

  ,               
  ,               

   and 

            . 

The main objective is to test whether the variance component associated with A is significant:      
    versus 

     
   . Unlike the situation when A is fixed, an exact test no longer exists, so we’ll use the %covtest macro. I’ll 

use two random statements, just to show that the macro can handle up to three: 
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*full model; 

%let m1=%str( 

  class A B block; 

  model Y = B; 

  random int A / subject=block; 

  random int B / subject=A; 

); 

 

*null model; 

%let m0=%str( 

  class A B block; 

  model Y = B; 

  random int A / subject=block; 

  random B / subject=A; 

);  

 

%covtest(&m1, &m0, ds_name=sp, estm=REML, nsim=1000, seed=125, mixture=T); 

 

The results (graphs not shown) reveal that the variance component   
  is non-significant (Output 3.1). 

 

 

The observed LRT statistic and associated simulated/empirical p-value via 

parametric bootstrap 

 

Observed LRT statistic  Empirical p-value 

0.56458    0.179 

 

Output 3.1. Observed LRT Statistic and Empirical p-value for Example 3 

 

The normal care should be taken when, as in this example, testing factors in the presence of an interaction. Note that 
in the construction of m0 we dropped only factor A from m1 and kept the A×B interaction. What has been achieved? 
The interaction fills-in for the absence A, and acts as a nested effect. We are not testing the “main effect” A (i.e. all 
levels of A have the same expected y) because the influence of A continues to operate (albeit via a different 
mechanism) through the A×B interaction. In fact, because the parameterization of PROC MIXED is not full rank, the 
total model sums of squares (had we calculated them) is no different from before.  What has changed is the 
covariance structure imposed upon y, and the fitted -2logLML (or -2logLREML). When the true goal is to test for the 
“main effect” of A for a model involving both A and A×B, an estimable function (i.e. contrast statement) is more 
appropriate. See McLean et.al. (1991) and Lencina et.al (2005) for further discussion.  

I have one last comment that is particularly relevant to experimental designs (i.e. controlled experiments), where “unit 
structure” such as blocks, plots, etc. are often modelled as random effects. The %covtest macro can be used to test 
these, but keep in mind that (a) doing so is not the norm, and more importantly (b) these effects should be retained in 
the model (significant or not) when testing other factors to ensure that the model faithfully portrays the randomization 
of the experiment.  

CONCLUSION 

The %covtest macro is an easy-to-use macro for SAS/STAT
®
 users familiar with fitting linear mixed models. Its main 

benefit is that it avoids reliance on a null reference distribution for the LRT statistic that may not be suitable. This type 
of situation arises for data that are “messy” or when trying to fit complex models. 

Although not shown in the examples above, the macro will work for testing combinations of covariance parameters 
(i.e. removing several effects from the alternative model), and for simultaneously testing combinations of fixed effects 
and covariance parameters (just be careful to use method=ML for the latter case).  

In addition to normal bug fixing, future work on the macro may include improving the overall coding efficiency and 
enhancing the handling of missing values. Fitting complex models and/or models to large data sets is the chief 
challenge because of the iterative nature of the macro. One potential solution involves approximating the LRT and 
estimating the parameters with quadratic programming as outlined in Shaw and Geyer (1997). Another solution 
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involves allowing the macro to switch to PROC HPMIXED for difficult problems. To accommodate generalized linear 
mixed models (GLMMs), a slightly different macro would be necessary because of how the %covtest programming 
simulates data under the null hypothesis, and the oft-inaccessible true log likelihood for GLMMs. 

My hope is that in the not-too-distance future, the parametric bootstrap will be a built-in component to an existing 
SAS/STAT

®
 procedure (PROC GLIMMIX?, PROC PLM?), making the %covtest macro unnecessary. But until then, it 

may prove helpful the next time you find yourself testing the significance of variance components in a linear mixed 
effects model. 

Those wishing to use the %covtest macro can download it here: http://www.for.gov.bc.ca/hts/strat_analysis.htm 
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