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ABSTRACT 

Duration and severity data arise in several fields including biostatistics, demography, economics, 
engineering and sociology. SAS procedures LIFETEST, LIFEREG and PHREG are the 
workhorse for analysis of time to event data in applications in biostatistics. Similar methods apply to 
the magnitude or severity of a random event, where the outcome might be right, left or interval 
censored and/or, right or left truncated. All combinations of types of censoring and truncation 
could be present in the data set.  Regression models such as the accelerated failure time model, the 
Cox model and the non-homogeneous Poisson model have extensions to address time-varying 
covariates in the analysis of clustered outcomes, multivariate outcomes of mixed types, and recurrent 
events.  We present an overview of new capabilities that are available in the procedures QLIM, 
QUANTLIFE, RELIABILITY and SEVERITY with examples illustrating their application using 
empirical data sets drawn from easily accessible sources. 

 

INTRODUCTION 

In its simplest form survival data comprise a time to a terminal event T measured from a time origin  
t=0, time-invariant covariates x and an indicator δ  that labels whether or not T was actually 
observed in the sampling unit by the end of the observational period U.  If T >U the survival time is 
right censored at U and we define δ =0; otherwise, when T is observed, T≤ U and we set δ =1. The 
two traditional survival models are the Cox proportional hazards model for the hazard function h of 
T given by 0( | ) ( )exp( )h t h t β′=x x  where the baseline hazard 0h  is left unspecified, and the 
accelerated failure time (AFT) model given by logT β σε′= +x  where the random variable ε has a 
fully specified parametric distribution independent of x.  

In the AFT model, the parameters are related to the conditional mean ( | )E T x  or to the conditional 
p-th percentile, ( )pt x , 0< p<1.  For example, the Weibull distribution for T (that is, ε is extreme 

value), has survival function ( | ) exp( ( / ( )) ).S t t γθ= −x x With the parameterization log ( )θ β′=x x  we 

have ( | ) exp( ) ( 1)E T β σ′= Γ +x x  and ( )( ) exp( ) log(1 )pt p σβ′= − −x x  where 1σ γ −= .  In the lognormal 

distribution for T (that is, ε is standard normal) we have ( )1/( | ) log( / ( )) ,S t t σθ= Φ −x x log ( )θ β′=x x ,   
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2( | ) exp( ½ )E T β σ′= +x x  and { }1( ) exp ( )pt pβ σ −′= + Φx x .  The Weibull is the prototype distribution 

with the proportional hazard (PH) form 1( | ) exp( )h t t γγ γ β− ′= −x x . In both examples the 
parameterization is through the scale ( )θ x .  

The Burr distribution is an example of a mixed proportional hazards model in which conditional on 
( ,νx ) the hazard has the form 0( | , ) ( )exp( )h t h tν ν β′=x x  where 0( )h t is the Weibull hazard and the 
frailty ν  is Gamma distributed with shape α and mean 1. With some re-parameterization the 

survival function is ( )( | ) 1 ( / ( ))S t t
αγθ

−
= +x x  and ( | ) exp( ) (1 ) ( )/ ( )E T β σ α σ α′= Γ + Γ − Γx x , σ α< ,

{ }1/( ) exp( ) (1 ) 1pt p
σαβ −′= − −x x  where 1σ γ −= . Two special cases of the Burr are the Pareto( 1)γ =

and the log-logistic ( 1)α = (Gardiner et  al, 2014). 

 

Time-varying covariates 

Extending these models to accommodate time-varying covariates (TVC) greatly expands their reach 
in applications. In this paper we demonstrate through examples how this can be achieved with the 
procedures PHREG and SEVERITY. Obviously there are some restrictions. The TVC should be 
piecewise constant. In practice, in addition to the event data (T, δ ) a single TVC ( )x t would have 
observed values at times 0 1 10 .M Mt t t T U t−= < < < < ∧ ≡  The points { : 0, , }mt m M=  are now 
fixed. The initial value (0)x  remains constant in the interval 1[0, )t , and at 1t  it is updated to 1( )x t  
which remains constant in 1 2[ , )t t and so on.  In the last interval the value 1( )Mx t − applies until end of 
follow up at the event time T or censoring time U whichever is observed. The data set describing 
these data will have M records for the subject (M might vary by subject), with variables for the left 
and right endpoints of the intervals, covariate, and event status at the right endpoint. For each 
intermediate record for 1[ , )m mt t− , T is considered left-truncated at 1mt −  and  right-censored at mt  
(with indicator 0mδ = ), except for the last record where the event status recorded in δ  will become 
operational, that is .Mδ δ=   The same data processing can be applied to examples with several TVCs 
under consideration, with each record capturing data on updated values of at least one covariate. 

 

Parametric models 

With the notation that ( )tx  includes the covariate history through time t, the definition of the 
hazard function is formally 0( | ( )) lim [ | , ( )]/th t t P t T t t T t t t∆ ↓= ≤ < + ∆ ≥ ∆x x . The observed data on a 

subject is ( , , )T δ x  where { ( ), 0, , 1}mt m M= = −x x  . Assume conditional independence of (T, U), 
given x and strict exogeneity of  x.  Denoting a conditional distribution by ( | )D ⋅ ⋅ the strict 
exogeneity assumption is 1 1 1( | , ) ( | , ( )), 1, ,m m mD T T t D T T t t m M− − −≥ = ≥ =x x  (Wooldridge, 2010). 
The contribution to the log-likelihood of a generic datum ( , , )T δ x is given by
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( ) ( )1 1 11
log [ | , ( )] log ( | ( )M

m m m M M Mm
P T t T t t h t tδ− − −=

> ≥ +∑ x x . The term in the summation is

1
1( | ( )m

m

t

mt
h u t du

−
−−∫ x . For observations from a random sample, there is a second summation over 

subjects with appropriate subscripting, { , , ( ), 0, , 1}i i i im iT t m Mδ = −x  . We make three comments. 

(1) Knowing the hazard function in parametric form does in principle provide an avenue for 
estimation of parameters via maximum likelihood. In our application to follow, we use PROC 
SEVERITY to estimate the Weibull and lognormal AFT models, and the Burr and its special 
cases, Pareto and log-logistic. 

(2) Assuming proportional hazards, 0( | ( )) ( )exp( ( ) )h t t h t t β′=x x the log-likelihood simplifies to  

( ) ( )
1

0 1 1 01
( ) exp( ( ) ) ( ) log ( )m

m

tM
m M M Mm t

h u du t t h tβ δ β
−

− −=
′ ′− + +∑ ∫ x x . 

For the Weibull, 1
0 ( )h t t γγ −= . Thus we obtain a log-likelihood parameterized by( , )β γ . Again, 

PROC SEVERITY can be used for estimation. 

(3) Assume 0h to be piecewise constant: 0 1( ) , [ , )j j jh t t a aλ −= ∈ 1, ,j J=   with a fixed partition of the 

time axis, 0 1 10 J Ja a a a−= < < < < = +∞ .  The distribution of T is called the piecewise 

exponential. There is an advantage of using the parameterization log( ), 1, ,j j j Jα λ= =  because 

of the lack of log concavity of the log-likelihood function in jλ  when 1[ , )j ja a−  does not capture 

observed event times. Maximum likelihood estimation provides estimates for 1, ( , , )Jβ α α=α  .  

The BAYES option in PROC PHREG is a trick to obtain the maximum likelihood estimates 
because they are the default starting parameter values for the MCMC computations for the 
posterior distribution of ( , )β α . The entire Bayes machination can be suppressed.  

 

Semi-parametric models 

The investment in structuring the data set in multiple record formats for TVCs pays off very well 
when estimating the Cox proportional hazards model 0( | ( )) ( )exp( ( ) )h t t h t t β′=x x . The counting 
process style input in PROC PHREG exploits precisely this format. The baseline hazard 0h is 
unspecified. The aforementioned likelihood derivation must be replaced by the partial likelihood 

given by 
( )

1 0

1

( )exp( ( ))

( )exp( ( ))

iN t

n i i
ni t

k kk

Y t t
Y t t

β
β

∆

= >

=

 ′ 
 

′  
∏ ∏

∑
x

x
where ( ) [ , 1], ( ) [ , ]i i i i i iN t T t Y t T t U tδ= ≤ = = ≥ ≥  

are respectively, the observed event indicator and at-risk indicator: In the i-th subject ( )iN t =1 if the 
event has occurred by time t ; otherwise ( )iN t =0. Also ( )iY t =1 if the i-th subject is at risk of the 

event at time t−; otherwise ( )iY t =0. 
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APPLICATION 

The Panel Study of Income Dynamics (PSID) which began in 1968 is the longest running 
longitudinal household survey in the world. Data were collected at each wave on socioeconomic 
factors including health, education, marriage and detailed information on childbearing. For our 
illustration we use a data set assembled by Lillard and Panis (1996, 2003) of 3371 respondents on the 
duration (DUR) of their first marriage with a modification by Rabe-Hesketch and Skrondal (2012) 
that describes DUR as a continuous variable measured in years from the start of marriage to divorce 
or end of follow up. Approximately 31% of the marriages ended in divorce. Censoring may occur 
due to death of a spouse, or if the couple were still married at their last interview. Covariates for our 
analysis are the time-fixed factors at marriage: race of husband/wife (RACE), husband’s education 
(HISEDUC), and the difference in age between husband and wife (AGEDIFF). The categories are 
reflected in the following formats: 

proc format; 

value agediff low-<-10='She older'  
    -10-<10, 10='Within 10 years'  
    10<-high='He older'; 
value educ low-<12='<12 yrs' 12-<16='12-<16 yrs' 16-high='>=16 yrs'; 
value race 1='Both White' 2='Both Black' 3='Black/White'  4='White/Black'; 
run; 

During the marriage the number of children ( ( )x t =NUMKIDS) born is incorporated in the data set 
DIVORCE_LG as multiple records per couple identified by ID.  The intervals [TSTART, TSTOP) 
describes the dynamics of change in NUMKIDS. Initially, at TSTART=0 we have NUMKIDS=0. 
Subsequently, at the birth of a child at TSTOP—time elapsed since marriage in years, NUMKIDS 
increments by 1.  

Table 1: Duration of marriage and child birth data for three couples 

ID DUR TSTART TSTOP flag rctime lttime numkids divorce 
11 0.7670 0.0000 0.7670 0 0.7670 .  0 0 
11 32.5120 0.7670 32.5120 0 32.5120 0.7670 1 0 
11 34.9430 32.5120 34.9430 1 34.9430 32.5120 2 0 
13 2.5850 0.0000 2.5850 0 2.5850 .  0 0 
13 2.8702 2.5850 2.8702 1 .  2.5850 1 1 
15 18.1840 0.0000 18.1840 1 .  .  0 1 
 

In table 1, DUR=TSTOP is the current duration of marriage. Couple ID=11 had two children. 
Their first child was born at 0.767 years, their second child at 32.512 years and their marriage was 
either intact or a spouse had demised (DIVORCE=0) at last follow up at 34.943 years. Couple 
ID=13 had one child at 2.585 years and divorced (DIVORCE=1) at 2.8702 years. The marriage of 
couple ID=15 who had no children lasted 18.184 years, ending in divorce. FLAG is an indicator for 
last record. RCTIME and LTTIME will be described later. The semi-parametric analysis is carried 
out in PHREG with the following syntax. 
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ods output hazardratios=HRS; 
proc phreg data=c.divorce_lg; 
class agediff(ref='Within 10 years')  race(ref='Both White') 
hiseduc(ref='12-<16 yrs')/param=ref; 
model (tstart, tstop)*divorce(0)= race agediff hiseduc numkids; 
format race race. agediff agediff. hiseduc educ.; 
hazardratio numkids/cl=wald; 
hazardratio race/diff=ref cl=wald; 
hazardratio agediff/diff=ref cl=wald; 
hazardratio hiseduc/diff=ref cl=wald; 
run; 

Parameter estimates from maximum partial likelihood estimation are in Table 2. 

Table 2: Analysis of maximum likelihood estimates 

Parameter  Class DF Parameter 
Estimate 

Standard 
Error 

Chi-Square Pr > ChiSq Type 3 

race Black/White 1 0.45057 0.10630 17.9657 <.0001 <.0001 
race Both Black 1 0.15300 0.10019 2.3322 0.1267 
race White/Black 1 0.33244 0.09939 11.1872 0.0008 
agediff He older 1 –0.27856 0.21665 1.6532 0.1985 0.0716 
agediff She older 1 0.48829 0.26127 3.4927 0.0616 
hiseduc <12 yrs 1 –0.30615 0.06824 20.1275 <.0001 <.0001 
hiseduc >=16 yrs 1 –0.27797 0.10568 6.9186 0.0085 
numkids   1 –0.11018 0.02208 24.8956 <.0001 <.0001 
 

The default Wald tests for each of the four effects in the model are displayed in column “Type3”.  
Age differences do not appear to matter overall (p=.072, df=2) on the hazard for divorce. The 
negative coefficient for numkids indicates that the hazard for divorce is lower in couples with more 
children. We cannot extrapolate this to a causal effect because the assumption of exogeneity of the 
TVC ( )x t is implausible.  Lillard (1993) comment on couples who face economic and marital 
problems might delay having children. The hazard for divorce influences the path of ( )x t . A more 
involved analysis would entail a multi-state model for child-bearing with forward flowing states 
0→1→2→…with exit to the terminal state, divorce (Hougaard, 2000). 

The HAZARDRATIO statement in PHREG is used to generate a table of hazard ratios and 95% 
Wald confidence intervals. The default results are in Table 3 and displayed graphically in Figure 1. 

 
proc sgplot data=HRS; 
scatter y=description x=hazardratio/xerrorlower=Waldlower 
xerrorupper=Waldupper markerattrs=(symbol=DiamondFilled size=8); 
refline 1 / axis=x; 
xaxis label="Hazard Ratio " min=0; 
yaxis label="Comparisons"; 
title "Hazard Ratio and Wald 95% CI "; 
run; 
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 Table 3: Hazard ratios and 95% confidence intervals 

Obs Description HazardRatio WaldLower WaldUpper 
1 numkids Unit=1 0.896 0.858 0.935 
2 race Black/White vs Both White 1.569 1.274 1.933 
3 race Both Black vs Both White 1.165 0.958 1.418 
4 race White/Black vs Both White 1.394 1.148 1.694 
5 agediff He older vs Within 10 years 0.757 0.495 1.157 
6 agediff She older vs Within 10 years 1.630 0.976 2.719 
7 hiseduc <12 yrs vs 12-<16 yrs 0.736 0.644 0.842 
8 hiseduc >=16 yrs vs 12-<16 yrs 0.757 0.616 0.932 

  

Figure 1:  Display of the hazard ratios of 95% confidence intervals  
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Parametric models  

We will use PROC SEVERITY to estimate Burr, Weibull and lognormal models. For each record 
we must define the right censoring time (RCTIME) and left-truncation time (LTTIME). If these 
variables have missing values it means that censoring and or truncation are not present. Note that 
SEVERITY will not permit the value 0 for LTTIME in the initial record of each couple. The value 0 
is operationally equivalent to a missing value for left-truncated times. See Table 1.  

SEVERITY currently does not support a CLASS statement and therefore to keep the same 
parameterization of the semiparametric model we must create indicator variables for race, agediff 
and hiseduc. They are shown in the SCALEMODEL statement which structures the scale ( )θ x as 
log ( )θ β′=x x  with an intercept. In principle SEVERITY can fit any parametric distribution that has 
a scale parameter. There are 10 pre-defined distributions, including the Burr, Weibull and lognormal. 
However, with assistance from the FCMP procedure one only needs to define the cumulative 
distribution and density functions, and then invoke the procedure within SEVERITY. See Gardiner 
et al. (2014) for details on fitting the Coxian distribution which is mixture of Erlang distributions. 

The following syntax fits five distributions declared in the DIST statement. Log-logistic was 
programmed in the FCMP procedure. The LOSS statement specifies TSTOP as the analysis 
variable. In table 1 we see that it is the current duration of the marriage (DUR) which may be left-
truncated and /or right censored, indicated by the options after the slash/. 

proc severity data=divorce_lg print=all outcdf=cdf; 
dist burr weibull logn pareto llogistic; 
loss TSTOP/rightcensored=rctime lefttruncated=lttime; 
scalemodel race_BW race_BB race_WB  heolder sheolder hedropout 
hecollege numkids; 
run; 

One interesting feature is the fit statistics generated for the parametric distributions. The fitted 
cumulative survival distribution function (CDF) ˆ( )S t can be defined in several ways. The full average 

is the mixture 1
1

ˆˆ ˆ( ) ( | ( ), )n
ii

S t n S t θ ω−
=

= ∑ x   where ˆ ˆ( ) exp( )i iθ β′=x x  and ω̂  denotes estimates of all 

parameters that are not associated with covariates (e.g., intercept, shape parameters). This can be 
potentially a very time-consuming computation if there are several continuous covariates. With the 
current application we had no concerns. There are <200 configurations of the covariates. Another 

choice of ˆ( )S t is the calculation at the mean 1
1

ˆ( )n
ii

nθ θ−
=

= ∑ x . SEVERITY allows for other choices 

with the DFMIXTURE option in the SCALEMODEL statement. Fit criteria (AIC, BIC, KS, CVM) 
compare the CDF to the empirical survival distribution function (EDF). The OUTCDF= option 
saves the results that can be used for plotting.  

Voluminous output is created by the above syntax. Only a small portion has been corralled in the 
Tables 4 and 5. From the ‘smaller the better criterion’ the Burr distribution fits the best. Because 
α σ< , it does not have a finite mean. 
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Table 4: Fit statistics for selected parametric distributions 

Dist –2 Log 
Likelihood 

AIC AICC BIC KS AD CvM 

Burr 10245 * 10267 * 10267 * 10344 * 8.00757 * 1447   496.42439 * 
Weibull 10391   10411   10411   10482   23.20500   735.22624 * 499.23054   
Logn 10287   10307   10307   10378   15.65472   961.08157   497.23254   
Pareto 10350   10370   10370   10441   14.06586   1040   496.74218   
LLogistic 10333   10353   10353   10424   19.06309   826.44920   497.95849   

Note: The asterisk (*) marks the best model according to each column's criterion. 
 

Table 5:  Maximum likelihood estimates for selected parametric distributions 

  Burr  Weibull  Lognormal  
Parameter  Class Parameter 

Estimate 
Standard 

Error∗ 
Parameter 

Estimate 
Standard 

Error∗ 
Parameter 

Estimate 
Standard 

Error∗ 
race Black/White –0.30385 0.11680 –0.56380 0.10964 –0.45325 0.12069 
race Both Black 0.07365 0.10282 –0.22831 0.10366 –0.06992 0.10902 
race White/Black –0.25721 0.10625 –0.43332 0.10226 –0.36453 0.10976 
agediff He older –0.10821 0.21169 0.34951 0.22467 0.14928 0.21046 
agediff She older –0.57429 0.29731 –0.52924 0.27080 –0.58613 0.28968 
hiseduc <12 yrs 0.19915 0.07475 0.39222 0.07009 0.30029 0.07410 
hiseduc >=16 yrs 0.32622 0.10340 0.27430 0.10978 0.32558 0.11198 
numkids   0.20475 0.02418 0.13281 0.02040 0.16431 0.02444 
intercept  1.54030  3.86197  3.53125  
sigma  0.53913  1.03598  1.59407  
alpha  0.17037      
∗ Default computed by procedure. See below. 

In all three models numkids is significant. Percentiles of the duration of marriage are obtained 
directly from the formula for ( )pt x . Keeping all other variables fixed, for the lognormal the effect of 

one additional child at a timepoint is exp(0.16431)=1.18, that is, an 18% increase in the any 
percentile of duration. For the Burr the effect is larger, about a 23% increase. We again note that the 
strict exogeneity of the TVC ( )tx : 1 1 1( | , ) ( | , ( )), 1, ,m m mD T T t D T T t t m M− − −≥ = ≥ =x x  , is used in the 
derivation of the log-likelihood. This assumption is perhaps untenable with ( )x t =NUMKIDS(t).   

If a confidence interval (CI) for the median duration for marriage is desired at a specified covariate 
value, we might start with a CI for log ( )pt x . The covariance matrix V of ˆˆ( , )ω β  can be saved in a 

data set created with the COVOUT option in the SEVERITY statement.. The procedure makes a 

degrees-of-freedom adjustment. If 
2LogL
β β

∂
= −

′∂ ∂
G  denotes the Hessian matrix, then 1N

d
−=V G  where 

d=N−p by default, p=#parameters. The option VARDEF=N that makes d =N is appropriate here 
because N=# records in the data set is much larger than the sample size of couples (=3371).  

  

8 
 



The piecewise constant hazard model is fitted with PHREG invoking the BAYES statement. A 
Bayesian analysis is not the intent, but the starting values of all parameters for the Gibbs sampler are 
the maximum likelihood estimates of 1, ( , , )Jβ α α=α  in the hazard ( | ) exp( ),jh t α β′= +x x

1[ , )j jt a a−∈ , 1, ,j J=  . By default the number of intervals J=8, and can be set with the 

NINTERVALS option. The cut-points are selected to have approximately equal number of events 
in the intervals. In this example there are 1032 marriages that ended in divorce, so each interval 
contains 129 divorces. The INTERVAL option allows one to change the cut-points. For an example 
of options and details of using the BAYES statement see Gardiner (2010). Accepting implicit 
defaults, a piecewise constant hazard model with the same covariates as in table 2 is obtained by 

 
proc phreg data=c.divorce_lg; 
class agediff(ref='Within 10 years') race(ref='Both White') 
hiseduc(ref='12-<16 yrs')/param=ref; 
model (tstart, tstop)*divorce(0)= race agediff hiseduc numkids; 
format race race. agediff agediff. hiseduc educ.; 
bayes nbi=1000 nmc=2000 seed=20314 coeffprior=uniform plots=none 
PIECEWISE=loghazard(prior=uniform ninterval=8); 
run; 
 

With some annotation of the default output the results of ML estimation are in Table 6. 

Table 6: Maximum Likelihood Estimates Piecewise Constant Hazard Model 

Parameter Cut-point /Class Estimate Standard 
Error 

95% Confidence Limits 

Alpha1 2.505443 –4.0793 0.0957 –4.2668 –3.8917 
Alpha2 4.397765 –3.6483 0.0965 –3.8375 –3.4592 
Alpha3 6.242479 –3.4899 0.0977 –3.6814 –3.2984 
Alpha4 8.372772 –3.4885 0.0991 –3.6827 –3.2943 
Alpha5 10.92927 –3.5192 0.1004 –3.7160 –3.3225 
Alpha6 15.56494 –3.9031 0.1019 –4.1029 –3.7033 
Alpha7 21.58546 –3.8336 0.1038 –4.0371 –3.6301 
Alpha8 Infty –4.4567 0.1068 –4.6661 –4.2474 
race  Black/White 0.4672 0.1064 0.2587 0.6757 
race  Both Black 0.1659 0.1002 –0.0305 0.3623 
race White/Black 0.3489 0.0994 0.1540 0.5437 
agediff He older –0.3068 0.2166 –0.7314 0.1179 
agediff She older 0.4855 0.2613 –0.0265 0.9976 
hiseduc <12 yrs –0.3187 0.0683 –0.4524 –0.1849 
hiseduc >=16 yrs –0.2743 0.1057 –0.4814 –0.0671 
numkids  –0.1108 0.0218 –0.1534 –0.0681 
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RECURRENT EVENTS 

Recurrent events refer to events of the same type that can have multiple occurrences during a follow-up 
period. There are many examples such as tumor recurrence, hospital readmissions, asthma attacks, 
breakdowns in repairable systems, etc. In the observational period [0, τ], occurrences at times 

< < <1 2 3T T T   produce the cumulative number of occurrences to time t, ∞

=
= ≤∑ 1

( ) [ ]kk
N t T t  and 

the gap times between occurrences =1 1 ,W T = − 2 2 1 , ,W T T −= − 1 ,k k kW T T .  Changes in the 
process = ≥{ ( ) : 0}N t tN  could be studied through its intensity 0( ) lim [ ( ) 1| ]/t tt P N t tλ ∆ → −= ∆ = ℑ ∆

where it is assumed that the jump ∆ ( )N t  at time t in the process N is at most 1. The past history 

−ℑt  captures all that is known about the process and TVCs just before t. Cook and Lawless (2007) 

construct a likelihood for the events occurring at times { }kT  in [0, τ]  but the theory does not readily 

give the mean ( )( ) ( )t E N tµ = , variance ( )2 ( ) ( )t Var N tσ = or the distribution of event counts in an 

interval. When −ℑt  excludes the past history of the process itself, but may contain exogenous TVCs, 
it is customary to replace the intensity by the rate of occurrence function ρ( )t  and use results from 
Poisson processes to make inference on ρ( )t  or ( )tµ .   

 

Non-homogeneous Poisson process 

The prototypical process N is the non-homogeneous Poisson process (NHPP) in which the 
independent increments property assures that ( )tρ does not depend on the past history of N.  The 

mean cumulative function (MCF) is  
0

( ) ( )
t

t u duµ ρ= ∫ and { ( )}
[ ( ) ] exp( ( )) ,  0,1,

!

ktP N t k t k
k

µµ= = − =  . In 

the NHPP gap times { : 1}kW k ≥ are not independent, ( )1[ | ] exp ( )
t w

k k t
P W w T t s dsρ

+

−> = = −∫ . In the 

case of a homogeneous Poisson process (HPP) where ( )tρ ρ= is constant, the gap times are 
independent with exponential distribution [ ] exp( )kP W w wρ> = − .  

Time-invariant covariates x are included in 0( | ) ( )exp( )t tρ ρ β′=x x  where 0( )tρ is parametrically 

specified: (1) HPP 0( ) 1tρ = , (2) NHPP(LOG) 0( ) exp( )t tρ γ= , (3) NHPP(PROP) 1
0( )t t γρ γ −= , and   

(4) NHPP(POW) 1( | )t t γ γρ γ η− −=x , (5) NHPP(CA) 1( | )t t γρ γ η−=x , where η β′= x . 

Estimation in the NHPP uses for the i-th subject the observed event times 1 2 3 ii i i inT T T T< < < < , 

and the end of observation iτ   to construct the likelihood { } ( )1
( | ) exp ( | )in

ij i i ij
Tρ µ τ

=
−∏ x x . Note that 

the period( , ]
iin iT τ , contributes the term exp ( | )i

ini
iT

s ds
τ
ρ − 

 ∫ x to the likelihood, unless
ii inTτ = . 

Therefore when constructing a data set with recurrences for analysis this end of observation 
information must be included. Estimation of parameters is via maximum likelihood. 
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APPLICATION 

A data set of multiple incidences of mammary tumors in 48 female rats is constructed from a 
carcinogenicity experiment (Cook and Lawless, 2007; Hougaard, 2000). The study began with 76 
animals that were given a carcinogen and treated with retinyl acetate for 60 days.  At day 60, 48 
surviving animals free of tumors were randomized to continued treatment (TRT=1, n= 23) with 
retinoid prophylaxis or control (TRT=0, n=25). Tumors appearance was recorded intermittently 
ending on day 182.  The control group has animals with multiple tumors detected on the same day. 

Table 7 shows the layout of the data. ID=3 had tumors at day 63 and 68. STATUS=1 for these two 
records, and a third record is added to the period (63, 182] with STATUS=0.  For ID=32 in 
addition to single events at day 66, 77 and 98, there were three tumors at day 102. They are given 
separate records. ID=48 has tumors at day 84, 134 and 182.  An additional record is included for the 
end of observation although the interval (TSTART, TSTOP] is null. Note that for each animal their 
last record has STATUS=0 (censored). The variables t0, t1 reset the time origin to day=60. 

Table 7:  Tumor recurrence times in rats 

ID TRT days status tstart tstop t0 t1 lttime rctime 
3 1 63 1 0 63 0 3 . . 
3 1 68 1 63 68 3 8 3 . 
3 1 182 0 68 182 8 122 8 122 

32 0 66 1 0 66 0 6 . . 
32 0 77 1 66 77 6 17 6 . 
32 0 98 1 77 98 17 38 17 . 
32 0 102 1 98 102 38 42 38 . 
32 0 102 1 102 102 42 42 42 . 
32 0 102 1 102 102 42 42 42 . 
32 0 182 0 102 182 42 122 42 122 
48 0 84 1 0 84 0 24 . . 
48 0 134 1 84 134 24 74 24 . 
48 0 182 1 134 182 74 122 74 . 
48 0 182 0 182 182 122 122 122 122 
 

Use PROC RELIABILITY to estimate the NHPP for tumor recurrences with rate function 
1

0 1( | ) exp( ( 0)).t t TRTγρ γ β β−= + =x  

ods output modobstats=obstats; 
proc reliability data=mammary_all;  
unitid id; 
class trt; 
distribution NHPP(prop); 
model t1*status(0)=TRT/hpptest obstats; 
estimate "mean ratio" TRT -1 1/cl exp; 
format trt trt.; 
run; 
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proc format; 
value trt 0='CNT' 1='TRT'; 
run; 
 
The unitid statement is critical to identifying records of the same subject (animal). The censoring 
indicator status(0)is required to identify the end of observation time.  
 
Table 8: NHPP–Proportional intensity parameter estimates 
 
Parameter   Estimate Standard Error Asymptotic Normal 

95% Confidence Limits 
Lower Upper 

Intercept   –4.0302 0.3684 –4.7522 –3.3082 
TRT CNT 0.8097 0.1520 0.5118 1.1076 
TRT TRT 0.0000 0.0000 0.0000 0.0000 
Shape   1.0420 0.0719 0.9102 1.1929 
–Log L 893.1958     
 

The estimate of the mean (rate) ratio, treatment vs control 1exp( )β−  is 0.455 (95% CI: 0.330, 0.599) 
calculated from table 8 or from the ESTIMATE statement. The HPP option produces a likelihood 
ratio test of 0 : 1H γ = , which is not significant (p=0.554). To fit the HPP distribution use 
distribution HPP. 

Observation-wise computations of the estimated MCF ( | ) exp( )t t γµ β′=x x under the model are 
saved in the modobstats=OBSTATS data set. Standard errors and 95% CIs are computed from 

{ }2ˆ ˆ ˆ( ( | )) ( | ) log( ( | ))Var t t Var tµ µ µ= ×x x x and under asymptotic normality of the MLE ˆˆ( , )γ β . The 
MCFs at 122 days are: TRT= 2.652 (95% CI: 2.064, 3.409), CNT=5.960 (95% CI: 5.076, 6.998) 
showing a wide divergence between TRT and CNT in the mean count of tumors. The MCFs may be 
plotted using the MCFPLOT statement as described in the next section. 

 

Nonparametric Analyses 

In addition to the model-based MCF, a nonparametric estimate of the MCF and related statistics are 
obtained from the MCFPLOT statement. To keep the nonparametric analysis separate from the 
NHHP analyses use 

ods output mcfest=mcfest mcfDest=mcfdiff; 
proc reliability data=mammary_all;  
unitid id; 
class trt; 
mcfplot t1*status(0)=trt/logintervals variance=lawless overlay; 
mcfplot t1*status(0)=trt/ mcfdiff; 
format trt trt.; 
run; 
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The first mcfplot statement assures separate calculations for the two groups TRT and CNT. The 

MCF given by 
0

( )ˆ( )
( )

t dN st
Y s

µ = ∫  where
1

( ) ( )n
ii

N t N t
=

=∑  and 
1

( ) ( )n
ii

Y t Y t
=

=∑  denote respectively, the 

observed counts of events and number at risk at t  within group. Among variance estimators of ˆ( )tµ  
are the default (VARIANCE=LAWLESS) which is robust to departures from the Poisson 
assumptions, and VARIANCE=POISSON. They are given by 

2

1 0

( ) ( )ˆ( ( )) ( )
( ) ( )

tn i
L ii

Y u dN uVar t dN u
Y u Y u

µ
=

   = −  
   

∑ ∫ , 20

( )ˆ( ( ))
( )

t

P
dN sVar t
Y s

µ = ∫ . 

The option logintervals requests computation of the 95% CI based on ˆlog( ( ))tµ . The default 
plot includes values of ˆ( )tµ , standard errors and pointwise CIs at each event time. Due to ties in 
tumor recurrence times, there is some overprinting. Using PROC SGPLOT with the calculations 
saved in the ODS mcfest data set, a custom graph may be produced. See Figure 2. Note the change 
in names of the variables TRT and t1 to GROUP and AGE.  

data mcfest2; 
set mcfest; 
by group age; 
if last.age; 
run; 
 
proc sgplot data=mcfest2 noautolegend; 
step x=age y=mcf/group=group name='group'; 
band x=age lower=lower upper=upper/group=group type=step 
transparency=.7; 
label age='Days from randomization'; 
keylegend 'group' /title='GROUP' location=inside position=bottomright; 
run; 

Displaying the parametric NHPP analysis with nonparametric point estimates requires only the FIT 
option  mcfplot t1*status(0)=trt/fit=model; and of course the previous distribution 
and model statements (Figure 3). 

The second mcfplot statement generates estimates for the difference between CNT and TRT, 
ˆ ˆ( ) ( )C Tt tµ µ−  together with standard errors and pointwise 95% CIs and a default plot (Figure 4). 

Because of ties in event times, the saved mcfdiff data set is used to construct the plot at the latest 
time point within the tied sets (Figure 5).  

PROC RELIABILITY performs a log-rank type test of equality of the rate functions

0 1 0: ( ) ( )H t tρ ρ=  against the alternative 1 0: ( ) ( )exp( )AH t tρ ρ β= where the baseline rate 0( )tρ (CNT) 
is unspecified. Because the alternative makes 1 0( ) ( )t tρ ρ≤   or 1 0( ) ( )t tρ ρ≥  for all t, the test is 
appropriate if the two MCFs are not expected to across. This is supported by the figures.  The test is 
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based on the statistic 1 00
( ) ( ){ ( ) ( )}U w u d u d u

τ
τ µ µ= −∫ where 1 0( ) ( ) ( )

( ) ,
( )

a u Y u Y u
w u

Y u•

= 0 1( ) ( ) ( )Y u Y u Y u• = +

and subscripts refer the two groups. Tests are produced for constant and linear weight ( )a u .  

Table 9: Tests for equality of mean cumulative functions 

Weight Function Statistic Variance Chi Square DF Pr > Chi Square 
Constant 39.625000 104.532426 15.020608 1 0.0001 
Linear 12.669414 14.070846 11.407562 1 0.0007 
 

Figure 2: MCF and 95% CI (nonparametric)  Figure 3: MCF and 95% CI (NHPP)  

  

 

Figure 4: Default plot for difference in MCFs   Figure 5: Plot for difference in MCFs 
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Analyses using PROC SEVERITY 

We return to the NHPP and revisit the construction of the likelihood of the event times 

1 2 3 ii i i inT T T T< < < <  in the observation interval [0, ]iτ . The conditional distribution of the gap 

time 1ij ij ijW T T −= −  given 1ijT −  is ( )1[ | ] exp ( )
t w

ij ij t
P W w T t s dsρ

+

−> = = −∫ . For the event occurring at ijT  

the contribution to the likelihood is 
1

exp ( ) ( )ij

ij

T

ijT
s ds Tρ ρ

−

 − 
 ∫ . The period ( , ]

iin iT τ  with no event 

contributes exp ( | )i

ini
iT

s ds
τ
ρ − 

 ∫ x  unless 
ii inTτ = , i.e., the end of observation coincides with an event 

time.  The likelihood function for the i-th unit used by PROC RELIABILITY for NHPP analyses is 

a product of these terms which neatly simplifies to { } ( )1
( | ) exp ( | )in

ij i i ij
Tρ µ τ

=
−∏ x x . 

Go back to the interval 1( , ]ij ijT T−  and use the property that the event occurring at ijT  is left-truncated 

at 1.ijT −  For the interval ( , ]
iin iT τ , we have left truncation at 

iinT and perhaps right censoring at iτ . This 

is precisely the situation that is handled by PROC SEVERITY where the analysis variable is a 
positive response (here ijT ) that might be both left truncated and right censored. This construction 

exploits structure of the likelihood (the ijT ’s are dependent). In Table 7 we created the left truncation 

time LTIME and right censoring time RCTIME.  To specify left truncation, SEVERITY requires 
that (1) LTTIME > 0, (2) t1> LTTIME.  A missing value for LTTIME or RCTIME indicates the 
absence of truncation or censoring. If RCTIME=t1 then the observation is right censored.  Due to 
ties we have several records with t1=LTTIME as well as for some end of observation records.  

In order to keep all records and mimic our previous NHPP analysis we the null intervals (t0, t1] are 
altered very slightly t0=t0+.0001; t1=t1+.00015. See also Johnston and So (2003).  

proc severity data=mammary_sev print=all vardef=n; 
dist weibull; 
loss t1/lefttruncated=lttime rightcensored=rctime; 
scalemodel trt; 
run; 

Table 10: Analysis of gap times 

Parameter Estimates 
Parameter Estimate Standard Error t Value p-value 
Theta 21.99552 3.12289 7.04 <.0001 
Gamma 1.04196 0.07190 14.49 <.0001 
TRT 0.77708 0.15542 5.00 <.0001 
−Log L 893.1958    
Tables 8 and 10 have differences in parameterization. The hazard is 1( | ) exp( )h t t γγ γ β− ′= −x x . Hence 

the group effect (TRT vs CNT) is 1γβ− =−0.8097. Note that the vardef=n option is advisable to 
get the appropriate standard errors.  
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Analyses using PROC PHREG 

The counting process formulation of multiple intensity models allows analysis of the proportional 
rates (means) model. Exogenous TVCs are allowed in the intensity 0( | ) ( )exp( ( ) )tt t tλ ρ β− ′ℑ = x  but 

the MCF 00
( ) ( )exp( ( ) )

t
t s u dsµ ρ β′= ∫ x  depends on the covariate path in [0, t]. With fixed covariates 

0x  we would get ( )0 0 0 0 00
( | ) ( ) exp( ) ( )exp( )

t
t s ds tµ ρ β µ β′ ′= =∫x x x . We used the same modified data set 

mammary_sev to break ties in tumor recurrence times to ensure that intervals (t0, t1) are non-null.  

data covar; 
input trt @@; 
format trt trt.; 
datalines; 
1 0 
; 
run; 
 
proc phreg data=mammary_sev covsandwich(aggregate) 

 plots(overlay cl)=MCF; 
id id; 
class TRT(ref='CNT')/param=ref; 
model (t0, t1)*status(0)= TRT/risklimits; 
baseline covariates=covar out=stats_MCF MCF=_ALL_/rowid=TRT; 
format trt trt.; 
run; 

The mean (hazard) ratio (TRT vs CNT) is 0.448 (95% CI: 0.305, 0.656), similar to the results from 
the NHPP analysis. Instead of the default MCF plot, the output data set stats_MCF was used to 
produce Figure 5. 

Figure 5: Mean Cumulative Function and 95% CI 
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DISCUSSION 

There are some common features in the two applications discussed in this paper.  In our first 
application we demonstrated how PROC PHREG and PROC SEVERITY can be used to analyze a 
single duration outcome T with time-varying covariates (TVC) { ( ) : 0}t t= ≥x x . The TVC is 
observed and may change only at discrete time points{ : 0, , }mt m M=  . The second application 
concerns recurrent events, multiple occurrences of the same event type, with the focus on the 
cumulative event count ( )N t and the occurrence times{ : 1}kT k ≥  but the covariate x was fixed. In 
both examples, right censoring signals end of observation. We showed how PROC RELIABILITY 
and PROC SEVERITY can be used for analysis of recurrence data. In both applications a structural 
feature of left truncation and right censoring that arises from likelihood construction permits the use 
of PROC SEVERITY in analyses. PROC QLIM can address right censored or truncated data, not 
both in the same application, and assumes normality of the response. PROC LIFEREG is the 
workhorse for analysis of the AFT model handling all types of censoring (left, right, or interval, and 
combinations thereof) within the same application. However, it does not permit truncation. 

The handling of TVC can be problematic depending upon their type.  Endogenous covariates that 
affect the evolution of the underlying event process are more difficult to deal with theoretically 
(Aalen et al, 2008). In our first application the single duration was the time from marriage to divorce. 
Approximately 31% of the 3371 marriages in our data set ended in divorce. Right censoring of the 
duration was due to death of a spouse, or if the couple were still married at their last interview. The 
counting process style of data input was applied to update the TVC, x(t)=NUMKIDS at birth of 
children during the marriage. With the tenuous assumption that this covariate was strictly 
exogenous, the semi-parametric Cox regression model was applied to assess the impact of covariates 
on the hazard function. As described by Lillard (1993) endogeneity of x(t) could be addressed 
through a joint model with hazard functions for marriage dissolution and for child bearing. Another 
analytic strategy is to consider a state transition model for x(t) with forward transitions 
0→1→2→…, with exit to the terminal state (divorce) from any state (Hougaard, 2000). Such 
multistate modelling can be dealt with in PROC PHREG (Gardiner et al, 2008, Andersen and 
Keiding, 2002). 

The parametric likelihood for (T, x) illuminates how the exogeneity assumption enters into its 
construction. In addition we see how left truncation and right censoring appear in the likelihood 
terms. For example, for time points 1 2,t t  with 1 2t t< , 

2 2 1 1[ | ( ),0 ] [ | , ( ),0 ] [ | ( ),0 ]m m mP T t t m M P T t T t t m M P T t t m M> ≤ ≤ = > > ≤ ≤ > ≤ ≤x x x   

The first term on the right hand side is 2 1 1[ | , ( )]P T t T t t> > x  which incorporates the exogeneity and  
shows the left truncation at 1t . Both PROC PHREG and PROC SEVERITY can handle left 
truncation and right censoring.  In the latter it is made explicit through the rightcensored= and 
lefttruncated= options in the LOSS statement.  In the former it is implicit in the counting process 
style input. 
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In our second application on analysis of recurrent events, we focus on the intensity function

0( ) lim [ ( ) 1| ]/t tt P N t tλ ∆ → −= ∆ = ℑ ∆  for event occurrence. Different modelling strategies are needed 
depending on what is contained in the model for ( )tλ  from the past history −ℑt . If the past 
influences the intensity only though exogenous covariates, we can again use PROC PHREG for 
analysis of the proportional means (rates) models 0( | ) ( )exp( ( ) )t t tλ ρ β′=x x .  With fixed covariates 

0x  the MCF ( )0 0 0 0 00
( | ) ( ) exp( ) ( )exp( )

t
t s ds tµ ρ β µ β′ ′= =∫x x x  is estimated.  

The same nonparametric generalized Aalen estimator 0( | )tµ x is obtained in PROC RELIABILITY 
for discrete 0x . The application to tumor recurrences has a single covariate at two levels, TRT and 
CNT.  In this case a nonparametric test for equality of the two MCFs is produced.  The strength of 
PROC RELIABILITY is in its capabilities with the NHPP in which case the baseline 0( )tρ is 
parametrically specified. There are options to specify 0( )tρ . 

We must mention that TVCs are also allowed in the NHPP in a manner analogous to the 
description made previously for covariate values{ ( ) : 0, , }mt m M=x  at the event times. The 

contribution to the likelihood for the event at ijT  is { }
1

1 1( | ( )) exp ( | ( )ij

ij

T

ij ij ijT
T T s T dsρ ρ

−
− −

 − 
 ∫x x  and for 

no event in ( , ]
iin iT τ  is exp ( | ( )i

i
ini

inT
s T ds

τ
ρ − 

 ∫ x . Likelihood construction exploits the independent 

increments property of the Poisson process. 

Situations where the intensity ( )tλ depends on the past history of the event process = ≥{ ( ) : 0}N t tN
are not directly handled by the software. For example the negative binomial model with fixed 

covariates has intensity 1 ( )
( | ) ( | )

1 ( | )
N tt t

t
φλ ρ
φµ

 + −
=  + 

x x
x

 with say, 0( | ) ( )exp( )t tρ ρ β′=x x . It can be 

derived from a random effects Poisson model. Cook and Lawless (2007) provide parametric and 
semi-parametric analyses. See also Kalbfleisch and Prentice (2002) for an example of a recurrent 
events model for the intensity that captures some features of the past of the process N .  
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