
Paper 401-2013

High-Performance Statistical Modeling

Robert A. Cohen and Robert N. Rodriguez, SAS Institute Inc.

ABSTRACT

The explosive growth of data, coupled with the emergence of powerful distributed computing platforms,
is driving the need for high-performance statistical modeling software. SAS has developed a group of
high-performance analytics procedures that perform statistical modeling and model selection by exploiting
all the cores available—whether in a single machine or in a distributed computing environment. This paper
describes the various execution modes and data access methods for high-performance analytics procedures.
It also discusses the design principles for high-performance statistical modeling procedures and offers
guidance about how and when these procedures provide performance benefits.

INTRODUCTION

This paper introduces high-performance statistical modeling procedures that are included in SAS/STAT® 12.3.
The paper uses the term “HPA procedures” to refer generically to high-performance analytics procedures.

The paper is organized into two major parts. Part I describes general considerations that apply to all HPA
procedures, and it contains into the following sections:

• “EXECUTION MODES” describes how HPA procedures can run on a single server or in a distributed
computing environment. This section also introduces terminology that is used throughout the paper.

• “AVAILABILITY” discusses how the HPA procedures are licensed.

• “DATA ACCESS FEATURES” describes the specialized “big data” access functionality that is integrated
into all HPA procedures. This functionality enables HPA procedures to run in an “alongside-the-
database” mode, so that the analysis is performed on the same hardware where the database resides.

• “SYMMETRIC AND ASYMMETRIC MODES” describes how HPA procedures can execute in a mode
where computations are performed in a distributed computing environment that is separate from the
database appliance that houses the data. This is accomplished by efficiently moving data in parallel
between multiple machines.

• “IN-MEMORY COMPUTATION” describes how the vast amount of memory available in distributed
computing environments enables HPA procedures to execute entirely in memory.

Part II narrows the focus to high-performance statistical modeling procedures and is organized into the
following sections:

• “DESIGN PRINCIPLES” describes the design considerations that are followed in developing the
high-performance statistical modeling procedures.

• “HIGH-PERFORMANCE STATISTICAL MODELING PROCEDURES” briefly describes the high-
performance statistical modeling procedures that are included with SAS/STAT.

• “PERFORMANCE AND SCALABILITY” presents examples that illustrate how you can use various
execution modes of high-performance statistical modeling procedures to scale to a wide range of
problem sizes.

1

SAS® and Big DataSAS Global Forum 2013

 
 



PART I: GENERAL CONSIDERATIONS

This part of the paper explains terminology and execution modes that apply to all high-performance analytics
procedures. You can find specific information about high-performance statistical modeling procedures in
Part II.

EXECUTION MODES

The fundamental distinction between HPA procedures and traditional (MVA) procedures is the way in which
they execute. HPA procedures are engineered to run either on a single server or in a distributed mode that
uses a cluster of computers. In contrast, MVA procedures can execute only on a single server.

A second distinction is that all HPA procedures are multithreaded and can exploit all the cores available,
whether in a single machine or in a distributed computing environment. In contrast, not all MVA procedures
are multithreaded.

Single-Machine Mode

An HPA procedure is said to execute in single-machine node when all the computation is done on the server
where SAS is installed. Single-machine mode is also called “client mode,” but this paper uses the term
single-machine mode to emphasize that in this mode all computations are performed on a single machine.

An important feature of all HPA procedures when they run in single-machine mode is that they are engineered
to solve analytic tasks in parallel by using concurrently scheduled threads that exploit the multiple processors
that are ubiquitous in current-generation computers. The procedure determines the number of concurrent
threads based on the number of CPUs (cores) on the machine. Depending on the analytic task, HPA
procedures use different methods to map the number of cores to the number of concurrent threads. Using
one thread per core is not uncommon for procedures that implement data-parallel algorithms.

You might sometimes see single-machine mode referred to as SMP (symmetric multiprocessing) mode.
Symmetric multiprocessing is a common server architecture in which all processors have uniform access to
the main memory on the server. However, because some modern servers use a NUMA (nonuniform memory
access) architecture, the term single-machine mode is technically more accurate.

Distributed Mode

When HPA procedures execute in distributed mode, the SAS server functions as a client that communicates
with and drives specialized SAS software that runs on a tightly integrated cluster of homogeneous machines.
The data are distributed across the machines in this cluster, and the massive computing power of the cluster
is brought to bear to solve a single large analytic task.

When an HPA procedure executes in distributed mode, multiple concurrently scheduled threads are used on
each machine in the cluster, and the number of threads used on each machine corresponds to the number
of cores on the machine. For example, in a cluster of 16 machines, each with 24 cores, a total of 384 (16*24)
threads execute simultaneously to solve the analytic task.

You might sometimes see distributed mode referred to as MPP (massively parallel processing) mode,
because this term emphasizes that computations are done simultaneously on multiple computers, each
of which uses multiple threads. The umbrella term “grid computing” is also sometimes used to describe
distributed mode. However, grid computing can also refer to the process by which a cluster of loosely
connected computers, each running an independent SAS session, executes multiple independent tasks
simultaneously. You can use the MP CONNECT functionality in SAS/CONNECT® software to implement
this type of grid computing, and you can use SAS® Grid Manager software to manage such a grid.

You might also see the terms “appliance” and “blade server” used to describe a tightly integrated homo-
geneous cluster of computers that are arranged in units called racks. The individual computers in each
rack are called “nodes” or “blades.” Database appliances are appliances that include database software to
manage data that are stored in distributed fashion across the nodes of the appliance. It is not necessary that
database software run on an appliance in order for HPA procedures to be able to run on the appliance.

2

SAS® and Big DataSAS Global Forum 2013

 
 



AVAILABILITY

Prior to SAS 9.4, you could obtain HPA procedures only by licensing a product called the SAS® High-
Performance Analytics Server. This product included procedures for data mining, statistical modeling,
time series analysis, and text mining. You could not license only a subset of procedures for the particular
functionality that you might need. Furthermore, you could not access these procedures in single-machine
mode without licensing them to run also in distributed mode.

To enable you to obtain just the functionality that you need, SAS-High Performance Analytics Server has now
been split into products that can be individually licensed to run in distributed mode. Each of these products
is associated with an existing MVA product as shown in the Table 1.

Table 1: SAS High-Performance Analytics Products and MVA Products

SAS High-Performance Analytics Product MVA Product

SAS® High-Performance Statistics SAS/STAT®

SAS® High-Performance Econometrics SAS/ETS®

SAS® High-Performance Optimization SAS/OR®

SAS® High-Performance Forecasting SAS® High-Performance Forecasting
SAS® High-Performance Data Mining SAS® Enterprise Miner™

SAS® High-Performance Text Mining SAS® Text Miner

Furthermore, the procedures in the SAS High-Performance Analytics products are included with the as-
sociated MVA product, and you can run these procedures in single-machine mode without licensing the
high-performance product. However, you do need to license the SAS High-Performance Analytics product to
run its procedures in distributed mode.

For example, if you license SAS/STAT, you can run in single-machine mode the HPGENSELECT, HPLMIXED,
HPLOGISTIC, HPNLMOD, HPREG, and HPSPLIT procedures. For more information about these procedures,
see the section “HIGH-PERFORMANCE STATISTICAL MODELING PROCEDURES” on page 6. To run
these procedures in distributed mode, you must license SAS High-Performance Statistics software in addition
to SAS/STAT software.

DATA ACCESS FEATURES

The following data access methods are supported by HPA procedures when they run in distributed mode:

• Client-data (or local-data) method. The data are stored on the machine where SAS is installed
(referred to as the “client”). When the procedure runs, the data are moved to the distributed computing
environment by the high-performance analytics infrastructure.

Note: The client-data method should not be confused with single-machine mode, in which the data
remain on the client machine and the computations are performed on the client machine.

• Alongside-the-database method. The data are stored in the distributed database management system
(DBMS) and are read in parallel from the DBMS into a SAS analytic process that runs on the database
appliance.

• Alongside-HDFS method. The data are stored in the Hadoop Distributed File System (HDFS) and are
read in parallel from the HDFS.

• Alongside-LASR mode. The data are loaded from a SAS® LASR™ Analytic Server that runs on the
appliance.

The following subsections provide more detail.

3

SAS® and Big DataSAS Global Forum 2013

 
 



Alongside-the-Database Execution

High-performance analytics procedures interface in a unique way with the DBMS on the appliance. If the
input data are stored in the DBMS and the appliance on which the analyses are performed is the appliance
that houses the data, HPA procedures create a distributed computing environment in which an analytic
process is co-located with the nodes of the DBMS where the data are stored. Data then pass from the DBMS
to the analytic process on each node. This avoids having to move data across the network and possibly back
to the client machine. Instead, the data pass locally between the processes on each node of the appliance.

Because the analytic processes on the appliance are separate from the database processes, this mode of
execution is referred to as alongside-the-database execution. It is different from in-database execution, used
by SAS® In-Database Analytics, where the analytic code executes in the database process.

In general, when you have a large amount of data, you can obtain the best performance from HPA procedures
if execution is alongside the database.

Alongside-HDFS Execution

Running HPA procedures alongside HDFS shares many features with running alongside the database. The
procedures use the distributed computing environment, in which an analytic process is co-located with the
nodes of the cluster. Data then pass from HDFS to the analytic process on each node of the cluster.

Alongside-LASR Execution

When HPA procedures execute in distributed mode alongside a SAS LASR Analytic Server, the data are
preloaded in distributed form in memory that is managed by the SAS LASR Analytic Server. The data on the
nodes of the appliance are accessed in parallel in the process that runs the server, and they are transferred
to the process where the HPA procedure runs.

In general, each HPA procedure copies the data to memory that persists only while that procedure executes.
Hence, when an HPA procedure runs alongside a LASR Analytic Server, both the procedure and the server
have a copy of the subset of the data that are used by the procedure.

The advantage of running HPA procedures alongside a LASR Analytic Server (as opposed to running
alongside a DBMS table or alongside HDFS) is that the initial transfer of data from the server to the HPA
procedure is a memory-to-memory operation that is faster than the disk-to-memory operation that occurs
when the procedure runs alongside a DBMS or HDFS. Alongside-LASR execution can result in improved
performance when the cost of preloading a table into the server is amortized over multiple uses of these
data in separate runs of HPA procedures.

SYMMETRIC AND ASYMMETRIC MODES

When you run HPA procedures alongside the database or alongside HDFS, you can run them in either
symmetric mode or in asymmetric mode, as described in the following sections.

Symmetric Mode

HPA procedures are said to be operating in symmetric mode when they run alongside the database and
alongside HDFS on the appliance that houses the data and when the number of nodes used for the
computations is the same as the number of nodes that hold the data.

When HPA procedures run in symmetric mode, the data appliance and the computing appliance must be the
same appliance. The HPA procedures—together with a SAS® Embedded Process, which reads and writes
data from the DBMS—execute in a SAS process that runs on the same hardware where the DBMS process
executes. This is called symmetric mode because the number of nodes on which the DBMS executes is the
same as the number of nodes on which the HPA procedures execute. The initial data movement from the
DBMS to the HPA procedure does not cross node boundaries.

4

SAS® and Big DataSAS Global Forum 2013

 
 



Asymmetric Mode

HPA procedures can also run alongside-the-database and alongside-HDFS in an asymmetric mode. The
primary reason for providing the asymmetric mode is to enable you to manage and house your data on
one appliance (the data appliance) and to run HPA on a second appliance (the computing appliance). In
asymmetric mode, the data appliance and the computing appliance are usually distinct appliances. This
mode is called asymmetric because the number of nodes on the data appliance does not need to be the
same as the number of nodes on the computing appliance. The HPA procedures execute in a SAS process
that runs on the computing appliance. The DBMS and a SAS Embedded Process run on the data appliance.
Data are requested by a SAS data feeder that runs on the computing appliance and communicates with
the SAS Embedded Process on the data appliance. The SAS Embedded process transfers the data in
parallel to the SAS data feeder that runs on each of the nodes of the computing appliance. You can also
run in asymmetric mode on a single appliance that functions as both the data appliance and the computing
appliance. This enables you to run alongside-the-database or alongside-HDFS, where computations are
performed on a set of nodes that is different from the set of nodes on which the data reside.

IN-MEMORY COMPUTATION

The combined amount of memory available on distributed computing appliances enables you to hold large
volumes of data in memory. Appliances are commonly configured with nodes that have 256 GB of memory.
This enables HPA procedures to hold many terabytes of data in memory on even moderately sized appliances.
After the data have been loaded into memory, the entire computation takes place in memory, which yields
substantial performance benefits when algorithms require multiple passes through the data.

In single-machine mode, the amount of memory might not be large enough to hold the entire data set to
be analyzed in memory. In such cases, utility files, which are stored on disks, are used where needed so
that the computation can be completed. However, this use of disks during a computation can significantly
degrade the performance of an algorithm. When your data routinely exceed the amount of memory available
on your single server, moving your computation to an appliance with its much larger memory space will yield
greatly improved performance.

PART II: HIGH-PERFORMANCE STATISTICAL MODELING

The second part of this paper provides information about the design and performance features of high-
performance statistical modeling procedures.

DESIGN PRINCIPLES

This section explains eight design principles for the development of high-performance statistical modeling
procedures.

All HPA procedures are designed according to the following principles:

1. HPA procedures need to be able to access and analyze data in distributed computing environments.

2. HPA procedures need to be able to perform analyses in single-machine mode by using the same
syntax that is used for distributed mode.

An identical syntax for single-machine and distributed modes (other than options that specify the mode)
gives you an easy upgrade path as the size of your data grows. You can develop applications on a
single machine and then use the same procedure statements without modification in distributed mode.

In addition, high-performance statistical modeling procedures are designed according to the following
principles:

3. The principal goal is building accurate predictive models.

The term “big data” has become popular for describing large volumes of data. Many big data problems
are characterized by millions or even billions of observations, and in many situations these data
contain thousands of variables that can be used to build predictive models. Accomplishing this task by

5

SAS® and Big DataSAS Global Forum 2013

 
 



exploiting massive data and powerful distributed computing infrastructures is the main motivation for
developing these procedures.

4. The procedures should include methods for performing model selection, dimension reduction, and
identification of important variables whenever this is appropriate for the analysis.

For modeling scenarios in which the number of variables can be large, it is important to be able to
perform variable selection or dimension reduction to obtain parsimonious models that generalize well
for prediction of future data.

5. The procedures for predictive modeling should not need to implement computationally expensive
methods for computing inferential statistics.

Statistical methods for making inferences about populations based on small data samples are less
important in big data situations, where the sample is very large or even consists of the entire population.
Expending substantial amounts of time to compute inferential statistics that are not useful for building
large-scale predictive models detracts from the ability of these procedures to analyze massive data
sets.

6. The syntax for functionality that is common to high-performance statistical modeling procedures needs
to be consistent; this takes precedence over consistency with the syntax of traditional SAS/STAT
procedures.

All HPA procedures have common options that control the modes in which the procedures operate.
Moreover, several high-performance statistical modeling procedures share common functionality such
as model selection. A consequence this syntax consistency among the high-performance statistical
modeling procedures is that the syntax of HPA procedures sometimes varies from the syntax of
traditional SAS/STAT procedures. For example, the high-performance statistical modeling procedures
that build regression models share a common SELECTION statement for controlling model selection,
as opposed to MODEL statement options that are used in the REG, LOGISTIC, and GLMSELECT
procedures.

7. There need not be a one-to-one correspondence between the syntax and functionality of high-
performance statistical modeling procedures and that of traditional SAS/STAT procedures.

Developing new high-performance modeling procedures provides an opportunity to consolidate similar
functionality that is drawn from several SAS/STAT procedures into a single high-performance statistical
modeling procedure. An example is PROC HPREG, which has features drawn from the GLMSELECT,
GLM, and REG procedures.

Moreover, high-performance statistical modeling procedures can implement functionality that is not
found in traditional SAS/STAT procedures. For example, both PROC HPGENSELECT and PROC
GENMOD fit generalized linear models, but PROC HPGENSELECT focuses on model selection, which
is not available in PROC GENMOD. In other cases, high-performance statistical modeling procedures
can implement just the subset of a traditional SAS/STAT procedure’s functionality that is needed for
predictive modeling. For example, PROC HPLOGISTIC does not implement many of the small-sample
and inferential features that are available in PROC LOGISTIC.

8. New development in SAS/STAT software will be done using the high-performance framework whenever
this is a viable approach for statistical modeling.

As data volumes grow, there will be an increasing need for statistical modeling software to analyze
these data. New procedures in SAS/STAT are being developed as high-performance procedures when
this approach is relevant and feasible for analyzing big data. Two such examples in SAS/STAT 12.3 are
the HPGENSELECT procedure and the HPSPLIT procedure.

HIGH-PERFORMANCE STATISTICAL MODELING PROCEDURES

The following subsections describes the high-performance statistical modeling procedures that are included
with SAS/STAT 12.3.

6

SAS® and Big DataSAS Global Forum 2013

 
 



The HPGENSELECT Procedure

The HPGENSELECT procedure performs model selection for generalized linear models and fits generalized
linear models for a broad class of distributions. The procedure permits a variety of link functions; it can fit
zero-inflated models for count data and multinomial models for ordinal and nominal data that have more than
two response categories.

The HPLMIXED Procedure

The HPLMIXED procedure fits mixed linear models to data that have complex covariance structures. The
procedure implements techniques that are commonly used to model clustered or repeated data, where
observations within a cluster or subject are correlated. The HPLMIXED procedures provides a variety of
covariance structures: variance components, compound symmetry, unstructured, AR(1), Toeplitz, and factor
analytic. Models are fit by either maximum likelihood or restricted maximum likelihood (REML), using special
dense and sparse algorithms that take advantage of distributed and multicore computing environments.

The HPLOGISTIC procedure

The HPLOGISTIC procedure performs model selection for a broad range of logistic regression models. The
procedure permits several link functions and can handle ordinal and nominal data that have more than two
response categories (multinomial models).

The HPNLMOD Procedure

The HPNLMOD procedure uses either nonlinear least squares or maximum likelihood to fit nonlinear
regression models. The procedure enables you to specify the model by using SAS programming statements.
This gives you greater flexibility in modeling the relationship between the response variable and independent
(regressor) variables than procedures that use a more structured MODEL statement.

The HPREG Procedure

The HPREG procedure performs model selection for ordinary linear least squares regression models. The
procedure supports general linear models for independently and identically distributed data. The models
can contain main effects that consist of both continuous and classification variables, and they can contain
interaction effects of these variables. The procedure offers extensive capabilities for customizing the model
selection by using a wide variety of selection and stopping criteria, from traditional and computationally
efficient significance-level-based criteria to more computationally intensive validation-based criteria. The
HPREG procedure also provides a variety of regression diagnostics that are conditional on the selected
model.

The HPSPLIT Procedure

The HPSPLIT procedure creates a decision tree model. The procedure can create decision tree models
by using a number of methods to grow and prune the tree. The output that is created by the HPSPLIT
procedure can be used to tune models and determine input variable importance.

Utility High-Performance Procedures

The following high-performance utility procedures are included with all MVA products that include HPA
procedures.

HPBIN performs bucket, winsorized, and pseudo–quantile binning.

HPCORR computes Pearson correlations.

HPDMDB computes metadata and summaries of input data.

HPDS2 executes DS2 statements in parallel.

HPIMPUTE imputes missing values for numeric data.

HPSAMPLE performs simple and stratified sampling.

HPSUMMARY computes summary statistics.

7

SAS® and Big DataSAS Global Forum 2013

 
 



PERFORMANCE AND SCALABILITY

This section provides information about the performance and scalability of high-performance statistical
modeling procedures. Examples that feature model selection with simulated data are used to illustrate the
performance and scalability of these procedures.

Simulated Data

The examples in this section all use a simulated data set named sgf2013 that is generated from SAS
code that is provided in “APPENDIX” on page 18. These data contain three response variables, yNormal,
yBinary, and yPoisson, which are modeled by using linear regression in PROC HPREG, logistic regression
in PROC HPLOGISTIC, and Poisson regression in PROC HPGENSELECT. In order to demonstrate the
model selection capabilities of these procedures, the responses have all been constructed to depend
systematically on the same subset of the complete set of regressors, which are described in Table 2.

Table 2: Complete Set of Regressors

Regressor Name Type Number of Levels In True Model

xIn1–xIn20 Continuous Yes
xSubtle Continuous Yes
xTiny Continuous Yes
xOut1–xOut80 Continuous No
cIn1–cIn5 Classification From two to five Yes
cOut1–cOut5 Classification From two to five No

The labels In and Out that are part of the variable names make it easy to identify when selected models
succeed or fail in capturing the true underlying models. The regressors that are labeled xSubtle and
xTiny are regressors that are predictive, but whose influence is substantially smaller than that of the
other regressors in the true model. Identifying these two regressors requires a large number of simulated
observations.

The following examples use subsets of sgf2013 whose number of observations ranges from 50,000 to 50
million. When the data set contains 50 million observations, it is 45 GB in size.

Performance Comparisons with Traditional SAS/STAT Procedures

In many situations, you can carry out the same analysis with a high-performance statistical modeling
procedure and a traditional SAS/STAT procedure on a single machine that has multiple cores. When the
comparison is made with a traditional SAS/STAT procedure that does not support multithreading, then
for all but very short running analyses you will realize a performance gain by using the high-performance
procedure. However, when the traditional SAS/STAT procedure supports multithreading, you will typically get
similar—though not identical—performance.

The following statements fit the same logistic regression model and were executed on a desktop PC that has
four CPUs. Note that x: and c: are shorthand for regressors whose names begin with x and c, respectively.

proc logistic data=sgf2013(obs=1000000);
class c: / param=glm;
model yBinary = x: c:;

run;

proc hplogistic data=localLib.sgf2013(obs=1000000);
class c: ;
model yBinary = x: c:;

run;

The HPLOGISTIC procedure, which exploits all of the CPUs, ran in 31 seconds, about 3.7 times faster than
the LOGISTIC procedure, which ran in 116 seconds.

The following statements lead to a similar comparison by using PROC GENMOD and PROC HPGENSELECT
to fit the same Poisson regression.

8

SAS® and Big DataSAS Global Forum 2013

 
 



proc genmod data=sgf2013(obs=1000000);
class c:;
model yPoisson = x: c: /dist=Poisson;

run;

proc hpgenselect data=sgf2013(obs=1000000);
class c:;
model yPoisson = x: c: /dist=Poisson;

run;

In this test, PROC HPGENSELECT ran in 35 seconds, about 11.6 times faster than PROC GENMOD, which
ran in 407 seconds. Even when limited to using just a single thread, PROC HPGENSELECT ran in 112
seconds, which is still significantly faster than PROC GENMOD.

Scalability in Single-Machine Mode

Because all high-performance statistical modeling procedures are multithreaded, you will realize performance
gains when you run these procedures in single-machine mode on a server that has multiple CPUs. In most
cases, you will see scalability for a given test as the number of threads begins to increase from one, but after
a point the performance gains will start to diminish.

There are two reasons for this drop-off in scalability: The first reason—known as “Amdahl’s Law”—is that
a small component of every job executes serially. Even if the time taken by the rest of the computation
scales perfectly with increasing utilization of multiple CPUs, this serial component makes an ever increasing
contribution to the total run time. You can find a detailed discussion of this phenomenon in Cohen (2002).

A second reason for the drop-off in scalability is the memory bandwidth limitation of the hardware. As you
increase CPU utilization, you place greater demands on the memory system that needs to deliver memory
simultaneously to all the CPUs. To improve the speed at which memory can be accessed by the CPUs,
modern computer architectures use a hierarchy of memory caches. Accessing memory that resides in a
local cache is much faster than accessing main memory. However, when a CPU needs data that are not
already in a cache, then a cache miss occurs and the requested memory needs to be retrieved from a higher
level of cache or even from main memory. If a large number of cache misses occur and the CPUs have to
wait for needed memory, you will experience a drop in scalability.

In general, the scalability that you observe depends on the specific test and the specific hardware on which
the test is run. For example, tests that use PROC HPREG to perform linear regression usually exhibit less
scalability than similarly sized tests that use PROC HPLOGISTIC to perform logistic regression. The reason
is that the ratio of I/O time to computing time is much larger for linear regression than for logistic regression,
and I/O is usually performed serially on a single machine.

The following PROC HPGENSELECT and PROC HPLOGISTIC steps were run on a 12-CPU Windows
server to generate the scalability plots that are shown in Figure 1:

proc hplogistic data=sgf2013(obs=1000000);
class c: ;
model yBinary = x: c: / dist=poisson;
performance nthreads = &nThreads;

run;

proc hpgenselect data=sgf2013(obs=1000000);
class c: ;
model yPoisson = x: c: / dist=poisson;
performance nthreads = &nThreads;

run;

This test uses 1 million observations from the data set sgf2013. The macro variable nThreads is set to 1, 2,
3, 4, 6, 8, 10, and 12, and the elapsed times (denoted by t1; t2; t3; : : : ; t12) are recorded. The speedups si

that are the y coordinates of the points in Figure 1 are defined by si D t1=ti .

9

SAS® and Big DataSAS Global Forum 2013

 
 



Figure 1 Scalability on a 12-CPU Windows Server

In Figure 1 the solid diagonal line represents perfect scalability, which is also called linear scalability. You
see that these tests exhibit nearly linear scalability up to six threads, but then scalability starts tailing off.

Figure 2 shows a similar scalability test for the following PROC HPGENSELECT step, which was run on a
64-CPU UNIX server:

proc hpgenselect data=sgf2013(obs=1000000);
class c: ;
model yPoisson = x: c: / dist=poisson;
selection method=stepwise(choose=sbc);
performance nthreads = &nThreads;

run;

These statements repeat the test with 1, 2, 4, 8, 16, 32, and 64 threads.

Figure 2 Scalability on a 64-CPU UNIX Server

10

SAS® and Big DataSAS Global Forum 2013

 
 



Because this test includes stepwise model selection, the time spent loading data into memory is amortized
by many passes though this memory as candidates for entry or removal from the model are evaluated at
each step of the selection process. This amortization results in better scalability than would be observed if no
model selection were done. This test exhibits reasonable scalability to about 16 threads, but then scalability
drops off markedly as the number of threads increases.

Moving to Distributed Mode — Taking Advantage of Big Data

This subsection highlights the use of PROC HPGENSELECT to select a Poisson regression model. As the
number of simulated observations increases, you can fit increasingly accurate models.

The following statements provide a starting point for the analysis in single-machine mode. The same
statements are used by subsequent examples in this subsection, except that the number of observations
that are used increases.

proc hpgenselect data=sgf2013(obs=50000);
class c:;
model yPoisson = x: c: / dist=poisson;
selection method=stepwise(choose=sbc);

run;

Figure 3 shows the settings that are used in this analysis. The “Performance Information” table confirms that
PROC HPGENSELECT executed on the client with four concurrent threads.

Figure 3 Single-Machine Mode

The HPGENSELECT Procedure

Performance Information

Execution Mode On Client
Number of Threads 4

Model Information

Data Source LOCALLIB.SGF2013_SIM
Response Variable yPoisson
Class Parameterization GLM
Distribution Poisson
Link Function Log
Optimization Technique Newton-Raphson with Ridging

Selection Information

Selection Method Stepwise
Select Criterion Significance Level
Stop Criterion Significance Level
Choose Criterion SBC
Effect Hierarchy Enforced None
Entry Significance Level (SLE) 0.05
Stay Significance Level (SLS) 0.05
Stop Horizon 1

Number of Observations Read 50000
Number of Observations Used 50000

Figure 4 shows the “Selection Summary” table and the “Selected Effects” table. The selected model
contains most—but not all—of the true effects in the model, and it contains no nuisance effects. The
“Selection Summary” table shows that if the selected model had been based solely on the preset entry and

11

SAS® and Big DataSAS Global Forum 2013

 
 



stay significance levels (SLE and SLS), then the selected model would have contained several nuisance
regressors. By using the data-dependent Schwarz-Bayesian criterion (SBC) to select the final model, you
obtain a more parsimonious model.

Figure 4 Single-Machine Mode

The HPGENSELECT Procedure

Selection Summary

Effect Number p
Step Entered Effects In SBC Value

0 Intercept 1 215578.975 .
------------------------------------------------------------

1 cIn5 2 204825.696 <.0001
2 xIn20 3 197379.021 <.0001
3 cIn4 4 190320.737 <.0001
4 xIn19 5 183900.037 <.0001
5 xIn18 6 177814.623 <.0001
6 xIn17 7 172789.983 <.0001
7 xIn15 8 168336.001 <.0001
8 xIn16 9 163980.714 <.0001
9 xIn14 10 160426.937 <.0001

10 xIn13 11 157363.403 <.0001
11 cIn3 12 154747.767 <.0001
12 xIn12 13 152175.970 <.0001
13 xIn11 14 149973.877 <.0001
14 xIn10 15 148013.167 <.0001
15 xIn9 16 146395.314 <.0001
16 xIn8 17 145297.496 <.0001
17 xIn7 18 144388.018 <.0001
18 xIn6 19 143724.718 <.0001
19 cIn2 20 143171.628 <.0001
20 xIn5 21 142747.127 <.0001
21 xIn4 22 142428.790 <.0001
22 xIn3 23 142277.727 <.0001
23 cIn1 24 142208.806 <.0001
24 xIn2 25 142163.774 <.0001
25 xIn1 26 142130.903* <.0001
26 xOut25 27 142134.214 0.0061
27 xOut24 28 142140.775 0.0391

* Optimal Value of Criterion

Selected Effects: Intercept xIn1 xIn2 xIn3 xIn4 xIn5 xIn6 xIn7 xIn8 xIn9 xIn10
xIn11 xIn12 xIn13 xIn14 xIn15 xIn16 xIn17 xIn18 xIn19 xIn20
cIn1 cIn2 cIn3 cIn4 cIn5

Will you get a better model if you use more data? The following statements repeat the previous analysis
with 10 million observations from the simulated data. In order to fit this model in a small amount of time, a
PERFORMANCE statement is added requesting that the analysis be done in distributed mode. Note that in
order to run PROC HPGENSELECT in distributed node, it is necessary to license SAS High-Performance
Statistics.

proc hpgenselect data=sgf2013(obs=10000000);
class c:;
model yPoisson = x: c: / dist=poisson;
selection method=stepwise(choose=sbc);
performance nodes = all

12

SAS® and Big DataSAS Global Forum 2013

 
 



installoc = "/opt/TKGrid"
gridhost = "hpa.sas.com"
details;

run;

The PERFORMANCE statement specifies three pieces of information that are needed to execute this code in
distributed mode. The GRIDHOST= and INSTALLLOC= options name the appliance and the install location
of the SAS grid components on the appliance. If you intend to run several analyses in distributed mode, you
can instead use SAS OPTION statements to set these values as environment variables that do not need
to be specified in each procedure invocation. The NODES=ALL option in the PERFORMANCE statement
requests that all the worker nodes on the appliance be used.

In this case, the data reside on the SAS client machine and are sent to the appliance and distributed to the
worker nodes when PROC HPGENSELECT executes.

The “Performance Information” table in Figure 5 indicates that the computations were performed in a
distributed environment with eight worker nodes, each of which uses 24 threads.

Figure 5 Distributed Mode Execution

The HPGENSELECT Procedure

Performance Information

Host Node hpa.sas.com
Install Location /opt/TKGrid
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 8
Number of Threads per Node 24

Model Information

Data Source LOCALLIB.SGF2013_SIM
Response Variable yPoisson
Class Parameterization GLM
Distribution Poisson
Link Function Log
Optimization Technique Newton-Raphson with Ridging

Selection Information

Selection Method Stepwise
Select Criterion Significance Level
Stop Criterion Significance Level
Choose Criterion SBC
Effect Hierarchy Enforced None
Entry Significance Level (SLE) 0.05
Stay Significance Level (SLS) 0.05
Stop Horizon 1

Number of Observations Read 10000000
Number of Observations Used 10000000

13

SAS® and Big DataSAS Global Forum 2013

 
 



Another indication of distributed execution is the following message, which is issued by all HPA procedures
in the SAS log:

NOTE: The HPGENSELECT procedure is executing in the distributed
computing environment with 8 worker nodes.

Figure 6 shows the “Selection Summary” table and the “Selected Effects” table. You see that this model
does not contain any of the nuisance regressors, and it includes all the true effects except for xTiny.

Figure 6 Distributed Mode Execution

The HPGENSELECT Procedure

Selection Summary

Effect Number p
Step Entered Effects In SBC Value

0 Intercept 1 43300442.4 .
------------------------------------------------------------

1 cIn5 2 41122656.9 <.0001
2 xIn20 3 39648012.4 <.0001
3 cIn4 4 38236327.1 <.0001
4 xIn19 5 36907026.9 <.0001
5 xIn18 6 35713794.7 <.0001
6 xIn17 7 34641871.6 <.0001
7 xIn16 8 33687835.4 <.0001
8 xIn15 9 32849812.1 <.0001
9 xIn14 10 32117657.2 <.0001

10 xIn13 11 31491617.5 <.0001
11 xIn12 12 30954908.4 <.0001
12 cIn3 13 30445010.2 <.0001
13 xIn11 14 29989138.2 <.0001
14 xIn10 15 29613904.0 <.0001
15 xIn9 16 29311193.4 <.0001
16 xIn8 17 29073206.5 <.0001
17 xIn7 18 28887699.6 <.0001
18 xIn6 19 28752983.6 <.0001
19 cIn2 20 28632981.0 <.0001
20 xIn5 21 28538988.2 <.0001
21 xIn4 22 28478692.9 <.0001
22 xIn3 23 28444397.3 <.0001
23 xIn2 24 28429066.4 <.0001
24 cIn1 25 28417503.0 <.0001
25 xIn1 26 28413785.9 <.0001
26 xSubtle 27 28413770.1* <.0001
27 xTiny 28 28413773.8 0.0004
28 xOut71 29 28413781.6 0.0039
29 xOut61 30 28413791.0 0.0098
30 xOut16 31 28413801.4 0.0167
31 xOut17 32 28413812.1 0.0198
32 xOut64 33 28413823.5 0.0294
33 xOut25 34 28413835.5 0.0427

* Optimal Value of Criterion

Selected Effects: Intercept xIn1 xIn2 xIn3 xIn4 xIn5 xIn6 xIn7 xIn8 xIn9 xIn10
xIn11 xIn12 xIn13 xIn14 xIn15 xIn16 xIn17 xIn18 xIn19 xIn20
xSubtle cIn1 cIn2 cIn3 cIn4 cIn5

14

SAS® and Big DataSAS Global Forum 2013

 
 



Figure 7 shows the “Timing Table” that is produced when you specify the DETAILS option in the PERFOR-
MANCE statement. You see that it took about two minutes to distribute the data to the appliance. The total
run time for this analysis is about seven minutes, which is substantially faster than if this analysis had been
done in single-machine mode.

Figure 7 Timing

Procedure Task Timing

Task Seconds Percent

Distributing Data 125.68 28.54%
Reading and Levelizing Data 62.58 14.21%
Candidate evaluation 142.91 32.45%
Candidate model fit 105.90 24.05%
Final model fit 3.32 0.75%

Now, suppose that you want to repeat this analysis with all 50 million observations in sgf2013. In practice,
such large data sets are often stored in a distributed database or in HDFS on a cluster where Hadoop is
installed. To illustrate how you can run the analysis alongside a database, the entire data set sgf1013 was
preloaded onto a Greenplum appliance. The following statements show how you can access these data and
run PROC HPGENSELECT in distributed mode alongside the database:

options set=GRIDHOST="hpa.sas.com";
options set=GRIDINSTALLLOC="/opt/TKGrid";

libname gridLib greenplm
server = "hpa.sas.com"
user = XXXXX
password = YYYYY
database = myDB;

proc hpgenselect data=gridLib.sgf2013;
class c:;
model yPoisson = x: c: / dist=poisson;
selection method=stepwise(choose=sbc);
performance details;

run;

Figure 8 Distributed Mode Execution

The HPGENSELECT Procedure

Performance Information

Host Node hpa.sas.com
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 8
Number of Threads per Node 24

15

SAS® and Big DataSAS Global Forum 2013

 
 



Figure 8 continued

Model Information

Data Source GRIDLIB.SGF2013_SIM
Response Variable ypoisson
Class Parameterization GLM
Distribution Poisson
Link Function Log
Optimization Technique Newton-Raphson with Ridging

Selection Information

Selection Method Stepwise
Select Criterion Significance Level
Stop Criterion Significance Level
Choose Criterion SBC
Effect Hierarchy Enforced None
Entry Significance Level (SLE) 0.05
Stay Significance Level (SLS) 0.05
Stop Horizon 1

Number of Observations Read 50000000
Number of Observations Used 50000000

Figure 9 shows the “Selection Summary” table and the “Selected Effects” table. You see that this model
includes all the true effects (even xTiny). However, the final model that is chosen based on the SBC includes
two nuisance effects, even though all the true effects are selected before any of the nuisance effects.

16

SAS® and Big DataSAS Global Forum 2013

 
 



Figure 9 Alongside Greenplum Execution

The HPGENSELECT Procedure

Selection Summary

Effect Number p
Step Entered Effects In SBC Value

0 Intercept 1 216534570 .
------------------------------------------------------------

1 cin5 2 205646118 <.0001
2 xin20 3 198263366 <.0001
3 cin4 4 191205816 <.0001
4 xin19 5 184546950 <.0001
5 xin18 6 178576949 <.0001
6 xin17 7 173217524 <.0001
7 xin16 8 168444762 <.0001
8 xin15 9 164255968 <.0001
9 xin14 10 160593994 <.0001

10 xin13 11 157450578 <.0001
11 xin12 12 154763299 <.0001
12 cin3 13 152223999 <.0001
13 xin11 14 149945041 <.0001
14 xin10 15 148063319 <.0001
15 xin9 16 146551826 <.0001
16 xin8 17 145358357 <.0001
17 xin7 18 144437793 <.0001
18 xin6 19 143762116 <.0001
19 cin2 20 143160713 <.0001
20 xin5 21 142689381 <.0001
21 xin4 22 142389319 <.0001
22 xin3 23 142218863 <.0001
23 xin2 24 142141849 <.0001
24 cin1 25 142085236 <.0001
25 xin1 26 142066707 <.0001
26 xsubtle 27 142066611 <.0001
27 xtiny 28 142066585 <.0001
28 xout71 29 142066571 <.0001
29 xout61 30 142066570* <.0001
30 xout16 31 142066572 0.0001
31 xout51 32 142066577 0.0003
32 cout4 33 142066629 0.0011
33 xout47 34 142066638 0.0029
34 xout2 35 142066648 0.0054
35 xout25 36 142066658 0.0056
36 xout3 37 142066668 0.0057
37 xout78 38 142066679 0.0079
38 xout62 39 142066690 0.0100
39 xout45 40 142066701 0.0102
40 xout42 41 142066713 0.0106
41 xout76 42 142066724 0.0128
42 xout79 43 142066736 0.0139
43 xout22 44 142066748 0.0183
44 xout55 45 142066761 0.0288
45 xout23 46 142066774 0.0402
46 xout59 47 142066788 0.0454
47 xout74 48 142066802 0.0491

* Optimal Value of Criterion

17

SAS® and Big DataSAS Global Forum 2013

 
 



Figure 9 continued

Selected Effects: Intercept xin1 xin2 xin3 xin4 xin5 xin6 xin7 xin8 xin9 xin10
xin11 xin12 xin13 xin14 xin15 xin16 xin17 xin18 xin19 xin20
xout61 xout71 xsubtle xtiny cin1 cin2 cin3 cin4 cin5

Figure 10 shows the timing table. Because the data are already on the appliance and PROC HPGENSELECT
runs alongside the database, loading the data from the database into memory takes only a small part (less
than 3%) of the overall time of about 21 minutes needed to complete this analysis.

Figure 10 Timing for Alongside Greenplum Execution

Procedure Task Timing

Task Seconds Percent

Distributing Data 0.34 0.03%
Reading and Levelizing Data 33.22 2.69%
Candidate evaluation 638.31 51.62%
Candidate model fit 551.57 44.60%
Final model fit 13.21 1.07%

SUMMARY

High-performance statistical modeling procedures, a new generation of SAS software for statistical modeling,
are being developed based on design principles for high-performance computing with ever-increasing
volumes of data. The principal goal for these procedures is building powerful predictive models. On single
machines, high-performance statistical modeling procedures achieve scalability by exploiting all the cores on
the machine. In distributed computing environments, these procedures exploit parallel access to the data,
along with all the cores and the huge amounts of memory that are available.

REFERENCES

Cohen, R. (2002), “SAS Meets Big Iron: High Performance Computing in SAS Analytical Procedures,” in
Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference, Cary, NC: SAS
Institute Inc.

APPENDIX

%let nObs = 50000000;
%let nContIn = 20;
%let nContOut = 80;
%let nClassIn = 5;
%let nClassOut = 5;
%let maxLevs = 5;

data sgf2013;
array xIn{&nContIn};
array xOut{&nContOut};
array cIn{&nClassIn};
array cOut{&nClassOut};

drop i j sign nLevs xBeta expXBeta logitXBeta;

18

SAS® and Big DataSAS Global Forum 2013

 
 



do i=1 to &nObs;
sign = -1;
xBeta = 0;
do j=1 to dim(xIn);

xIn{j} = ranuni(1);
xBeta = xBeta + j*sign*xIn{j};
sign = -sign;

end;
do j=1 to dim(xOut);

xOut{j} = ranuni(1);
end;

xSubtle = ranuni(1);
xTiny = ranuni(1);

xBeta = xBeta + 0.1*xSubtle + 0.05*xTiny;

do j=1 to dim(cIn);
nLevs = min(1+j,&maxlevs);
cIn{j} = 1+int(ranuni(1)*nLevs);
xBeta = xBeta + j*sign*(cIn{j}-nLevs/2);
sign = -sign;

end;

do j=1 to dim(cOut);
nLevs = min(1+j,&maxlevs);
cOut{j} = 1+int(ranuni(1)*nLevs);

end;

expXBeta = exp(xBeta/20);
yPoisson = ranpoi(1,expXBeta);
yNormal = xBeta + 10*rannor(1);

logitXBeta = expXBeta/(1+expXBeta);

if ranuni(1) < logitXBeta then yBinary = 0;
else yBinary = 1;

output;
end;

run;

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Robert Cohen
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
robert.cohen@sas.com

Robert Rodriguez
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
bob.rodriguez@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

19

SAS® and Big DataSAS Global Forum 2013

 
 


	2013 Table of Contents



