
1

Paper 185-2013

Coaching SAS® Beginner Programmers: Common Problems and Some Solutions

Peter Timusk, Centre for Special Business Projects, Statistics Canada, Ottawa, Ontario Canada

ABSTRACT

This paper will present a number of problems SAS beginner programmers encounter when first writing SAS
programs. The paper will cover three cases and show how pointing out patterns to beginner programmers will aid
them in avoiding errors in their SAS code.

Here are the three problems we will look at in this paper.

1. The IF statement and the order of operations of logic operators and the use of parentheses.

2. The different between speaking a logic expression and how to code a logic expression with an example from

setting ranges for displaying a variable’s count in five columns.

3. In the final example a complex assignment is presented to the beginning programmer and they do not know

how to proceed because they are overwhelmed with the complexity. Then this examples shows how seeing

patterns in the specifications can help make the work straight forward for a beginner and make a complex

specification simple.

INTRODUCTION

This paper will present a number of problems SAS beginning programmers encounter when first writing SAS
programs. The paper will cover three cases and show how pointing out patterns to beginner programmers will aid
them in avoiding errors in their SAS code.

Here are the three problems we will look at in this paper.

1. The IF statement and the order of operations of logic operators and the use of parentheses.

2. The different between speaking a logic expression and how we code a logic expression with an example from

setting ranges for displaying a variable’s count in five columns.

3. The final example looks at a complex assignment and shows how seeing patterns in the specifications can help

make the work straight forward for a beginner and make a complex specification simple.

The paper explains how showing programmers patterns can aid in their avoiding these problems. By seeing patterns
complex programming problems are made much simpler.

We will look at three examples.

Example 1: The IF statement and the order of operations of logic operators and the use
of parentheses.

In this example, an IF statement should group two related groups of variables in a balanced structure as SAS
evaluates their values. Here is the statement coded correctly.

IF (A1=1 or A2 = 1) and (B1=2 and B2=2 and B3=2) THEN Var1=1; ELSE Var1 =0;

In this case, both the conditions concerning the A variables and the B variables need to be true, so the code
surrounds these related variables with parentheses.

The beginner programmer will often code this without parentheses in this way:

IF A1=1 or A2 = 1 and B1=2 and B2=2 and B3=2 THEN Var 1=1; ELSE Var1 =0;

Planning and SupportSAS Global Forum 2013

2

The problem here is that if A1=1 the evaluation will stop here and not even consider the B series variables. In the
intended code that SAS evaluator must evaluate the B variables and these must all be 2 before Var1 will be set to 1.

The pattern to see here to avoid the error can be the similar letters A and B. An alternative pattern that would help is
to see the different “or” and “and” statements and take care in grouping these as this is really the key reason the
mistakes fails. Being aware of the logical operators and how these w0ork can take some exposure to formal logic or
programming courses that would cover logic.

Example 2: The different between speaking a logic expression and how to code a logic
expression with an example from setting ranges for displaying a variable’s count in five
columns.

Here is the correct coding we are looking for:

IF Var1 = 0 THEN Col_1 = 1 ; ELSE Col_1 = 0 ;

IF 0 < Var1 <= 1 THEN Col_2 = 1; ELSE Col_2 = 0 ;

IF 1 < Var1 <= 2 THEN Col_3 =1; ELSE Col_3 = 0 ;

IF 2 < Var1 <= 3 THEN Col_4 = 1 ; ELSE Col_4 = 0;

IF Var1 > 3 THEN Col_5 = 1; ELSE Col_5 = 0;

Here is the way this code is mistakenly programmed as though it were spoken:

IF Var1 = 0 THEN Col_1 = 1 ; ELSE Col_1 = 0 ;

IF 0 < Var1 and <= 1 THEN Col_2 = 1; ELSE Col_2 = 0 ;

IF 1 < Var1 and <= 2 THEN Col_3 =1; ELSE Col_3 = 0 ;

IF 2 < Var1 and <= 3 THEN Col_4 = 1 ; ELSE Col_4 = 0;

IF Var1 > 3 THEN Col_5 = 1; ELSE Col_5 = 0;

This could be fixed using this code instead:

IF Var1 = 0 THEN Col_1 = 1 ; ELSE Col_1 = 0 ;

IF 0 < Var1 and Var1 <= 1 THEN Col_2 = 1; ELSE Col_2 = 0 ;

IF 1 < Var1 and Var1 <= 2 THEN Col_3 =1; ELSE Col_3 = 0 ;

IF 2 < Var1 and Var1 <= 3 THEN Col_4 = 1 ; ELSE Col_4 = 0 ;

IF Var1 > 3 THEN Col_5 = 1; ELSE Col_5 = 0 ;

The problem here is speaking the code and saying, Var1 is greater than 1 and less than or equal to 2. Again once the
pattern seen in this example is show to the beginner programmer they are better able to write the code when needed.

Example 3: The final example looks at a complex assignment and shows how seeing
patterns in the specifications can help make the work straight forward for a beginner and
make a complex specification simple.

The third example explores the idea of patterns guiding programming a bit further. Here the problem is not a mistake
in code. The beginning programmer being assigned specifications for a table that at first glance looks very confusing
and complex. The beginning programmer who worked on programming this table was stumped at first and not sure
they could do the work. In this case, after being shown the patterns the programmer found no problem with coding
this table.

Planning and SupportSAS Global Forum 2013

3

Here is a sample version of our specifications from the client.

Table 1 A Complex Specification:

Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
7

Column
8

Column
9

Column
10

Column
11

Column
12

Row
1 A45060 A47060 C45060 C47060 A45070 A47070 C45070 C47070 B55070 B57070 D55070 D57070

Row
2 A45061 A47061 C45061 C47061 A45071 A47071 C45071 C47071 B55071 B57071 D55071 D57071

Row
3 A45062 A47062 C45062 C47062 A45072 A47072 C45072 C47072 B55072 B57072 D55072 D57072

Row
4 A45063 A47063 C45063 C47063 A45073 A47073 C45073 C47073 B55073 B57073 D55073 D57073

Row
5 A45064 A47064 C45064 C47064 A45074 A47074 C45074 C47074 B55074 B57074 D55074 D57074

Row
6 A46060 A48060 C46060 C48060 A46070 A48070 C46070 C48070 B56070 B58070 D56070 D58070

Row
7 A46061 A48061 C46061 C48061 A46071 A48071 C46071 C48071 B56071 B58071 D56071 D58071

Row
8 A46062 A48062 C46062 C48062 A46072 A48072 C46072 C48072 B56072 B58072 D56072 D58072

Row
9 A46063 A48063 C46063 C48063 A46073 A48073 C46073 C48073 B56073 B58073 D56073 D58073

Row
10 A46064 A48064 C46064 C48064 A46074 A48074 C46074 C48074 B56074 B58074 D56074 D58074

This presents a complex specification that at first may appear to be just a sea of letters and numbers. Although in this
public example the rows and columns do not have titles, in this case the real titles did not help much in figuring this
out. What did help was being shown the repeated patterns.

Notice that columns 1, 2, 5 and 6 have variable names that start with the same letter, A. Also note the same pattern
two columns over with the letter C. This is again seen as part of the pattern in the last four columns with the letters B
and D.

Another pattern is in the columns of the second and third digits. Columns 1, 3, 5 and column 7 both have five rows of
45 and then five rows of 46. Similarly columns 2, 4 6 and 8 have five rows of 47 and then five rows of 48. The last
four columns show a similar pattern except the first digit is changed so instead of 45 we have 55, etc. .

The second last digit in the first four columns shows another pattern and is always 6 for the first four columns and for
the next four columns this is changed to a 7 and that between these two sets of four columns this is the only
difference.

There is also a row pattern in that the last digit runs across the rows from 1 to 5 then starts at 1 again and goes to 5
by the tenth row.

CONCLUSION

Seeing these patterns, the code also became patterns and easier for the programmer to verify their work.

The paper explained how showing beginner programmers patterns can aid the beginner programmer to avoid these
problems. This pattern recognition approach also making complex programming problems much simpler. And this
approach allows more ready verification and self checking as the programmer writes their program.

Planning and SupportSAS Global Forum 2013

4

ACKNOWLEDGMENTS

I wish to thank my supervisor Frances Anderson for help reviewing and organizing my paper.

RECOMMENDED READING

 The Little SAS
®
 Book

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Peter Timusk
Enterprise: Statistics Canada
Address: 170 Tunney’s Pasture Driveway
Ottawa, Ontario K1A 0T6
Work Phone: (613) 951-2531
E-mail: peter.timusk@statcan.gc.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Planning and SupportSAS Global Forum 2013

	2013 Table of Contents

