
Paper 189-2013

If You Have Programming Standards, Please Raise Your Hand:
An Everyman’s Guide

Dianne Louise Rhodes, U.S. Census Bureau., Washington DC

ABSTRACT

This paper goes through a step-by-step process of developing programming standards,
classifying them, and entering them into a database. This database can then be used to develop
style sheets and check lists for peer review and testing. Through peer reviews and in preparation
for them, programmers learn good programming practices. We describe in detail the most
common standards, and why and how they should be applied.

INTRODUCTION

In researching this paper, I found a number of sources of programming standards, some specific to SAS®
and others more general (see References). There is agreement that standards are a good thing, but rarely
did I find mention of a practical approach to the use and enforcement of standards. No one wants to police
programmers; that has been called “herding cats." Given explicit conventions to follow, programmers can
easily review each other’s work and apply these standards. When the corporate culture encourages peer
reviews by allocating time to this activity it is an opportunity for professional growth. The process for
developing explicit standards and checklists for peer reviews are detailed in this paper.

THE LOGIC BEHIND STANDARDS AND STYLE SHEETS

In a maintenance environment, a programmer should be able to make changes to a program without fully
comprehending the entire process. If the original programmer has followed standards, which always include
comments, it will be easier to understand the code (Lavery, 2009).

The majority of standards are rules that make the code easier to read on the page, easier to follow the logic
and logical branches, and leave less room for interpretation. Code that meets these requirements requires
less time and effort to maintain. Standards are useful working in a teamwork development environment
because they set minimum requirements, which in turn insure some uniformity from programmer to
programmer. They are imperative in managing a large project, where source code control is also an issue.
(See Mitchell, 2005).

Standards for the sake of having standards are a good idea as well. Aster (1999) says: “A good style is
simple, clear, and consistent... The main point, however, is that just about any style that you follow
consistently is better than no style. Even a bizarrely idiosyncratic coding style can eventually start to make
sense to the reader. But if your code has no style, a maintenance programmer can never quite figure it out
without reading every detail.”

If you are the only one who will be reading your code, you may be asking yourself, “Why bother?” As
Lavery (2009) points out in his Animated Guide, the goal is to produce code that is easy to understand,
maintain, and produces high quality, low cost outputs. One of Murphy’s laws no doubt is that you will forget
why you did what you did, and when you or someone else revisits the code you won’t be able to reproduce
your work (Axelrod, 2009).

JUSTIFICATION FOR PEER REVIEWS
Peer reviews and formal walkthroughs are a valuable exercise in quality control. These processes help to
ensure that code complies with programming standards, meets specifications, and is error-free. They are
critical in managing a large project to ensure uniformity in programming style and use of variable names
(Mitchell, 2005) Often this process breaks down as a project progresses and deadlines loom large. This is
precisely the situation that benefits the most by having a second or third pair of eyes examining your work. A
good Peer Review Process demands a corporate culture that adopts it and embraces it.

Planning and SupportSAS Global Forum 2013

FACILITATING PEER REVIEWS AND WALKTHROUGHS

An informal walkthrough requires preparation time on the part of the reviewer, the programmer, and others
critical to the review process. The “others” will vary as different corporate cultures may include managers, for
example, while others specifically exclude them. Once time is allocated, a helpful tool is to have a checklist.
This gives the reviewer an objective set of criterion to apply against the program or code being reviewed.
The checklists will vary depending on the lifecycle stage of the programming, e.g., analysis, design,
implementation, testing, maintenance.

THE DILEMMA

Despite the promises of a “paperless office” made in the ‘80’s, I have accumulated a variety of standards,
style sheets, testing procedures, hints and tips. Mostly these are a rag-tag bunch of paper documents, with
something of value lurking in their depths. Some were developed for a particular project and are therefore
very specific; others are generic “wish lists” of programmer behavior. The dilemma – how to translate all
these piles of paper into “useable” standards?

RULES OF DECLUTTERING

I approached this problem using some of the tricks I have learned to “declutter” my living and working
spaces. The first rule: get everything out in the open. The second rule: group similar items together.
Eliminate duplicates. The third rule: find homes for everything. And the fourth rule: throw out or give away
anything you haven’t used in over a year. That might be harder to do with standards than with old clothes,
but the idea is the same – if you aren’t using it, it’s probably obsolete.

APPLYING THE RULES TO STANDARDS

The first task was to locate copies of all the standards, rules, and tips I wanted to include. This meant I had
to dig through files and piles of papers to find all the goodies I wanted to include in this project. I also printed
out various SUGI and NESUG papers appropriate to the subject (see References). The second task: put
like objects together, i.e. Classify them. I initially defined four groups of rules: documentation, efficiency,
maintenance, and testing (with some overlap). The third task: put them into a database. I elected to use MS
Access® because it was quick and easy and I could give the data entry work to someone who wasn’t
familiar with SAS. I also tried to operationalize the rules, that is, give working examples. The fourth task: I
eliminated some rules that were vague or subjective such as “avoid unnecessary branches.”

CORPORATE STANDARDS

Does your company have corporate standards? When I asked this question of my colleagues, the answer
was no. Did I want to be the one to try to create corporate standards? No. For this reason, I decided to keep
most of my styles and tips pretty general, instead of implementing specific rules. For example, I suggest that
it is useful to indent code to show logical flow. But I don’t specify a style, since I don’t really care what style
is used as long as it is used consistently. I once worked on a project that dictated you could not nest IF
THEN ELSE statements more than five deep without review. Ask yourself, do you want to be the IF THEN
ELSE police?

THE TIPS DATABASE

Earlier drafts on this paper commented on the “Tips” database I created in Access. Since we have moved to
Office 2010 I was able to use an Access database template called “Issues”.

The categories that I defined were:

• Documentation. Tips or standards that help document the purpose of the code and make it easier
to read.

• Efficiency. Tips to make the code more efficient; that is to run faster.

2

Planning and SupportSAS Global Forum 2013

• Maintenance. Tips to make the code easier to maintain. These sometimes are contrary to the
efficiency tips!

• Testing. These tips mainly concerned testing issues, or things to look for when testing. This is an
area for future enhancements.

FORMS

This new system features a login screen:

When you add a tip or a comment, it annotates it with your login information.

The main form is a simple data entry form. Here you transcribe from a paper cheat sheet the key elements
of the summary, status, or standard.

3

Planning and SupportSAS Global Forum 2013

The details screen provides space for more information and examples:

Note that you can make the standards project specific by defining them in the “project” field.

4

Planning and SupportSAS Global Forum 2013

REPORTS

The canned reports available by clicking on “Report Center” are shown above.

Here is an example of the Issues by Category:

5

Planning and SupportSAS Global Forum 2013

STANDARDS IN DETAIL

THE HEADER OR DOCBLOCK

Every set of standards for SAS starts with a documentation block at the top of the program. Here’s a
minimal version (adapted from Axelrod, 2009):

/**/
/* program: mp003.sas */
/* */
/* */
/* path: h:\projects\my_projects */
/* */
/* author: D. Rhodes */
/* Date: March 2009 */
/* input 2010 project data file – ASCII */
/* */
/* output: project_data.sas7bdat */
/* purpose: Read in raw data and save as a SAS ds */
/* usage : %mymacro(dsn=mydata, version=reltest ; */
/**/
When the program is modified, add a note. For macros, it is a good idea to include usage, eg. To call this
macro you need to specify dataset name and version

%mymacro(dsn=mydata, version=reltest) ;

The main drawback is laziness. For example, an analyst copies a program to use as a starting point, but
fails to update the doc block.
Rick Mitchell gives a cute example of how a job security specialist would use the program header:

Program name: Rick57.ABC
Owned by : Rick
Date Written: 2002
Purpose: To be provided on a need to know basis
(Mitchell, 2005)

At Freddie Mac, I saw a version like

Program name: roll_over.sas
Author: C12349
Date Written: March 2, 2010
Purpose: roll over to the next year

Not really very helpful, is it? Neither of these examples provide you with additional information beyond the
name of the program. In the FM example, the author is given as their employee id, which couldn’t be easily
traced.

NO ERRORS OR WARNINGS

This should be obvious but it’s often skipped over. “It’s just a warning, it doesn’t affect the outcome.” If
you’re smart enough to figure out that it does not effect the results, you are smart enough to fix it. (A pet
peeve of mine). Warnings may also disguise true errors.

NO NOTES FOR CONVERSION, UNINITIALIZED

These particular notes do not necessarily cause errors, but they can be confusing, especially when
encountered by a new programmer working in legacy code. Use MSGLEVEL = I for additional information
notes.

6

Planning and SupportSAS Global Forum 2013

Notes that Character values have been converted to numeric (and vice versa) can be avoided by using put
or input statements.

Do not allow NOTE: Variable XYZ is un-initialized. This could mean that a variable you are expecting is not
there, or you spelled it incorrectly (Lavery, 2009). Always initialize variables, preferably to a special missing
value so you can tell when you’ve set to missing intentionally, and when it has been set to missing
otherwise. I worked on a project at BLS where one programmer would use length statements to put
variables on the PDV and then never set a value. It drove me nuts.

READABILITY

Liberal use of white space as indentation, leave a blank line between steps. Write one statement per line.
Keep your text in columns 1-72. If code goes beyond column 150 the reader has to scroll back and forth.
On some mainframe systems, code beyond cc 72 will be “lost” or not interpreted.

NAMING CONVENTIONS

These rules apply to variable names, names of datasets, and names of programs (Mitchell, 2005). Names
should not be reused. Use a meaningful name. I is okay for an index, but I1 is just going to be difficult. At
one job, I inherited a program named Final2. Shouldn’t that be a clue that the name final is meaningless?
But I couldn’t change the name it had been institutionalized by management. If you are defining an array of
variables, use a leading zero eg. Var01-Var10 so that the sort sequence will put them in logical order when
used in reports or contents.

UNAMBIGUOUS MERGING

Use MSGLEVEL = I for additional information notes. This will tell you if the same variable is on both sides of
a merge. The only common variables should be the merge by variables. You should never allow this
situation as it can propagate missing values. Always use a BY statement in a merge. Some work sites may
set NOMERGEBY to trip an error. The default for NOMERGEBY is a NOTE. If you don’t need a BY
statement, maybe it isn’t a merge. Do not allow the message NOTE: MERGE statement has more than one
data set with repeats of BY values. This can propagate missing values and have an effect similar to a
Cartesian join.

USE SAS FUNCTIONS OR PROCEDURES INSTEAD OF ROLLING YOUR OWN

SAS® functions have been rigorously tested and optimized. They will be faster, easier to understand, and
more accurate. Be sure to check out the “any” and “not” functions (introduced in version 9) for data
cleaning.

MINIMIZE HARD CODING

Use a macro variable at the beginning of your program to set a value. This makes the code easier to reuse
(Axelrod, 2009). For example, for a time period of quarter use %let qtr = 4 or for quarter and year,
 %let qyr = 201304. If there are a number of parameters, maybe you should wrap your code in a macro.

ENHANCEMENTS

The major enhancement I plan to make is to create another table and input form to allow programmers to
interact with the Peer Review and Test checklists while desk checking a program. This would allow them to
check off that a program is in compliance or needs work in a particular area.

7

Planning and SupportSAS Global Forum 2013

CONCLUSION

Organizing standards and style sheets can be an onerous task, but it’s a necessary requisite to
implementing their use. Putting them all into one place, cleaning them up, and having them where they are
accessible to the programming staff is part of the process of learning good programming practices.

DISCLAIMER: The contents of this paper are the work of the author(s) and do not necessarily represent the
opinions, recommendations, or practices of Connect International, Inc. or the Bureau of the Census.

REFERENCES

Aster, Rick (1999).“Coding for Posterity.” In the 11th Annual Proceedings of the NorthEast SAS Users
Group. (NESUG).
http://www.nesug.org/Proceedings/nesug98/appl/p131.pdf

Axelrod, Elizabeth (2009). “Boot Camp for Programmers: Stuff you need to know that’s not in the manual.”
Proceedings of SAS Global Forum (SGF) 2009.

Lavery, Russ (2009) “An Animated Guide to Coding Standards for SAS Production Programs. “
Proceedings, NESUG , 2009.

Mitchell, Rick M. (2005). “Fast and Easy Ways to Annoy the Job Security Specialist.” Proceedings, SAS
User Group International (SUGI) 30.

ACKNOWLEDGMENTS

I want to thank my colleagues at the Census Bureau for their support and timely feedback.

CONTACT INFORMATION

Comments, questions, and additions are welcomed.
Contact the author at:
Dianne Louise Rhodes
4600 Silver Hill Rd, 7K120B
Washington, DC 20233
Work Phone: (301) 763-2093
Email: diannerhodes@comcast.net

TRADEMARKS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

8

Planning and SupportSAS Global Forum 2013

http://www.nesug.org/Proceedings/nesug98/appl/p131.pdf
mailto:diannerhodes@comcast.net

	2013 Table of Contents

