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Paper 496-2013 

Predicting Health Care Expenditures with the MCMC Procedure 
Greg Watson, UCLA Center for Health Policy Research, Los Angeles, CAS 

ABSTRACT 
Substantial variation, excess zeros, skew and extreme outliers make fitting and predicting health care expenditures 
rather difficult. This paper presents a Bayesian model that uses the first year of the fourteenth panel (2009-2010) of 
the nationally representative Medical Expenditures Panel Survey (MEPS) to predict health care expenditures for 
individuals in the second year. The merits of a Bayesian approach are examined and compared to classical 
alternatives. Implementation in the MCMC procedure is presented in detail, and model diagnostics and validation are 
discussed. 

INTRODUCTION 
The MCMC procedure is a powerful platform for Bayesian analysis that fits a wide variety of Bayesian models. This 
paper gives a brief introduction to Bayesian methods, introduces the basic syntax of the MCMC procedure, and 
illustrates its use in fitting a zero-inflated gamma regression model to health care expenditure data from the Medical 
Expenditure Panel Survey (MEPS). 

BAYESIAN ANALYSIS 
Classical, i.e., frequentist, statistics assigns probability distributions to observed data but not parameters which are 
regarded as fixed, unknown constants. Within this framework, maximum likelihood estimation of the parameters of a 
model is used to find the parameter values that maximize the likelihood function ܮሺܻ|ߠሻ, which specifies the 
probability of observed data ܻ given model parameters ߠ, i.e., ߠ෠௠௟௘ ൌ  maxሺܮሺܻ|ߠሻሻ. 

Bayesian statistics also employs the likelihood function (or rather the sampling density, which is proportional to the 
likelihood) to estimate model parameters from the data, but it also incorporates prior information on the parameters 
using probability distributions. When the prior information is negligible, Bayesian and maximum likelihood estimates 
will be very similar. From a Bayesian perspective, probability is subjective and used to represent uncertainty. 
Consequently it is licit to place a probability distribution on parameters, which are still acknowledged to be fixed but 
unknown. The prior uncertainty about model parameters is described with a prior distribution ݂ሺߠሻ that is updated by 
the data into a posterior distribution ݂ሺߠ|ܻሻ based on an application of Bayes’ rule: 

݂ሺߠ|ܻሻ ൌ
݂ሺܻ|ߠሻ݂ሺߠሻ

݂ሺܻሻ
. 

Since Bayesian statistics treats observed data as fixed, ݂ሺܻሻ amounts to a normalizing constant that multiplies 
݂ሺܻ|ߠሻ݂ሺߠሻ.  

The posterior distribution ݂ሺߠ|ܻሻ represents the uncertainty about parameter(s) ߠ given the data ܻ. In simple cases 
this posterior distribution may be derived analytically, but typically Bayesian inference proceeds through numerical 
methods. Markov chain Monte Carlo (MCMC) allows samples to be drawn directly from this posterior distribution. 
Each iteration of the chain produces values for the parameters of the model, denoted ߠሺ௟ሻ at the ݈th iteration. These 
values are used to estimate posterior summaries. For example, their mean converges to the posterior mean as ݊ gets 
large, so that 

1
݊

෍ ሺ௟ሻߠ

௡

௟ୀଵ

ൎ Eሺߠ|ܻሻ. 

Posterior quantiles such as  the 95% posterior interval formed by the 2.5th and 97.5th quantiles, may be obtained 
similarly and are useful in drawing inference without relying on asymptotic approximations. In addition, these interval 
estimates have more intuitive interpretations than their frequentist counterpart, the confidence interval. For example, 
there is probability 0.95 that the true value of a parameter ߠ falls within its 95% posterior interval. 

THE MCMC PROCEDURE 
The MCMC Procedure employs Markov chain Monte Carlo to fit a wide variety of Bayesian models. This section 
illustrates the basic syntax of the procedure on a simple linear regression. The example uses the “cars” data set that 
ships with SAS® and is a linear regression of highway miles per gallon (MPG) on vehicle weight: 

௜ܩܲܯ ൌ ଴ߚ  ൅ ݐ݄݃݅݁ݓଵߚ ൅  ߳௜, 
߳௜ iid Nሺ0,  .ଶሻߪ 
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Maximum likelihood estimates for this model are easily produced using the MIXED procedure: 
 

proc mixed data=sashelp.cars method=ml; 
 model mpg_highway = weight / solution; 
quit; 

Parameter Estimates 

Variable Estimate Standard Error DF t Value Pr > |t| 

Intercept 48.2515 0.8182 426 58.97 <.0001 
Weight -0.00598 0.000224 426 -26.75 <.0001 

Syntax 

The MCMC procedure may also be used to fit this model within a Bayesian framework. In addition to the likelihood 
derived from the linear function defined above, a Bayesian model requires a prior distribution be specified for the 
model parameters. In this case there are three parameters: ߚ଴, ߚଵ and ߪଶ. Choosing uninformative priors will yield 
results very similar to the PROC MIXED output above. Consider independent normal priors for ߚ଴ and ߚଵ centered at 
zero with a very large variance, and an inverse gamma prior for ߪଶ with a large variance. The inverse gamma 
distribution is well suited as a prior for variance parameters, since it is nonnegative. This yields the following Bayesian 
model,  

௜ܩܲܯ   ൌ ଴ߚ  ൅ ݐ݄݃݅݁ݓଵߚ ൅ ߳௜, 
߳௜ ~ Nሺ0,               ,ଶሻߪ 

,଴ ~ Nሺ0ߚ  10଺ሻ,               
,ଵ ~ Nሺ0ߚ  10଺ሻ,               

 .ଶ ~ InvGammaሺ0.001, 0.001ሻߪ               
 
The following call to the MCMC procedure fits the model. 
 

proc mcmc data=sashelp.cars;  
 /* declare parameters */ 
 parms beta0 beta1 sigma2; 
 /* prior */ 
 prior beta0 ~ normal(0, var=10**6); 
 prior beta1 ~ normal(0, var=10**6); 
 prior sigma2 ~ igamma(.001, scale=.001); 
 /* likelihood */ 
 model mpg_highway ~ normal(beta0 + beta1*weight, var=sigma2); 
run; 

 
The resulting posterior summaries are very similar to the parameter estimates produced by PROC MIXED above. 
Since the posterior is (in this case) a weighted average of the prior and the data, with an uninformative prior the 
posterior is almost entirely determined by the data. 
 

Posterior Summaries 

 
Parameter 

 
N Mean

Standard
Deviation

Percentiles 

25% 50% 75% 

beta0 1000 48.1918 0.8508 47.7238 48.2513 48.7198 

beta1 1000 -0.006 0.00023 -0.0061 -0.006 -0.0058 

sigma2 1000 12.421 0.8597 11.8368 12.3965 12.9912 
 

Diagnostic Plots 

By default, PROC MCMC displays three diagnostic plots for each parameter that are helpful in assessing MCMC 
convergence. The Markov chain converges to the posterior distribution in the limit, but with a finite sample there is no 
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guarantee that the chain has converged sufficiently to the posterior distribution. Figure 1 depicts the diagnostic plots 
that PROC MCMC produced for ߚ଴.  
 

 
Figure 1. Diagnostic Plots for ࢼ૙ 

The first diagnostic plot is commonly referred to as a trace plot and shows the values of the parameter ߚ଴ at each 
iteration of the Markov chain. The plot displays iterations 1,001 through 2,000. By default, PROC MCMC keeps 1,000 
iterations from the Markov chain after discarding an initial 1,000 iterations. It is standard to discard a number of initial 
iterations of the Markov chain in MCMC, as the chain moves from its initial value to the region containing the 
probability mass of the posterior, the chain’s stationary distribution. The discarded steps are known as the burn-in.  

The flat portions of the plot indicate iterations during which the algorithm rejected proposed values. An ideal trace plot 
shows no trend over time, an indication that it has reached its stationary distribution, and rapidly traversesup and 
down to the upper and lower values of the posterior, indicating that the chain is mixing well (see Figures 2a and 2b). 
In Figure 1, the chain appears to have reached its stationary distribution since it has no trend, but the distinct zigs and 
zags indicates that the chain may not have mixed quickly enough to have sufficiently converged to the posterior 
distribution within this number of iterations.  

 
Figure 2a. Markov Chain That Has Not Converged to Its Stationary Distribution 
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Figure 2b. Markov Chain That Has Converged to Its Stationary Distribution and Mixed Well 

The autocorrelation plot displays the correlation between each step of the Markov chain, and the preceding steps. 
The samples from the posterior distribution produced by Markov chain Monte Carlo are not independent. This is not a 
theoretical problem, but higher correlation between iterations will cause the chain to mix more slowly and will require 
more iterations to ensure the chain has converged to the posterior. 

Model Tuning 

There are a variety of strategies that can help secure MCMC convergence. Table 1 lists a few of the most useful and 
the corresponding PROC MCMC syntax. Using the PROPCOV option to numerically approximate the parameter 
covariance matrix for the proposal distribution (e.g., with QUANEW) rather than using the identity matrix (the default) 
often improves model convergence. Parameter blocking can also have a substantial impact on MCMC convergence. 
SAS allocates all the parameters specified within a PARMS statement to the same block. One joint proposal 
distribution is used for all parameters in a block so that acceptance or rejection occurs for the entire block. With many 
parameters in the same block, the acceptance rate may be too low slowing convergence. With many blocks of one or 
a few parameters, the chain may mix too slowly. It is important to find a balance conducive to chain convergence in 
particular applications. 

   Strategy PROC MCMC Syntax 

More Iterations NMC 

Thinning THIN 
Numerically Approximate Covariance 
Matrix for Proposal Distribution PROPCOV 

More Informative Priors PRIOR 

Group or Ungroup Parameters in Blocks PARMS 

Multiple Chains 

Better Initial Values 

Put Variables on Same Scale 

Table 1. Strategies to Encourage Markov Chain Convergence 

Prior Specification 

In the case of highway MPG and vehicle weight, basic familiarity with automobiles and their gas mileage offers prior 
information that can be used to devise more informative priors than those used above. A little research or 
consultation with an expert would undoubtedly yield highly detailed information. Based on a general knowledge of 
vehicles, it is reasonable to suppose that MPG and weight would be negatively correlated, and so the prior 
distribution of ߚଵ should be negative with high probability. It is also known that ߚଵ (the change in MPG for a one pound 
increase in weight) will be very small, since a small change in weight (in pounds) should have a minimal impact on 
vehicle MPG. A rough guess that a 1,000 pound increase in weight might be associated with a reduction of five MPG, 
yields െ0.005 as a reasonable candidate for prior mean. Centering a normal distribution at this value with a standard 
deviation of 0.0025 gives ߚଵ a prior distribution that is negative with probability approximately 0.98.  

Specifying a prior for the intercept, ߚ଴, may be slightly less intuitive, since there are no vehicles with zero weight. 
However, since MPG is nonnegative, and the slope ߚଵ is expected to be negative, an informative prior for ߚ଴ should 
give it a positive value with very high probability. A normal distribution centered at 60 with a standard deviation of 20 
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has roughly 95% of its probability density between 20 and 100, which is still rather vague for this example, but is 
certainly more informative than the example above.  

Prior specification for variance parameters is often less intuitive, beyond the certainty that they must be nonnegative. 
In this case, it is useful to note that while vehicle mileage certainly varies among vehicles, this variation is not 
extreme. An inverse gamma distribution with shape parameter 6 and scale parameter 100 has the bulk of its 
probability density below 100. This provides a more informative prior for ߪଶ without imposing severe restrictions on 
the support of the posterior. The (somewhat) informative prior for our model parameters is: 

,଴ ~ Nሺ60ߚ  20ଶሻ,                   
,ଵ ~ Nሺെ0.005ߚ  0.0025ଶሻ, 
     .ଶ ~ InvGammaሺ6, 100ሻߪ

 
The following call to the MCMC procedure employs these informative priors and illustrates the syntax for specifying 
burn-in, thin and number of iterations in the Markov chain. In addition it requests the 5th and 95th posterior quantiles 
for each parameter. 

/* 100,000 iterations with a burn-in of 5,000 keeping every 10th iteration */ 
/* display 95% posterior credible intervals */ 
proc mcmc data=sashelp.cars nmc=100000 nbi=5000 thin=10 stats(percentage=(5 95)); 
 /* declare parameters */ 
 parms beta0 beta1 sigma2; 
 /* informative prior */ 
 prior beta0 ~ normal(60, sd=20); 
 prior beta1 ~ normal(-0.005, sd=.0025); 
 prior sigma2 ~ igamma(6, scale=100); 
 /* likelihood */ 
 model mpg_highway ~ normal(beta0 + beta1*weight, var=sigma2); 
run; 

Posterior Summaries 

 
Parameter N Mean

Standard
Deviation

Percentiles 

5% 95% 

beta0 10000 48.2249 0.8101 46.8918 49.5599 

beta1 10000 -0.00598 0.000222 -0.00634 -0.00561 

sigma2 10000 12.5382 0.8439 11.2185 13.9852 

The diagnostic plots for ߚ଴ (Figure 3) and ߚଵ and ߪଶ (not shown) seem to indicate that the chain has reached its 
stationary distribution and mixed well, and we may reasonably conclude that it has converged to the posterior 
distribution. The posterior summary statistics for the parameters have not changed substantially from the previous 
model, indicating that even the more informative prior is vague relative to the information in the data.  
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Figure 3. Diagnostic Plots for ࢼ૙ 

BAYESIAN ANALYSIS OF MEPS HEALTH CARE EXPENDITURES 
The Medical Expenditure Panel Survey (MEPS) is a nationally-representative survey conducted by the Agency for 
Healthcare Research and Quality that follows individuals over a two-year panel, recording detailed information on 
health care utilization and expenditures. These expenditures are not limited to out-of-pocket payments, but include 
expenditures made on behalf of an individual by payers through whom the individual has health insurance coverage. 
In this analysis, the nationally-representative MEPS survey weights are ignored, focusing on the relationships 
between variables without respect for the survey design. 

Annual health care expenditures are non-negative and are typically characterized by a large number of null 
observations, respondents for whom no expenditures were made in a particular year. The tremendous cost of treating 
certain conditions yields very large observations, resulting in a large variance and a highly skewed distribution for 
those with non-zero expenditures. During Panel 14 of MEPS, over 14,000 individuals were surveyed in 2009. The 
mean health care expenditures was $3,484 with 16.8% of individuals having no expenditures. As is typical of skewed 
data, the mean was considerably larger than the median ($691). The standard deviation of $9,596 was large 
compared to the mean, which is also typical of non-negative data with a long right tail.  

THE MODEL 
In this study, a zero-inflated gamma regression is employed, combining a logistic regression for the zero observations 
with a gamma distribution for non-zero values, which is strictly positive and allows for skew and over-dispersion,. 

Let ݅ݕ denote the health care expenditures of the ݅th individual, and let ݕ௜ conditional on parameters  ݌௜, ܽ௜ and ܾ௜ 
follow a zero-inated gamma distribution with density function,  

݂ሺݕ௜|݌௜, ܽ௜, ܾ௜ሻ ൌ ቐ

,                                            ௜݌ ௜ݕ ൌ 0

ሺ1 െ ௜ሻ݌
ܾ௜

௔೔

Γሺܽ௜ሻ
௜ݕ

௔೔ିଵ݁ି௕೔௬೔ , ௜ݕ ൐ 0.
 

The zero-inated gamma distribution is a mixture of a Bernoulli distribution and a gamma distribution. The Bernoulli 
component has parameter ݌௜, which denotes the probability that ݕ௜ is zero (i.e., the probability that person ݅ has no 
health care expenditures in 2009). This probability, as well as the mean and variance of the gamma distribution are 
modeled as functions of linear combinations of predictors ݔ௜, 

logitሺ݌௜ሻ ൌ ௜ݔ
ᇱߛ, 
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  logሺߤ௜ሻ ൌ ௜ݔ
ᇱߚ, 

  logሺߪ௜ሻ ൌ ௜ݔ
ᇱߙ. 

Allowing the variance of the gamma distribution to vary for different predictor values is particularly important for health 
care expenditures, which are highly variable. In this case the same set of predictors ݔ௜ is used for all three 
expressions, but this need not be the case. The shape parameter ܽ௜ and rate parameter ܾ௜ of the gamma distribution 
can be expressed in terms of ߤ௜ and ߪ௜

ଶ:  
ܽ௜ ൌ

ఓ೔
మ

ఙమ , ܾ௜ ൌ
ఓ೔

ఙ೔
మ . 

The regression coefficients ߚ ,ߛ and ߙ are given reasonably uninformative normal priors.  

PROC MCMC 
While the normal distribution is a standard distribution available in the MCMC procedure, the zero-inflated gamma 
must be manually specified using the general function. The general function takes as its argument the log likelihood 
of the desired distribution. If ݕ௜ is distributed zero-inflated gamma then its contribution to the log likelihood is 

ℓ௜ ൌ ൜
logሺ݌௜ሻ                                                                                                         , y୧ ൌ 0

 logሺ1 െ ௜ሻ݌ ൅  ܽ௜logሺܾ௜ሻ െ  logሺΓሺܽ௜ሻሻ ൅ ሺܽ௜ െ 1ሻlogሺݕ௜ሻ െ ܾ௜ݕ௜, y୧ ൐ 0.
 

The PROC MCMC statement below fits this model, keeping every fiftieth iteration from a single Markov chain of 
200,000 iterations after an initial burn-in of 10,000 iterations.  
 

proc mcmc data=meps14 (where = (year = 1)) 
        outpost=mcmcout nmc=200000 nbi=10000 thin=50 propcov=quanew init=random; 
 
 array alpha[37] alpha1-alpha37; 
 array beta[37] beta1-beta37; 
 array gamma[37] gamma1-gamma37; 
 array x[37] female age0_5 age6_30 age61plus latino black amerind asian 
  private_ins medicaid medicare uninsured collegeplus highschool 
  underweight overweight obese morbidlyobese actlim smoke cancer 
  diabetes asthma usualsource stroke heart otherheart employ povertylev 
  midwest south west married widowed divorced goodhealth goodmental; 
 
 /* one block of parameters */ 

parms (alpha: beta: gamma: alpha0 beta0 gamma0) 1; 
 

 /* uninformative prior distributions */ 
    prior alpha: ~ normal(1,sd=1); 
    prior gamma: ~ normal(0,sd=1); 
    prior beta: ~ normal(0,sd=1); 
 
 /* compute linear predictors */ 
 xg = gamma0; 
 xb = beta0; 
 xa = alpha0; 
 do i = 1 to 37; 
  xg = xg + x[i]*gamma[i]; 
  xb = xb + x[i]*beta[i]; 
  xa = xa + x[i]*alpha[i]; 
 end; 
    p0 = logistic(xg); 
 mu = exp(xb);  
 sd = exp(xa); 
    a = (mu**2) / (sd**2); 
    b = mu / (sd**2); 
 
 /* compute contribution to the log likelihood */ 
    if y = 0 then ll = log(p0); 
    else if y > 0 then ll = log(1-p0) + a*log(b) - log(gamma(a))  

+ (a-1)*log(y) - b*y; 
 model y ~ general(ll); 
run; 
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Specifying PROPCOV=QUANEW employs a quasi-Newtonian numerical approximation for the parameter covariance 
matrix in the proposal distribution. In this case the chain does not converge even after very many iterations if the 
default PROPCOV=IND is used. Note also that since all 114 parameters are listed in the same PARMS statement, 
they are grouped in one block. In this case that proved to be efficient due to the relatively high correlations between 
parameters, however, in many cases it is useful to split model parameters into several blocks. 

RESULTS 
Parameter posterior distributions are summarized in Tables 2, 3 and 4 for the logistic and gamma regressions. The 
parameter estimates in Table 2 denote the log odds ratio of having no expenditures for the specified value relative to 
that variable's reference value, holding all other predictors constant. Many of the predictors have posterior intervals 
that do not overlap zero, indicating a significant increase or decrease in the odds of zero expenditures. Education, 
illness, having been married, being female, and income all have negative coefficients, indicating a reduction in the 
odds of zero expenditures.  

Conversely, positive parameter estimates indicate values associated with an increased odds of zero expenditures 
compared to the reference value. Black and Asian race increase the odds of zero expenditures compared to the 
White reference category. Latino ethnicity, smoking, good health status, and being uninsured are also associated with 
higher odds of no expenditures relative to non-Latino, not smoking, fair or poor health status and being insured.  

The regression coefficients for the mean of the gamma distribution summarized in Table 3 may be interpreted as the 
log of the multiplicative effect on the mean, i.e., the log of the ratio of means, associated with a one unit increase in 
the value of that variable holding all other predictors constant. For dichotomous variables this is simply the log of the 
ratio of the category means. As with the logistic regression coefficients, many predictors have posterior intervals that 
do not include zero. Increased age and income indicate increased mean expenditures, and private group health 
insurance has increased mean expenditures compared to all other health insurance categories. Illness, fair or poor 
health status, non-white race, Latino ethnicity, and never married are associated with decreased mean expenditures.  

The coefficients summarized in Table 4 are the multiplicative effect on the standard deviation of the gamma 
distribution corresponding to a one unit increase in the value of that predictor. In general these coefficients are similar 
in sign and significance to those in Table 3. Those predictors associated with increased expenditures tend to also be 
associated with increased variance of those expenditures. Interestingly this does not hold true for increased income, 
which is associated with a significant increase in average expenditures but no corresponding increase in expenditure 
variance. 

 
Figure 4. Predicted Probability of Zero Expenditures for Observations with Zero Expenditures 

 
Figure 5. Predicted Probability of Zero Expenditures for Observations with Non-Zero Expenditures 
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Coefficient (reference) 
Posterior 

Mean 
Standard 
Deviation 

2.5th
Quantile 

97.5th 
Quantile 

Interval Does Not 
Overlap Zero 

Intercept -1.16 0.19 -1.52 -0.78 x 

Female -0.50 0.05 -0.60 -0.40 x 

Age (31–60) 
0–5 -0.56 0.13 -0.81 -0.30 x 

6–30 -0.04 0.08 -0.19 0.13 
Over 60 -0.22 0.14 -0.49 0.06 

Latino 0.57 0.07 0.43 0.69 x 

Race (White) 
Black 0.45 0.08 0.29 0.59 x 

American Indian -0.34 0.24 -0.80 0.12 
Asian 0.45 0.11 0.25 0.66 x 

Health Insurance (Private Group) 
Private Non-Group < 0.01 0.19 -0.38 0.37 
Medicaid/Other Public -0.08 0.08 -0.25 0.07 
Medicare 0.26 0.19 -0.14 0.63 
Uninsured 0.93 0.07 0.77 1.05 x 

Education (Lower than High School) 
College or Higher Degree -0.53 0.09 -0.70 -0.36 x 

High School/GED -0.11 0.07 -0.24 0.03 
Body Mass Index (Normal) 

Underweight -0.42 0.13 -0.64 -0.15 x 

Overweight -0.08 0.06 -0.21 0.04 
Obese -0.08 0.08 -0.25 0.08 
Morbidly Obese -0.04 0.17 -0.40 0.26 

Activity Limitations -0.71 0.17 -1.06 -0.37 x 

Smoking 0.25 0.08 0.09 0.40 x 

Cancer -0.80 0.20 -1.21 -0.41 x 

Diabetes -1.16 0.20 -1.54 -0.75 x 

Asthma -0.98 0.14 -1.25 -0.70 x 

Usual Source of Care -1.33 0.06 -1.44 -1.22 x 

Stroke -1.15 0.41 -2.06 -0.38 x 

Heart -0.78 0.25 -1.31 -0.31 x 

Other Heart -0.88 0.19 -1.26 -0.53 x 

Employed 0.27 0.07 0.13 0.40 x 

Income -0.77 0.13 -1.03 -0.51 x 

Region (Northeast) 
Midwest -0.18 0.10 -0.38 -0.01 x 

South -0.17 0.08 -0.33 -0.02 x 

West < 0.01 0.09 -0.19 0.16 
Marital Status (Never Married) 

Married -0.27 0.07 -0.41 -0.13 x 

Widowed -0.56 0.23 -1.02 -0.13 x 

Divorced -0.31 0.11 -0.52 -0.10 x 

Good/Very Good/Excellent Health 0.57 0.11 0.34 0.77 x 

Good/Very Good/Excellent  Mental Health 0.35 0.13 0.10 0.60 x 

Table 2. Posterior Summary for Zero-Inflation Regression Coefficients 
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Coefficient (reference) 
Posterior 

Mean 
Standard 
Deviation 

2.5th 
Quantile 

97.5th 
Quantile 

Interval Does Not 
Overlap Zero 

Intercept 8.41 0.09 8.25 8.59 x 

Female 0.08 0.02 0.03 0.12 x 

Age (31–60) 
0–5 -0.68 0.06 -0.80 -0.57 x 

6–30 -0.23 0.04 -0.30 -0.15 x 

Over 60 0.18 0.04 0.10 0.25 x 

Latino -0.22 0.03 -0.28 -0.16 x 

Race (White) 
Black -0.20 0.03 -0.26 -0.14 x 

American Indian -0.10 0.11 -0.30 0.11 
Asian -0.30 0.05 -0.39 -0.21 x 

Health Insurance (Private Group) 
Private Non-Group -0.32 0.06 -0.43 -0.19 x 

Medicaid/Other Public -0.11 0.03 -0.18 -0.05 x 

Medicare -0.20 0.05 -0.29 -0.10 x 

Uninsured -0.41 0.04 -0.49 -0.34 x 

Education (Lower than High School) 
College or Higher Degree 0.31 0.04 0.23 0.38 x 

High School/GED 0.25 0.03 0.19 0.32 x 

Body Mass Index (Normal) 
Underweight 0.05 0.05 -0.04 0.16 
Overweight 0.08 0.03 0.03 0.14 x 

Obese 0.07 0.03 0.01 0.14 x 

Morbidly Obese 0.16 0.07 0.03 0.29 x 

Activity Limitations 0.57 0.04 0.49 0.65 x 

Smoking -0.01 0.04 -0.08 0.06 
Cancer 0.46 0.04 0.37 0.55 x 

Diabetes 0.41 0.04 0.33 0.49 x 

Asthma 0.34 0.04 0.26 0.41 x 

Usual Source of Care 0.25 0.04 0.17 0.32 x 

Stroke 0.26 0.07 0.13 0.39 x 

Heart 0.27 0.05 0.17 0.36 x 

Other Heart 0.39 0.04 0.31 0.47 x 

Employed -0.20 0.03 -0.26 -0.15 x 

Income 0.16 0.04 0.08 0.25 x 

Region (Northeast) 
Midwest 0.06 0.04 -0.02 0.13 
South -0.05 0.03 -0.11 0.01 
West 0.05 0.03 -0.02 0.11 

Marital Status (Never Married) 
Married 0.09 0.04 0.02 0.16 x 

Widowed 0.15 0.06 0.04 0.26 x 

Divorced 0.13 0.05 0.03 0.22 x 

Good/Very Good/Excellent Health -0.60 0.04 -0.67 -0.53 x 

Good/Very Good/Excellent  Mental Health -0.25 0.05 -0.35 -0.15 x 

Table 3. Posterior Summary for Gamma Mean Regression Coefficients 
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Coefficient (reference) 
Posterior 

Mean 
Standard 
Deviation 

2.5th 
Quantile 

97.5th 
Quantile 

Interval Does Not 
Overlap Zero 

Intercept 8.81 0.09 8.62 8.99 x 

Female 0.01 0.03 -0.05 0.06 
Age (31–60) 

0–5 -0.77 0.06 -0.89 -0.67 x 

6–30 -0.26 0.04 -0.34 -0.18 x 

Over 60 0.07 0.04 -0.01 0.16 
Latino -0.19 0.03 -0.26 -0.13 x 

Race (White) 
Black -0.15 0.04 -0.22 -0.08 x 

American Indian -0.09 0.13 -0.32 0.17 
Asian -0.27 0.05 -0.38 -0.16 x 

Health Insurance (Private Group) 
Private NonGroup -0.32 0.07 -0.45 -0.18 x 

Medicaid/Other Public -0.07 0.04 -0.15 < 0.01 
Medicare -0.19 0.05 -0.29 -0.09 x 

Uninsured -0.33 0.04 -0.41 -0.25 x 

Education (Lower than High School) 
College or Higher Degree 0.28 0.04 0.20 0.37 x 

High School/GED 0.27 0.03 0.21 0.34 x 

Body Mass Index (Normal) 
Underweight 0.09 0.06 -0.03 0.20 
Overweight 0.09 0.03 0.02 0.15 x 

Obese 0.05 0.04 -0.02 0.13 
Morbidly Obese 0.17 0.07 0.04 0.32 x 

Activity Limitation(s) 0.56 0.04 0.47 0.65 x 

Smoking -0.01 0.04 -0.08 0.08 
Cancer 0.50 0.05 0.39 0.59 x 

Diabetes 0.34 0.05 0.24 0.43 x 

Asthma 0.29 0.04 0.20 0.37 x 

Usual Source of Care 0.16 0.04 0.08 0.23 x 

Stroke 0.24 0.07 0.11 0.40 x 

Heart 0.24 0.06 0.13 0.34 x 

Other Heart 0.40 0.05 0.31 0.49 x 

Employed -0.19 0.03 -0.25 -0.13 x 

Income 0.03 0.05 -0.06 0.14 
Region (Northeast) 

Midwest 0.09 0.04 < 0.01 0.17 x 

South -0.06 0.04 -0.14 0.01 
West 0.09 0.04 0.01 0.16 x 

Marital Status (Never Married) 
Married 0.09 0.04 0.01 0.16 x 

Widowed 0.11 0.06 < 0.01 0.23 x 

Divorced 0.08 0.05 -0.03 0.18 
Good/Very Good/Excellent Health -0.62 0.04 -0.70 -0.54 x 

Good/Very Good/Excellent  Mental Health -0.25 0.06 -0.35 -0.14 x 

Table 4. Posterior Summary for Gamma Variance Regression Coefficients 
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Figures 4 and 5 depict posterior predicted probabilities of zero expenditures for observations with zero and non-zero 
observed expenditures respectively. The mean predicted probability was 0.37 for those with zero observed 
expenditures, and 0.13 for those with non-zero expenditures observed.  

Figure 6 plots the predictive posterior median and interval (given non-zero expenditures) against observed 2010 
expenditures for all observations with non-zero 2010 expenditures. The observed expenditures exceeded the 97.5th 
quantile of the predictive posterior 3.9% of the time, indicating that the posterior predictions may slightly 
underestimate the highest expenditures.  

 
Figure 6. 2010 Observed Expenditures and Posterior Predictive Distribution (Log Scale) 

CONCLUSION 
Bayesian statistics allows prior information to be incorporated into data analysis and inference, and offers intuitive 
interpretations of many quantities. PROC MCMC enables the SAS user to fit a wide variety of Bayesian models using 
Markov chain Monte Carlo. A simple example illustrates the basic syntax of the procedure and the equivalence of 
Bayesian and maximum likelihood inference when uninformative priors are used. Diagnostic plots are discussed, and 
suggestions for improving Markov chain are offered. Finally, a more complicated Bayesian model is illustrated in 
PROC MCMC, fitting a zero-inflated gamma regression to health care expenditures from the Medical Expenditure 
Panel Survey. 
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