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ABSTRACT  

Nonlinear optimization has many compelling applications, including finance, manufacturing, pricing, health care, 
telecommunications, engineering, and statistics. Often a nonlinear optimization problem has many locally optimal 
solutions, making it much more difficult to identify a globally optimal solution. That’s why the multistart feature in 
PROC OPTMODEL selects a number of initial points and starts optimization from each one, significantly improving 
your chances of finding a global optimum. 

In SAS/OR
®
 12.1, the multistart feature adds parallel execution. This paper explores the multistart feature and its 

parallel optimization feature, illustrating with examples drawn from research and industry. 

INTRODUCTION 

This paper begins with a brief exploration of nonlinear optimization and the challenges it presents, especially if the 
nature of the functions involved in the constraints or the objective might result in multiple local optima in addition to 
the global optimum. The multistart approach addresses this difficulty by determining multiple starting points for 
optimization and reporting back the best locally optimal solution that it finds. Using multiple computational cores in 
parallel improves both the identification of good starting points and the execution of the optimization process from 
each of the starting points.  

In discussing the multistart feature, this paper describes the algorithms that are used to create a pool of candidate 
initial points and to select a set of candidates for optimization. It explores the various options that you can use to 
control and configure starting-point selection and multistart optimization, and it describes the information that the 
OPTMODEL procedure reports back on the progress and results of the multiple optimization processes. 

This paper does not describe the details of the active set and interior point nonlinear optimization methods provided 
by SAS/OR; instead it focuses on their use in the multistart approach. For more information about these algorithms, 
see the SAS/OR 12.1 User’s Guide: Mathematical Programming. This paper assumes that you have a basic 

understanding of optimization. 

INTRODUCTION TO NONLINEAR OPTIMIZATION 

Nonlinear optimization models have proven to be useful in many areas of organizational and business planning. 
Examples of nonlinear relationships and effects that have been captured in optimization modeling include sales 
revenue in response to price changes, economies of scale in ordering and production, performance of blended 
chemicals, and returns on financial investments (Wagner 1975). Specialized nonlinear optimization methods are used 
when nonlinear functions appear in the objective or the constraints of an optimization model. Symbolically, a 
nonlinear optimization problem can be described as 

                      ( ) 

                        ( )      {       } 
    
                                                   ( )      {       } 
 
                                                         

where      is the vector of decision variables,         is the objective function,          is the vector of 

equality constraints (  {       }),     
     is the vector of inequality constraints (  {       }), and 

       are the vectors of the upper and lower bounds, respectively, on the decision variables. Any or all of the 

functions      and   can be nonlinear. A feasible solution is a set of values for the decision variables         that 

satisfies all the constraints. An optimal solution to this problem is a feasible solution that produces the smallest 
possible value for the objective function  . 

There are no limits on the form that nonlinear functions can take, and consequently the structure of a nonlinear 
optimization model can vary greatly. In turn, this means that nonlinear optimization methods cannot rely as heavily as 
other optimization methods (such as linear and mixed integer methods) on the existence of a particular type of 
mathematical structure in the model to be solved. Nonlinear optimization must, in a sense, be largely noncommittal 
regarding problem structure. As a result, when a nonlinear optimization method identifies a local minimum (a solution 
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that produces an objective value at least as small as that of any nearby feasible solution), you generally cannot draw 
any conclusion about whether it is also a global minimum (which produces an objective at least as small as any 
feasible solution). 

For some types of nonlinear programs, you can make a connection between local optimality and global optimality. A 
“convex” nonlinear optimization problem is one in which the objective function   is convex, the equality constraint 

functions   are linear, and the inequality constraint functions   are concave. For this type of problem, any local 

minimum is also a global minimum. All other types of nonlinear optimization problems are termed “nonconvex” and 
can possess multiple local minima that are not also global minima. Because nonlinear optimization methods identify 
only locally optimal solutions, if a problem has many local (and nonglobal) minima, then optimization can report back 
a globally suboptimal solution. This occurs because a given starting point (initial solution) for optimization can be 
sufficiently close to a local minimum that the optimization algorithm inevitably proceeds toward and terminates at that 
local minimum.  

THE MULTISTART FEATURE 

The multistart feature of the nonlinear optimization solver in SAS/OR helps address the difficulties of solving 
nonconvex problems that might have multiple local minima. The basic concept is simple: start optimization from 
several starting points, in hopes of locating local minima of better quality (which have smaller objective function 
values by definition), and then report back the local minimum that has the smallest objective function value. The main 
challenges in multistart optimization are selecting good starting points for optimization and conducting the subsequent 
multiple optimization processes efficiently. 

The multistart approach delivers a clear benefit by increasing the quality of the reported optimal solution. If a problem 
has many local minima, then starting optimization from multiple well-selected initial points makes it more likely that all 
or most of the local minima are identified. As a result, the identified local minimum that produces the smallest 
objective value is more likely to be a global minimum. This is helpful if solving a nonlinear optimization problem is 
your only goal. It is even more beneficial if the optimization is part of a larger solution process that uses the reported 
optimal solution as input to the next step; a more accurate optimal solution for the optimization problem tends to 
produce better solutions in later stages. In contrast, a poor optimization solution can substantially invalidate the 
analyses that are done in succeeding steps of the overall solution process. 

Implementing the multistart feature in a parallel computing environment provides even greater benefits. Most 
obviously, you can execute optimization from several different starting points much more quickly in parallel than 
serially. More subtly, parallel execution also assists in the preliminary steps of identifying candidate starting points via 
sampling and using clustering to determine which starting points to select.  

THE MULTISTART ALGORITHM 

The algorithm that is used in the multistart approach is based on the concept of regions of attraction to local minima. 
The region of attraction to a local minimum for a nonlinear optimization problem is a set of starting points from which 
optimization converges to that specific local minimum. For the multistart algorithm, the goal is to start optimization 
exactly once from within the region of attraction of each local minimum, thus ensuring that all local minima are 
identified and the global minimum is selected. Practically, the algorithm strives to come as close to that ideal as 
possible within a reasonable amount of time, iterating through four major steps. 

UNIFORM SAMPLING 

In order for the multistart optimization algorithm to proceed effectively, it must operate within a finite space. You 
specify this finite space by a combination of explicit bounds that you can include in the formulation of the problem and 
by using the MSBNDRANGE= parameter for the nonlinear solvers. Within this space, the algorithm selects a set of 
uniformly distributed points as candidate starting points for optimization. 

STARTING-POINT SELECTION 

After sampling, the algorithm determines which of the sampled points to select as starting points. First, the objective 
function value is evaluated at each sampled point. Next, the algorithm uses a result (Rinnooy Kan and Timmer 1987) 
stating that among the sampled points are sequences of points that have decreasing objective function values, each 
sequence connecting to a local minimum. Moreover, any two points within a calculated critical distance of each other 
are members of the same sequence.  

Relying on this result, the algorithm performs an implicit form of clustering according to the critical distance; a sample 
point is selected only if no other points that have a smaller objective function value fall within the critical distance. 
Because the objective function value decreases as you approach a local minimum along a sequence of points, this 
method selects from each sequence the sampled point that is as close to a local minimum as possible. 
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The last step in the selection process is to choose the 10% to 20% of the previously selected points that have the 
lowest objective function values. The percentage is heuristically determined and helps to ensure that excess starting 
points are not selected. 

LOCAL OPTIMIZATION AND SAMPLE-POINT UPDATE 

Local optimization is initiated and completed from each selected starting point. Each identified local minimum is used 
to update the clustering criteria, because some sampled points might be within the critical distance of the newly found 
local minimum and thus in its region of attraction. For constrained optimization, Lagrangian multipliers (used to 
incorporate constraints into the objective function) are updated. 

RECURSION 

The uniform sampling, starting-point selection, local optimization, and sample-point update steps are repeated in 
sequence until either no sampled points are selected or the maximum number of local optimizations (specified via the 
MSMAXSTARTS= parameter) has been completed. At termination the algorithm reports the best local minimum that 
it has found. 

PARALLEL IMPLEMENTATION OF THE MULTISTART ALGORITHM 

You can implement the multistart algorithm in parallel for both single-machine (multiprocessor) and distributed 
computing environments. For sampling, the bounded space is divided into as many subspaces as there are 
computational threads (or nodes) available. Sampling is performed in parallel in the subspaces. Starting-point 
selection is also performed in parallel in the subspaces, for points that are sufficiently far from the boundaries of the 
subspaces; this is termed local selection. After local selection concludes, the same selection process, here termed 
global selection, is applied to the comparatively few sample points that are located near subspace boundaries that 

were excluded from local selection.  

Local optimization from the selected starting points is assigned among the available threads (or nodes). Sample-point 
updates are similarly assigned, and the updates are done in a manner that ensures deterministic results overall—
repeated applications of the multistart algorithm to the same problem identify identical local optima. This is especially 
important if you need to optimize repeatedly to test alternative scenarios. In such a case, it is important to ensure that 
the only source of variation that influences the results is the makeup of the scenario itself. 

The flow diagram in Figure 1 illustrates the steps in the multistart algorithm and indicates how parallel computing is 
incorporated. 

 

Figure 1. The Multistart Algorithm with Parallel Implementation 
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Each step is implemented in parallel, as indicated by the multiple parallel nodes in the flow diagram. For the starting-
point selection step, the single node that follows the parallel nodes represents global selection. 

PROC OPTMODEL SYNTAX FOR THE MULTISTART FEATURE 

To invoke the multistart algorithm, you use the WITH clause in the SOLVE statement to specify a nonlinear 
optimization (NLP) solver and include the MS keyword as an option: 

solve with nlp / tech=ip ms; 

 

PROC OPTMODEL offers the following options to configure starting-point selection and optimization from the chosen 
points. 

MSBDNRANGE=M  

ensures that the space in which uniform sampling of starting points occurs is bounded; it supplements any 
bounds that you specify in the formulation of the nonlinear optimization problem. It’s important to point out 
that the value of this option (either specified or default) does not affect the feasible region of the nonlinear 
optimization problem itself; it is used only to contain the sampled space.  

If you specify both upper and lower bounds for all decision variables, then any value specified for the 
MSBNDRANGE= option is not used. If for some decision variable you specify only a lower (upper) bound, 
then for sampling purposes the value of that variable cannot differ from the lower (upper) bound by more 
than M. If both bounds are missing for a decision variable, then during sampling its value cannot vary by 
more than M/2 from a default or specified starting point. 

By default, MSBNDRANGE=200 for a single-machine environment, and MSBNDRANGE=1000 for 
distributed computing. 

MSDISTTOL=𝜖 

establishes a tolerance level that determines whether two local minima are considered distinct; the 
Euclidean distance between them must be at least 𝜖 in order for them to be deemed distinct. This is 

important in reducing the work done in the sample-point update step of the multistart algorithm. 

By default, MSDISTTOL=1.0E‒6. 

MSMAXTIME=T 

defines the maximum time to be used for local optimization by the multistart algorithm; it complements the 
MAXTIME= option for nonlinear optimization (which specifies the maximum time to be used by a single 
invocation of the nonlinear optimization solver). Because by its nature the multistart algorithm invokes the 
nonlinear optimization solver multiple times, the value of the MSMAXTIME= option should exceed the value 
of the MAXTIME= option. The MSMAXTIME= option is the only option available to control the time that is 
used by the multistart algorithm because local optimization is responsible for the vast majority of the 
multistart time. For parallel use of the multistart algorithm, the MSMAXTIME= option controls the local 
optimization time that is consumed among all threads or nodes. 

If you do not specify the MSMAXTIME= option, optimization does not stop based on the amount of time that 
local optimization consumes. Thus, the default value of the MSMAXTIME= option is effectively infinity. 

The value of the TIMETYPE= option determines whether the MSMAXTIME= option refers to real time or 
CPU time. 

MSMAXSTARTS=n 

limits the total number of starting points that the multistart algorithm uses for local optimization. By default, 
MSMAXSTARTS=100 for a single-machine environment (serial or parallel); in a distributed computing 
environment, the default value is the lesser of 100 multiplied by the number of nodes available and 1,000. 

MSLOGLEVEL=NUMBER  

controls the amount of information that the SAS log displays for the multistart algorithm. A value of 0 blocks 
all SAS log messages that are related to the multistart algorithm, a value of 1 displays summary information 
at termination of the algorithm, and a value of 2 (the default) displays the multistart iteration log along with 
summary information when the algorithm terminates.  
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PARALLEL IMPLEMENTATION AND THE PERFORMANCE STATEMENT 

You can use the PERFORMANCE statement to control the use of threads by the multistart algorithm in a parallel 
computing environment. The NTHREADS= option specifies the maximum number of threads to be used, defaulting to 
the value of the CPUCOUNT= SAS system option (the total number of available threads). This setting applies both to 
computational threads on a single machine and to nodes in a distributed computing grid.  

APPLICATIONS OF MULTISTART NONLINEAR OPTIMIZATION 

The multistart approach to nonlinear optimization can be useful wherever nonconvex nonlinear optimization is used. 
Practical instances of nonconvex optimization occur in many industries (Floudas 2010). Examples in chemical 
engineering include alkylation process design; reactor, reactor sequence, and reactor network design; and heat 
exchanger design. The optimal design of multiproduct batch plants, in which products are produced in batches and 
multiple production steps are required for each product, can demand a global optimization approach.  

Maximum likelihood estimation of parameters in a nonlinear model is a nonconvex problem that has applications in 
science and engineering. Practical examples include pharmacokinetics and chemical engineering. Applications of 
nonconvex optimization in communications include Internet congestion control, wireless network power control, and 
DSL spectrum management (Chiang 2006). 

In medicine, nonconvex optimization can be used to devise optimal radiation treatments for cancerous tumors, 
manipulating the number, intensity, and angles of radiation beams in order to deliver sufficient radiation to the tumor 
while minimizing the impact on noncancerous tissue (Bertsimas, Nohadani, and Teo 2009). Equilibrium problems in 
physics and economics can be modeled as complementarity problems, a type of nonconvex optimization model (Isac, 
Bulavsky, and Kalashnikov 2010). 

In general, because nonconvex optimization denotes the absence of a simplifying mathematical structure in 
optimization problems and because real-world problems are progressively less likely to possess such structure as 
you examine them more closely, it’s reasonable to assert that techniques such as multistart for dealing with 
nonconvexity are likely to find increasing application and take on greater relevance as optimization is used more 
broadly and in greater detail around the world. 

EXAMPLE 1: SOLVING A SET OF NONLINEAR EQUATIONS 

Suppose you want to find a root of the following pair of nonlinear equations: 

     (        )     (        )    
     (       )     (       )     

For any chosen values of x and y, the approximation errors are defined as the difference between the right-hand and 

left-hand sides of the equations: 

  (   )        (        )     (        )    
  (   )       (       )     (       )     

One valid approach is to minimize the sum of squares of these error terms: 

          (   )  
 

 
 (  (   )

     (   )
 ) 

To pursue this approach, the resulting unconstrained nonlinear optimization problem is formally stated as 

         
 

 
 (  (   )

     (   )
 ) 

where 

  (   )        (        )     (        )    

   (   )       (       )     (       )     

The following PROC OPTMODEL statements model and solve this optimization problem: 

   proc optmodel; 

      var x init 1, y init 1; 

      impvar e1 = x - sin(2*x + 3*y - 52) - cos(3*x - 5*y + 36) - 8; 

      impvar e2 = y - sin(x - 2*y + 16) + cos(x + 3*y - 44) - 1 

      min z = 0.5*(e1^2 + e2^2); 

      solve with nlp / tech=ip; 
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      print x y r1 r2; 

   quit; 

The IMPVAR (implicit variable) statements establish the two approximation error functions e1 and e2. This SAS 
program solves the problem once (using the interior point solver) from the initial point (1, 1), which prior experience 
identifies as a good starting point. The results appear in Figure 2. 

 

Figure 2. Results of a Single Optimization for Example 1 

Brief inspection of the objective function for this problem reveals that it is nonconvex. Based solely on the 
optimization results in Figure 2, you cannot know whether you have located a global minimum or a local minimum 
and, if the latter, whether its objective function value is close to that of the global minimum. You do know that when 
solving for a root of a system of equations, you would like the least squares objective to be as close to 0 as possible. 
For this problem, however, you have specific information about the appearance of the objective function; it is graphed 
in Figure 3. 

 

Figure 3. Graph of the Objective Function for Example 1 

Even at this relatively low level of detail, you can see that the surface of the objective function is not smooth but 
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instead has many small peaks and troughs, meaning that it has numerous local maxima and local minima. A more 
detailed view, shown in Figure 4, makes this point even more clearly. 

 

Figure 4. Detailed Graph of the Objective Function for Example 1 

Here it’s clear that a single optimization might easily converge to a local minimum that has an objective function value 
that is far from that of the global minimum. Use of the multistart algorithm is strongly recommended. 

To invoke the multistart algorithm, only a slight modification of the preceding PROC OPTMODEL code is needed: 

   proc optmodel; 

      var x init 1, y init 1; 

      impvar e1 = x - sin(2*x + 3*y - 52) - cos(3*x - 5*y + 36) - 8; 

      impvar e2 = y - sin(x - 2*y + 16) + cos(x + 3*y - 44) - 1 

      min z = 0.5*(e1^2 + e2^2); 

      performance nthreads=4; 

      solve with nlp / tech=ip ms seed=21 msmaxstarts=100 msbndrange=50; 

      print x y r1 r2; 

   quit; 

Here the MS keyword invokes the multistart feature, MSMAXSTARTS=100 limits the number of starting points for 
optimization, MSBNDRANGE=50 focuses the sampling on a smaller region, and SEED=21 ensures repeatable 
results. The PERFORMANCE statement specifies that four computational threads can be used. An excerpt from the 
SAS log for this program appears in Figure 5. 

 

NOTE: The Multistart algorithm is executing on the client. 

NOTE: The Multistart algorithm is using up to 4 threads. 

NOTE: Random number seed 21 is used. 

                    Best       Local  Optimality    Infeasi-  Local  Local 

      Start    Objective   Objective       Error      bility  Iters  Status 

          1   19.8450796  19.8450796  1.68166E-8           0      4  Optimal 

          2 * 19.8450796  64.5021151  9.3012E-12           0      6  Optimal 

          3   1.1126E-15  1.1126E-15  8.60427E-9           0      6  Optimal 

      . 

      . 

      . 

         44   1.1126E-15  158.515678  3.12421E-7           0      3  Optimal 

NOTE: The Multistart algorithm generated 8640 sample points. 

NOTE: 44 distinct local optima were found. 

NOTE: The best objective value found by local solver = 1.112593E-15. 

Figure 5. SAS Log Excerpt for Multistart Optimization of Example 1 

The second optimization (as indicated by the asterisk after the Start column value in the multistart iteration log) 
begins at the user-supplied starting point, (1, 1), and thus identifies the same local minimum found earlier. Later 
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optimizations that start from other initial points find local minima that have lower objective function values. The values 
in the Best Objective column of the multistart iteration log decrease steadily. The best local minimum found has an 
objective function value of 1.112593E‒15, just a fraction of the value that is found by optimization from a single 
starting point and quite close to the desired value of 0 when you are finding a root of a system of equations. A total of 
8,640 candidate starting points were created by sampling; of these, only 44 were selected for optimization. The best 
local minimum is displayed in Figure 6. 

 

Figure 6. Results of Multistart Optimization for Example 1 

Parallel implementation of the algorithm enabled all phases of the algorithm to proceed more quickly by enabling 
work to be done simultaneously on multiple computational threads. In practice, this benefit should be seen most 
clearly in the local optimization step, because optimization usually accounts for the vast majority of the time that the 
multistart algorithm consumes. 

EXAMPLE 2: HEAT EXCHANGER NETWORK DESIGN 

Heat exchangers are used in industry and in industrial design to minimize the cost and maximize the efficiency of 
required heating and cooling operations. This example is based on Visweswaran and Floudas (1996) and involves 
two heat exchangers that must handle two incoming streams of hot fluids and one incoming stream of cold fluids. 
There are three categories of variables: f variables represent flow volume along various branches of the network, ΔT 

variables represent the temperature changes produced by the two heat exchangers for each of the input streams, 
and T variables represent variable input and output temperatures for the two heat exchangers. The objective is to 

minimize the cost of operating the heat exchangers, and the constraints include flow balance, temperature 
consistency, and targeted output stream temperature requirements. The formulation is as follows: 

             (
    

 
  
(          )  

 
 
(          ) 

)

   

     (
   

 
  
(          )  

 
 
(          ) 
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The following PROC OPTMODEL statements model and solve this problem: 

  proc optmodel; 

     var dT11, dT12, dT21, dT22, 

         f11, f12, f13, f14, f21, f22, f23, f24, 

         T1i, T1o, T2i, T2o; 

 

     min f = 1300*(1000/(1/30*dT11*dT12+1/6*(dT11+dT12)))**0.6 

            +1300*(600/(1/30*dT21*dT22+1/6*(dT21+dT22)))**0.6; 

     con g1  : f11+f21 = 10; 

     con g2  : f11+f23-f12 = 0; 

     con g3  : f21+f13-f22 = 0; 

     con g4  : f14+f13-f12 = 0; 

     con g5  : f24+f23-f22 = 0; 

     con g6  : 150*f11+T2o*f23-T1i*f12 = 0; 

     con g7  : 150*f21+T2i*f13-T1o*f22 = 0; 

     con g8  : f12*T2i-f12*T1i = 1000; 

     con g9  : f22*T2o-f22*T1o = 600; 

     con g10  : dT11+T2i = 500; 

     con g11  : dT12+T1i = 250; 

     con g12  : dT21+T2o = 350; 

     con g13  : dT22+T1o = 200; 

  

 

     dT11.lb = 10; dT11.ub = 350; dT12.lb = 10; dT12.ub = 350; 

     dT21.lb = 10; dT21.ub = 200; dT22.lb = 10; dT22.ub = 200; 

     f11.lb = 0;   f11.ub = 10;   f12.lb = 0;   f12.ub = 10; 

     f13.lb = 0;   f13.ub = 10;   f14.lb = 0;   f14.ub = 10; 

     f21.lb = 0;   f21.ub = 10;   f22.lb = 0;   f22.ub = 10; 

     f23.lb = 0;   f23.ub = 10;   f24.lb = 0;   f24.ub = 10; 

     T1i.lb = 150; T1i.ub = 310;  T1o.lb = 150; T1o.ub = 310; 

     T2i.lb = 150; T2i.ub = 310;  T2o.lb = 150; T2o.ub = 310; 

  

     solve with nlp /tech=ip; 

  quit; 

The SOLVE statement invokes the interior point solver once, and optimization produces a local minimum that has an 
objective value of 5,937.44005. Figure 7 shows the results of this optimization process.  
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Figure 7. Results of a Single Optimization for Example 2  

This objective function value is significantly higher than the global minimum (approximately 4,845) for this problem. 
To find a better solution, you can use the multistart algorithm. Add a PERFORMANCE statement and alter the 
SOLVE statement as follows: 

     performance nthreads=4; 

     solve with nlp / tech=ip ms seed=21 msmaxstarts=25; 

   
As in the previous example, the MS keyword invokes the multistart feature, SEED=21 ensures repeatable results, 
and MSMAXSTARTS=25 limits the number of local optimizations. Four threads can be used, as specified in the 
PERFORMANCE statement. An excerpt from the SAS log appears in Figure 8. 

 

NOTE: The Multistart algorithm is executing on the client. 

NOTE: The Multistart algorithm is using up to 4 threads. 

NOTE: Random number seed 21 is used. 

                    Best       Local  Optimality    Infeasi-  Local  Local 

      Start    Objective   Objective       Error      bility  Iters  Status 

          1   5937.43735  5937.43735  3.48738E-8  3.48738E-8     10  Optimal 

          2   5937.43735  5937.43735  2.17313E-7  2.17313E-7      7  Optimal 

      . 

      . 

      . 

          6 r 5937.43735  5937.43743  7.48096E-7  7.48096E-7     11  Optimal  

          7   4845.46201  4845.46201  1.45108E-8  1.45108E-8      7  Optimal 

      . 

      . 

      . 

         23   4845.46201  6439.57781  5.39503E-7  5.39503E-7    134  Optimal 

         24 r 4845.46201  5937.43972  1.42151E-7  1.42151E-7    257  Optimal 

NOTE: The Multistart algorithm generated 1600 sample points. 

NOTE: 7 distinct local optima were found. 

NOTE: The best objective value found by local solver = 4845.4620055. 

Figure 8. SAS Log Excerpt for Multistart Optimization for Example 2 

By using the multistart algorithm, you find a local minimum that is very close to the global minimum. Among the 1,600 
sample points that were created, 24 were selected for local optimization. The best local minimum was located by 
optimizing from the seventh starting point. Figure 9 shows the solution summary for multistart optimization. 
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Figure 9. Results of Multistart Optimization for Example 2  

CONCLUSION  

Nonlinear optimization has many diverse applications, making it a particularly relevant and useful type of optimization. 
However, nonlinear optimization owes much of its breadth of application to the wide range of mathematical forms that 
optimization models of this type can assume. Many of these models are nonconvex and thus are especially 
challenging to solve on a global basis. Multistart nonlinear optimization is an excellent means of improving the quality 
of solutions to nonconvex optimization problems. 

PROC OPTMODEL in SAS/OR makes the multistart nonlinear optimization approach even more valuable by 
implementing it in parallel. This capability enables you to exploit your available computing resources fully and 
effectively, whether you work with multiple threads on a single computer or you communicate with a grid of 
computational nodes. Sampling and evaluation of candidate starting points and local optimization from the selected 
starting points are as thorough as possible, ultimately producing better solutions. 
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