
Paper 144-2013

Getting Started with the SAS/IML® Language

Rick Wicklin, SAS Institute Inc.

ABSTRACT

Do you need a statistic that is not computed by any SAS® procedure? Reach for the SAS/IML® language!
Many statistics are naturally expressed in terms of matrices and vectors. For these, you need a matrix
language.

This paper introduces the SAS/IML language to SAS programmers who are familiar with elementary linear
algebra. The focus is on statements that create and manipulate matrices, read and write data sets, and
control the program flow. The paper demonstrates how to write user-defined functions, interact with other
SAS procedures, and recognize efficient programming techniques.

INTRODUCTION

The SAS/IML language is a high-level matrix programming language that enables you to use natural
mathematical syntax to write custom algorithms and to compute statistics that are not built into any SAS
procedure. The initials IML stand for “interactive matrix language.”

This paper is based on Chapters 2–4 of Wicklin (2010b).

COMPARISON WITH THE DATA STEP

The SAS/IML language shares many similarities with the SAS DATA step. Neither language is case sensitive,
variable names can contain up to 32 characters, and statements must end with a semicolon. Although some
DATA step syntax is not supported by SAS/IML software (such as the OR, AND, EQ, LT, and GT operators),
the two languages have similar syntax for many statements. For example, you can use the same symbols to
test for equality (=) and inequality (^=), and to compare quantities (<=). The SAS/IML language enables you
to call the same mathematical functions that are provided in the DATA step, such as LOG, SQRT, ABS, SIN,
COS, CEIL, and FLOOR, but the SAS/IML versions act on vectors and matrices.

Conceptually, there are three main differences between a DATA step and a SAS/IML program:

• A DATA step implicitly loops over observations in an input data set; a typical SAS/IML program does
not.

• The fundamental unit in the DATA step is an observation; the fundamental unit in the SAS/IML language
is a matrix.

• The DATA step reads and writes data sets; the SAS/IML language keeps data and results in RAM.

SAS/IML software is most often used for statistical computing rather than for data manipulation. The SAS/IML
language enables you to write statistical expressions more concisely than you can in the DATA step.

The SAS/IML language offers excellent performance for computations that fit in memory and that can be
vectorized. A computation is vectorized if it consists of a few executable statements, each of which operates
on a fairly large quantity of data, usually a matrix or a vector. A program in a matrix language is more efficient
when it is vectorized because most of the computations are performed in a low-level language such as C. In
contrast, a program that is not vectorized requires many calls that transfer small amounts of data between the
high-level program interpreter and the low-level computational code. To vectorize a program, take advantage
of built-in functions and linear algebra operations. Avoid loops that access individual elements of matrices.

1

Hands-on WorkshopsSAS Global Forum 2013

HOW TO RUN SAS/IML PROGRAMS

SAS/IML software has two components: the IML procedure and the SAS/IML® Studio application. PROC
IML is a computational procedure that implements the SAS/IML language for matrix programming. You can
run PROC IML as part of a larger SAS program that includes DATA steps, macros, and procedure calls.

SAS/IML Studio provides an environment for developing SAS/IML programs. SAS/IML Studio runs on a
Windows PC and can connect to one or more SAS Workspace Servers. It provides an editor that color-codes
keywords, has debugging features, and enables you to use multiple workspaces, each with its own Work
library. (SAS® Enterprise Guide® is not an ideal environment for developing programs that use an interactive
procedure such as PROC IML. Every time you submit a PROC IML statement from SAS Enterprise Guide, it
appends a QUIT statement to your program. The QUIT statement terminates the procedure and deletes all
previously computed matrices.)

GETTING STARTED: A FIRST SAS/IML PROGRAM

The formula F D .9=5/C C 32 converts a temperature from the Celsius scale to Fahrenheit (F). The SAS/IML
language enables you to use vector quantities instead of scalar quantities to perform computations. The
following SAS/IML program converts a vector of temperatures from Celsius to Fahrenheit:

proc iml; /* In SAS/IML Studio, PROC IML stmt is optional */

/* convert temperatures from Celsius to Fahrenheit scale */
Celsius = {-40, 0, 20, 37, 100}; /* vector of temperatures */
Fahrenheit = 9/5 * Celsius + 32; /* convert to Fahrenheit */
print Celsius Fahrenheit; /* send to ODS destination */

The vector Celsius contains five elements. Figure 1 shows the result of computations that affect every
element of the vector. The Fahrenheit vector is a linear transformation of the Celsius vector.

Notice that the SAS/IML syntax is identical to the mathematical expression and that the transformation does
not require a loop over the elements of the vectors. Notice also that there is no RUN or QUIT statement;
each statement executes immediately when it is submitted.

Figure 1 Result of Vector Computations

Celsius Fahrenheit

-40 -40

0 32

20 68

37 98.6

100 212

Most SAS/IML statements do not create output. Consequently, the PRINT statement is used frequently in
this paper in order to display results. A comma in the PRINT statement displays the subsequent matrix in a
new row. If you omit the comma, the matrices are displayed side by side.

The PRINT statement provides four useful options that affect the way a matrix is displayed:

COLNAME=matrix
specifies a character matrix to be used for column headings.

ROWNAME=matrix
specifies a character matrix to be used for row headings.

LABEL=label
specifies a label for the matrix.

2

Hands-on WorkshopsSAS Global Forum 2013

FORMAT=format
specifies a valid SAS format or user-defined format to use in displaying matrix values.

Specify these options by enclosing them in square brackets after the name of the matrix that you want to
display, as shown in the following example:

proc iml;
/* print marital status of 24 people */
ageGroup = {"<= 45", " > 45"}; /* row headings */
status = {"Single" "Married" "Divorced"}; /* column headings */
counts = { 5 5 0, /* data to print */

2 9 3 };
p = counts / sum(counts); /* compute proportions */
print p[colname=status

rowname=ageGroup
label="Marital Status by Age Group"
format=PERCENT7.1];

Figure 2 Matrices Displayed by PRINT Options

Marital Status by Age Group

Single Married Divorced

<= 45 20.8% 20.8% 0.0%

> 45 8.3% 37.5% 12.5%

CREATING MATRICES AND VECTORS

There are several ways to create matrices in the SAS/IML language. For small matrices, you can manually
type the elements. Use spaces to separate columns; use commas to separate rows. The following statements
define a numerical scalar matrix (s), a 2 � 3 numerical matrix (x), and a 1 � 2 character row vector (y):

proc iml;
/* manually create matrices of various types */
s = 1; /* scalar */
x = {1 2 3, 4 5 6}; /* 2 x 3 numeric matrix */
y = {"male" "female"}; /* 1 x 2 character matrix */

You can use the J and REPEAT functions to create vectors of constant values. The J function creates a
matrix of identical values. The syntax J(r, c, v) returns an r � c matrix in which each element has the
value v. The REPEAT function creates a new matrix of repeated values. The syntax REPEAT(x, r, c)
replicates the values of the x matrix r times in the vertical direction and c times in the horizontal direction.
The following statements demonstrate these functions:

z = j(2, 3, 0); /* 2 x 3 row vector of zeros */
m = repeat({0 1}, 3, 2); /* repeat vector: down 3x and across 2x */
print m;

Figure 3 Constant Matrices

m

0 1 0 1

0 1 0 1

0 1 0 1

3

Hands-on WorkshopsSAS Global Forum 2013

Another useful construction is a vector of sequential values. The DO function enables you to create an
arithmetic sequence from a to b in steps of s. The syntax is DO(a, b, s). For sequences that have a unit
step size, you can use the colon index operator (:), as follows:

i = 1:5; /* increment of 1 */
k = do(1, 10, 2); /* odd numbers 1, 3, ..., 9 */
print i, k;

Figure 4 Sequential Vectors

i

1 2 3 4 5

k

1 3 5 7 9

MATRIX DIMENSIONS

A matrix has two dimensions: the number of its rows and the number of its columns. The NROW function
returns the number of rows, and the NCOL function returns the number of columns. To get both of these
numbers at once, use the DIMENSION call, which returns a row vector, as follows:

x = {1 2 3, 4 5 6};
n = nrow(x);
p = ncol(x);
dim = dimension(x);
print dim;

Figure 5 Dimensions of a Matrix

dim

2 3

You can change the dimensions of a matrix without changing the data. This is called reshaping the matrix.
The SHAPE function reshapes the data into another matrix that contains the same number of elements. The
syntax SHAPE(x, r, c) reshapes x into an r � c matrix.

For example, matrix x in the previous example has six elements, so the data fit into a 1� 6 row vector, a 2� 3
matrix, a 3 � 2 matrix, or a 6 � 1 column vector. Matrices in the SAS/IML language are stored in row-major
order. The following statements reshape the matrix x twice. The results are shown in Figure 6.

/* to save space, the 3 x 2 and 6 x 1 matrices are not computed */
row = shape(x, 1); /* 1 x 6 vector */
m = shape(x, 2, 3); /* 2 x 3 matrix */
print row, m;

Figure 6 Reshaped Matrices

row

1 2 3 4 5 6

m

1 2 3

4 5 6

4

Hands-on WorkshopsSAS Global Forum 2013

Another way to change the dimensions of a matrix is to increase the number of rows or columns. The
following statements use the horizontal concatenation operator (||) to append a row vector onto the bottom
of x, and the vertical concatenation operator (//) to append two columns:

z = x // {7 8 9}; /* add new row at bottom */
y = x || {7 8, 9 10}; /* add two new columns */
print y;

Figure 7 The Result of Horizontal Concatenation

y

1 2 3 7 8

4 5 6 9 10

MATRIX AND VECTOR OPERATIONS

The fundamental data structure in the SAS/IML language is a matrix. Binary operators such as addition
and multiplication act on matrices. The rules of linear algebra define matrix operations and also define the
dimensions of matrices for which binary operators are well defined.

Three types of SAS/IML operations enable you to combine matrices of compatible dimensions:

• Elementwise operations act on each element of a matrix. Examples include linear operations such as
sX C tY , where s and t are scalar values and X and Y are matrices that have the same dimensions. In
addition to scalar multiplication, the SAS/IML language includes the elementwise operators for addition
(C), subtraction (�), multiplication (#), division (/), and exponentiation (##). For example, if A D X#Y ,
then Aij D XijYij for all values of i and j .

• Matrix multiplication, which includes the inner and outer products of two vectors, is a matrix operation.
If A is an n � p matrix and B is a p �m matrix, then A � B is an n �m matrix and the .i; j /th element
of the product is †p

kD1
AikBkj . The number of columns of A must equal the number of rows of B.

• A hybrid operation is an elementwise operation that acts on the rows or columns of matrices that
have different dimensions. The SAS/IML language looks at the dimensions to determine whether it
can make sense of an arithmetic expression. For example, suppose A is an n � p matrix and v is a
1 � p vector. Because A and v both have the same number of columns, it is possible to evaluate the
expression AC v as an n � p matrix whose .i; j /th element is Aij C vj . In other words, vj is added to
the j th column of A. Similarly, if u is an n� 1 nonzero vector, then A=u is computed as an n� p matrix
whose .i; j /th element is Aij =ui .

The following program demonstrates the three types of matrix operations. The hybrid example standardizes
a matrix by subtracting the mean of each column and then dividing each column by its standard deviation.

proc iml;
/* true elementwise operations */
u = {1 2};
v = {3 4};
w = 2*u - v; /* w = {-1 0} */

/* true matrix operations */
A = {1 2, 3 4};
b = {-1, 1};
z = A*b; /* z = {1, 1} */

/* hybrid elementwise operations */
x = {-4 9,

2 5,
8 7};

5

Hands-on WorkshopsSAS Global Forum 2013

mean= {2 7};
std = {6 2};

center = x - mean; /* subtract mean[j] from jth column */
stdX = center / std; /* divide jth column by std[j] */
print stdX;

Figure 8 Result of Matrix Operations

stdX

-1 1

0 -1

1 0

In general, if m is an n � p matrix, then you can perform elementwise operations with a second matrix v,
provided that v is a 1 � 1, n � 1, 1 � p, or n � p matrix. The result of the elementwise operation is shown in
Table 1, which describes the behavior of elementwise operations for the +, -, #, /, and ## operators.

Table 1 Behavior of Elementwise Operators

Size of v Result of m op v

1 � 1 v applied to each element of m
n � 1 v[i] applied to row m[i,]
1 � p v[j] applied to column m[,j]
n � p v[i,j] applied to element

m[i,j]

Another matrix operator is the transpose operator (`). This operator is typed by using the grave accent key.
(The grave accent key is located in the upper left corner on US and UK QWERTY keyboards.) The operator
transposes the matrix that follows it. This notation mimics the notation in statistical textbooks. (Because
the transpose operator can be difficult to see, some programmers prefer to use the T function to transpose
matrices.)

For example, given an n � p data matrix, X , and a vector of n observed responses, y, a goal of ordinary
least squares (OLS) regression is to find a 1 � p vector b such that Xb is close to y in the least squares
sense. You can use the so-called normal equations, .X 0X/b D X 0y, to find the OLS solution. The following
statements use the matrix transpose operator to compute the X 0X matrix and the X 0y vector for example
data:

/* set up the normal equations (X`X)b = X`y */
x = (1:8)`; /* X data: 8 x 1 vector */
y = {5 9 10 15 16 20 22 27}`; /* corresponding Y data */

/* Step 1: Compute X`X and X`y */
x = j(nrow(x), 1, 1) || x; /* add intercept column */
xpx = x` * x; /* cross products */
xpy = x` * y;

The SAS/IML language has many built-in functions for solving linear and nonlinear equations and for finding
the optima of functions. You can use the SOLVE function to solve the normal equations for the regression
parameter estimates, as follows:

b = solve(xpx, xpy); /* solve for parameter estimates */
print b;

6

Hands-on WorkshopsSAS Global Forum 2013

Figure 9 Solution of Normal Equations

b

2.1071429

2.9761905

ROWS, COLUMNS, and SUBMATRICES

Matrices consist of columns and rows. It is often useful to extract a subset of observations or columns as
part of an analysis. For example, you might want to extract observations that correspond to all patients who
smoke. Or you might want to extract columns of highly correlated variables.

In general, a rectangular subset of rows and columns is called a submatrix. You can specify a submatrix by
using subscripts to specify the rows and columns of a matrix. Use square brackets to specify subscripts. For
example, if A is a SAS/IML matrix, the following are submatrices:

• The expression A[2,1] is a scalar that is formed from the second row and the first column of A.

• The expression A[2,] specifies the second row of A. The column subscript is empty, which means
“use all columns.”

• The expression A[, {1 3}] specifies the first and third columns of A. The row subscript is empty,
which means “use all rows.”

• The expression A[3:4, 1:2] specifies a 2 � 2 submatrix that contains the elements that are in the
intersection of the third and fourth rows of A and the first and second columns of A.

The following SAS/IML program specifies a few submatrices. Figure 10 shows the matrices r and m.

A = {1 2 3,
4 5 6,
7 8 9,

10 11 12};
r = A[2,]; /* second row */
m = A[3:4, 1:2]; /* intersection of specified rows and cols */
print r, m;

Figure 10 Submatrices

r

4 5 6

m

7 8

10 11

You can use subscripts not only to extract submatrices, but also to assign matrix elements. The following
statements assign values to elements of A:

A[2, 1] = .;
A[3:4, 1:2] = 0; /* assign 0 to ALL of these elements */
A[{1 5 9}] = {-1 -2 -3}; /* assign elements in row-major order */
print A;

7

Hands-on WorkshopsSAS Global Forum 2013

Figure 11 Assigning to Matrix Elements

A

-1 2 3

. -2 6

0 0 -3

0 0 12

READING AND WRITING DATA

A major reason to use SAS/IML software rather than another matrix language is the ease with which the
language interacts with other parts of SAS software. For example, SAS/IML software can easily read SAS
data sets into matrices and vectors, and it is easy to create a SAS data set from SAS/IML matrices.

CREATING MATRICES FROM SAS DATA SETS

You can use the USE and READ statements to read data into SAS/IML matrices and vectors. You can
read variables into vectors by specifying the names of the variables that you want to read. The following
statements read the first three observations from the Sashelp.Cars data set:

proc iml;
/* read variables from a SAS data set into vectors */
varNames = {"Make" "Model" "Mpg_City" "Mpg_Highway"};
use Sashelp.Cars(OBS=3); /* open data for reading */
read all var varNames; /* create vectors: Make,... */
close Sashelp.Cars; /* close data set */
print Make Model Mpg_City Mpg_Highway;

Figure 12 Reading from SAS Data Set into Vectors

Make Model MPG_City MPG_Highway

Acura MDX 17 23

Acura RSX Type S 2dr 24 31

Acura TSX 4dr 22 29

You can also read a set of variables into a matrix (assuming that the variables are either all numeric or
all character) by using the INTO clause in the READ statement. The following statements illustrate this
approach. Again, only three rows of the data are read.

/* read variables from a SAS data set into a matrix */
varNames = {"Mpg_City" "Mpg_Highway" "Cylinders"};
use Sashelp.Cars(OBS=3); /* open data for reading */
read all var varNames into m; /* create matrix with 3 cols */
print m[c=varNames]; /* C= same as COLNAME= */

8

Hands-on WorkshopsSAS Global Forum 2013

Figure 13 Reading from SAS Data Set into a Matrix

m

Mpg_City Mpg_Highway Cylinders

17 23 6

24 31 4

22 29 4

You can read only the numeric variable in a data set by specifying the _NUM_ keyword in the READ
statement:

read all var _NUM_ into y[colname=NumericNames];

The columns of the matrix y contain the data for the numeric variables; the matrix NumericNames is filled
with the names of those variables. The _CHAR_ keyword works similarly.

CREATING SAS DATA SETS FROM MATRICES

In a similar way, you can use the CREATE and APPEND statements to create a SAS data set from data in
vectors or matrices. The following statements create a data set called Out in the Work library:

proc iml;
x = 1:5; y = 5:1; v = "v1":"v5"; /* define the data */
create Out var {"x" "y" "v"}; /* name the vars */
append; /* write the data */
close Out;

The CREATE statement opens Work.Out for writing. The APPEND statement writes the values of the vectors
that are listed in the VAR clause of the CREATE statement. The CLOSE statement closes the data set.

If you want to create a data set from a matrix of values, you can use the FROM clause in the CREATE and
APPEND statements. If you do not explicitly specify names for the data set variables, the default names are
COL1, COL2, and so on. You can explicitly specify names for the data set variables by using the COLNAME=
option, as shown in the following statements:

/* create SAS data set from a matrix */
m = {1 2, 3 4, 5 6, 7 8}; /* 4 x 2 matrix */
create Out2 from m[colname={"x" "y"}]; /* name vars */
append from m; /* write the data */
close Out2;

PROGRAMMING FUNDAMENTALS

The key to efficient programming in a matrix language is to use matrix computations as often as possible. A
program that loops over rows and columns of a matrix is usually less efficient than a program that takes
advantage of built-in functions and matrix computations.

AVOIDING LOOPS

However, the SAS/IML language does have an iterative DO statement that enables you to execute a group of
statements repeatedly. It takes practice to know whether a DO loop is essential or whether it can be avoided.
For example, suppose you want to compute the mean of each column of a matrix. A novice programmer
might write the following double loop:

proc iml;
s = {1 2 3, 4 5 6, 7 8 9, 10 11 12}; /* 4 x 3 matrix */
results = j(1, ncol(s)); /* allocate results */

9

Hands-on WorkshopsSAS Global Forum 2013

/* First attempt: Double loop (very inefficient) */
do j = 1 to ncol(s); /* loop over columns */

sum = 0;
do i = 1 to nrow(s); /* loop over rows */

sum = sum + s[i,j]; /* sum of column */
end;
results[j] = sum / nrow(s); /* mean of j_th column */

end;

Notice that there are no vector operations in this program, only a lot of scalar operations. A more experienced
SAS/IML programmer might use the SUM function, which can return the sum of each column. Consequently,
the following program is more efficient:

/* Second attempt: Single loop over columns (slightly inefficient) */
do i = j to ncol(s);

results[j] = sum(s[,j]) / nrow(s);
end;

The program now consists of a series of vector operations, which is a step in the right direction. However,
the program can be improved further if you use the MEAN function, which computes the mean values of
each column of a matrix. Consequently, the program reduces to a single function call that takes a matrix as
an argument:

/* MEAN function operates on cols. No loop! */
results = mean(s); /* mean of each col */

SUBSCRIPT REDUCTION OPERATORS

You can also avoid writing loops by using the SAS/IML subscript reduction operators. These operators
enable you to perform common statistical operations (such as sums, means, and sums of squares) on either
the rows or the columns of a matrix. For example, the following statements compute the sum and mean of
columns and of rows for a matrix. Figure 14 shows the results.

proc iml;
/* compute sum and mean of each column */
x = {1 2 3,

4 5 6,
7 8 9,
4 3 .};

colSums = x[+,];
colMeans = x[:,]; /* equivalent to mean(x) */
rowSums = x[,+];
rowMeans = x[,:];
print colSums, colMeans, rowSums rowMeans;

Figure 14 Sums and Means of Rows and Columns

colSums

16 18 18

colMeans

4 4.5 6

10

Hands-on WorkshopsSAS Global Forum 2013

Figure 14 continued

rowSums rowMeans

6 2

15 5

24 8

7 3.5

The expression x[+,] uses the '+' subscript operator to “reduce” the matrix by summing the row elements
for each column. (Recall that not specifying a column in the second subscript is equivalent to specifying all
columns.) The expression x[:,] uses the ':' subscript operator to compute the mean for each column.
The row sums and means are computed similarly. Notice that the subscript reduction operators correctly
handle the missing value in the third column.

Table 2 summarizes the subscript reduction operators for matrices and shows an equivalent function call.

Table 2 Subscript Reduction Operators for Matrices

Operator Action Equivalent Function

+ Addition sum(x)
Multiplication prod(x)
>< Minimum min(x)
<> Maximum max(x)
>:< Index of minimum loc(x=min(x))[1]
<:> Index of maximum loc(x=max(x))[1]
: Mean mean(x) /* mean of columns */
Sum of squares ssq(x)

LOCATE OBSERVATIONS

One situation where vectorization is important is in finding observations that satisfy a given set of conditions.
You can locate observations by using the LOC function, which returns the indices of elements that satisfy the
condition.

For example, suppose you want to find vehicles in the Sashelp.cars data set that have fewer than six cylinders
and that get more than 35 miles per gallon in city driving. An inefficient way to find these vehicles would be
to loop over all observations and to use concatenation to build up a vector that contains the observation
numbers. An efficient approach follows:

proc iml;
varNames = {"Cylinders" "Mpg_City"};
use Sashelp.Cars;
read all var varNames into X; /* read data */
idx = loc(X[,1]<6 & X[,2]>35); /* row vector */

print (idx`)[label="Row"] (X[idx,])[c=varNames];

11

Hands-on WorkshopsSAS Global Forum 2013

Figure 15 Observations That Satisfy Criteria

Row Cylinders Mpg_City

150 4 46

151 3 60

156 4 36

374 4 59

405 4 38

If no observations satisfy the criteria, the LOC function returns an empty matrix. It is a good programming
practice to check for an empty matrix, as follows:

if ncol(idx) > 0 then do;
/* obs found... do something with them */

end;
else do;

print "No observations satisfy the condition.";
end;

You can skip the check if you are certain that at least one observation satisfies the criteria.

HANDLE MISSING VALUES

Although many built-in SAS/IML functions handle missing values automatically, you might need to find and
delete missing values when you implement your own algorithms. The LOC function is useful for finding
nonmissing values. For example, the following statements extract the nonmissing data values into a vector:

proc iml;
x = {1, ., 2, 2, 3, .};
nonMissing = loc(x ^= .); /* {1 3 4 5} */
y = x[nonMissing]; /* y = {1,2,2,3}; */

If you account for missing values at the beginning of a program, the rest of the program is often much easier
to write and to understand.

For a data matrix, it is often useful to delete an entire row of a matrix if any element in the row is missing.
The remaining rows are called complete cases. Many multivariate and regression analyses begin by deleting
records for which any variable is missing. In the SAS/IML language, you can use the LOC and COUNTMISS
functions to find and keep the complete cases, as follows:

/* exclude rows with missing values */
z = {1 .,

2 2,
. 3,
4 4};

numMiss = countmiss(z, "row"); /* count missing in each row */
y = z[loc(numMiss=0),]; /* z[{2 4},] = {2 2, 4 4} */

ANALYZE LEVELS OF CATEGORICAL VARIABLES

Another useful application of the LOC function is to compute statistics for each level of a categorical variable.
The UNIQUE function enables you to find the unique (sorted) values of a vector. You can iterate over the
unique values and use the LOC function to extract the observations for each category. You can then perform
a statistical analysis on the observations for that category. This is analogous to BY-group processing in other
SAS procedures.

For example, suppose you want to compute the mean fuel efficiency for vehicles in the Sashelp.cars data
set, grouped by categories of the Type variable. The following SAS/IML program uses the UNIQUE-LOC
technique to compute the means:

12

Hands-on WorkshopsSAS Global Forum 2013

proc iml;
use Sashelp.Cars;
read all var {"Type" "Mpg_City"};
close Sashelp.Cars;

/* UNIQUE-LOC technique */
uC = unique(Type); /* find unique values */
mean = j(1, ncol(uC)); /* allocate vector for results */
do i = 1 to ncol(uC);

idx = loc(Type = uC[i]); /* locate these obs */
mean[i] = mean(Mpg_City[idx]); /* find mean of mpg */

end;
print mean[colname=uC label="Average MPG (City)" format=4.1];

Figure 16 Mean Values by Categories

Average MPG (City)

Hybrid SUV Sedan Sports Truck Wagon

55.0 16.1 21.1 18.4 16.5 21.1

If all you want to do is count the frequencies of observations in each category, you do not need to use the
UNIQUE-LOC technique. Given a vector of categories, the TABULATE routine returns two values: a matrix
of the unique categories and the frequencies of each category.

USER-DEFINED FUNCTIONS

The SAS/IML language supports hundreds of built-in functions, and you can also call hundreds of Base
SAS® functions. However, if you need additional statistical functionality, you can extend the SAS/IML library
by defining a module. A module is a function or subroutine that is written in the SAS/IML language and that
you can define, store, and call from your code as if it were a built-in function. Modules enable you to package,
reuse, and maintain related SAS/IML statements in a convenient way.

A module definition begins with a START statement and ends with a FINISH statement. For a function
module, a RETURN statement specifies the return matrix.

For example, suppose you want to define a function that standardizes the columns of a matrix. To standardize
a column, you subtract the mean value from each column and divide the result by the standard deviation
of the column. The following function uses the MEAN and STD functions to standardize each column of a
matrix. (The STD function returns the standard deviation of each column of a matrix.) Each column of the
resulting matrix has zero mean and unit variance.

proc iml;
/* standardize each column of x to have mean 0 and unit variance */
start Stdize(x);

return((x - mean(x)) / std(x));
finish;

/* test it */
A = {0 2 9,

1 4 3,
-1 6 6};

z = Stdize(A);
print z;

13

Hands-on WorkshopsSAS Global Forum 2013

Figure 17 Calling a User-Defined Module

z

0 -1 1

1 0 -1

-1 1 0

You can use the STORE statement to store a module in a user-defined library so that you can use it later. To
use a stored module, use the LOAD statement to load the module from the library.

LOCAL VERSUS GLOBAL MATRICES

Inside a module, all matrix names are local to the module. In particular, they do not conflict with or overwrite
matrices that have the same name but are defined outside the module. The following statements define a
matrix named x that is outside all modules. A matrix named x is also inside the Sqr module. When the Sqr
module is run, the value of x inside the module is set to 4. However, the value of x outside the module is
unchanged, as shown in Figure 18.

proc iml;
x = 0; /* x is outside function */
start Sqr(t);

x = t##2; /* this x is local */
return (x);

finish;

s = Sqr(2); /* inside module, x is 4 */
print x[label="Outside x (unchanged)"]; /* outside, x not changed */

Figure 18 Matrix Outside a Module (Unchanged)

Outside x
(unchanged)

0

If you want a module to be able to refer to or change a matrix that is defined outside the module, you can
use the GLOBAL statement to specify the name of the matrix. In the following statements, the x matrix is
declared to be a global matrix. When the module makes an assignment to x, the value of x outside the
module is changed, as shown in Figure 19.

start Sqr2(t) global(x); /* GLOBAL matrix */
x = t##2; /* this x is global */

finish;

run Sqr2(2);
print x[label="Outside x (changed)"]; /* outside, x is changed */

Figure 19 Matrix Outside a Module (Changed)

Outside x
(changed)

4

14

Hands-on WorkshopsSAS Global Forum 2013

PASSING ARGUMENTS BY REFERENCE

The GLOBAL clause is sometimes used when a module needs to read the values of parameters. However, it
is considered a poor programming practice for a module to change the value of a global matrix. Instead, the
preferred convention is to pass the matrix to a module as an argument.

All SAS/IML modules pass parameters by reference, which means that a module can change the values of
its arguments. This is a very efficient way to pass matrices because it avoids having to allocate memory and
copy values every time a module is called. On the other hand, the programmer needs to be careful not to
inadvertently change the value of an argument.

The following example illustrates the concept of passing a parameter by reference:

proc iml;
start Double(x); /* arg is changed */

x = 2*x;
finish;

y = 1:5;
run Double(y);
print y;

The Double module doubles the elements of its parameter and overwrites the original elements with new
values. “Passing by reference” means that the matrix y outside the module shares the same memory as the
matrix x inside the module. Consequently, when the values of x are updated inside the module, the values
of y outside the module also change, as shown in Figure 20.

Figure 20 Passing by Reference

y

2 4 6 8 10

You can use this fact to return multiple matrices from a subroutine. For example, suppose you want to
compute matrices that contain the square, cube, and fourth power of elements of an input matrix. You can
do this by defining a subroutine that takes four parameters. By convention, the output parameters are listed
first and the input parameters are listed last, as shown in the following statements:

/* define subroutine with output arguments */
start Power(x2, x3, x4, x);

x2 = x##2;
x3 = x##3;
x4 = x##4;

finish;

y = {-2, -1, 0, 1, 2};
run Power(Square, Cube, Quartic, y);
print y Square Cube Quartic;

Figure 21 Returning Multiple Values

y Square Cube Quartic

-2 4 -8 16

-1 1 -1 1

0 0 0 0

1 1 1 1

2 4 8 16

15

Hands-on WorkshopsSAS Global Forum 2013

This program demonstrates that the output arguments do not need to be allocated in advance if they are
assigned inside the module.

CALLING SAS PROCEDURES

A very useful feature of the SAS/IML language is its ability to call SAS procedures (including DATA steps and
macros) from within a SAS/IML program. This enables the SAS/IML programmer to access any statistic that
can be produced in SAS!

Calling a SAS procedure from within a SAS/IML program usually consists of three steps:

1. Write the data to a SAS data set.

2. Use the SUBMIT and ENDSUBMIT statements to execute SAS code.

3. Read the results into SAS/IML matrices.

As a simple example, suppose you want to compute the skewness of data that are contained in a SAS/IML
vector. You could write a module that computes the skewness, but it is quicker and less prone to error to call
the MEANS procedure, which reads data from a SAS data set. The following statements create a data set,
call the MEANS procedure inside a SUBMIT-ENDSUBMIT block, and read the results back into a SAS/IML
scalar matrix:

proc iml;
/* start with data in SAS/IML vector */
x = {1 1 1 1 2 2 2 3 4 4 5 6 6 8 9 11 11 15 22}`;

/* 1. Write to SAS data set */
create In var {"x"};
append;
close In;

/* 2. Call SAS procedure */
submit;

proc means data=In noprint;
var x;
output out=Output Skewness=Skew;

run;
endsubmit;

/* 3. Read results */
use Output;
read all var {"Skew"};
close Output;

print Skew;

Figure 22 Results of Calling a SAS Procedure

Skew

1.5402636

In a similar way, you can use SUBMIT and ENDSUBMIT statements to call graphical procedures, such as
the SGPLOT procedure. For example, if you want to visualize the data in the previous example, you can use
PROC SGPLOT to create a histogram:

16

Hands-on WorkshopsSAS Global Forum 2013

submit;
proc sgplot data=In;

title "Created by PROC SGPLOT";
histogram x;
density x / type=kernel;

run;
endsubmit;

Figure 23 Results of Calling a Graphical Procedure

In a similar way, you can call R (an open-source statistical language) from SAS/IML software. The SAS/IML
User’s Guide and Wicklin (2010a) provide examples.

APPLICATIONS AND STATISTICAL TASKS

You can use the SAS/IML language to compute many statistical quantities. The SAS/IML language is used
by SAS testing groups to validate the results of almost every analytical procedure—from regression and
multivariate analyses in SAS/STAT® to time series modeling in SAS/ETS® to data mining methods in SAS®

Enterprise Miner™.

SAS customers use SAS/IML software to compute statistics that are not produced by other SAS procedures.
Wicklin (2010a) describes how to use the SAS/IML language to implement techniques in modern data
analysis. The remainder of this paper describes two common uses of SAS/IML software: simulation and
optimization.

SIMULATING DATA

Simulating data is an essential technique in modern statistical programming. You can use data simulation
for hypothesis testing, for computing standard errors, and for estimating the power of a test (Wicklin 2013).
Simulation is also useful for comparing the performance of statistical techniques.

A complete description of how to use SAS/IML for efficient simulation is beyond the scope of this paper.
However, the main idea is that the SAS/IML language supports the RANDGEN subroutine, which fills an
entire matrix with random values by making a single call.

To illustrate simulating data, the following SAS/IML program simulates 10,000 random samples of size 10
drawn from a uniform distribution on Œ0; 1�. For each sample, the mean of the sample is computed. The
collection of sample means approximates the sampling distribution of the mean.

17

Hands-on WorkshopsSAS Global Forum 2013

proc iml;
N = 10; /* number of obs in each sample */
NumSamples = 10000; /* number of samples */

call randseed(123); /* set seed for random number stream */
x = j(N, NumSamples); /* each column is sample of size N */
call randgen(x, "Uniform"); /* simulate data */
s = mean(x); /* compute mean for each col */

/* summarize approximate sampling distribution */
s = T(s);
Mean = mean(s);
StdDev = std(s);
print Mean StdDev;

Figure 24 shows summary statistics for the sampling distribution. The central limit theorem (CLT) states
that the sampling distribution of the mean is approximately normally distributed for large sample sizes. In
fact, the CLT states that for a uniform population on Œ0; 1�, the mean and standard deviation of the sampling
distribution will be approximately 0.5 and 1=

p
12N for large N . Although N D 10 is not “large,” the values in

Figure 24 are nevertheless close to 0.5 and 0.0913.

Figure 24 Descriptive Statistics for Sampling Distribution

Mean StdDev

0.499969 0.0915287

You can write the data to a SAS data set and use the UNIVARIATE procedure to display a histogram and
overlay a normal curve, as shown in Figure 25.

Figure 25 Sampling Distribution of Mean

OPTIMIZATION

Many statistical methods require optimization of nonlinear functions. A common example is maximum
likelihood estimation, which requires finding parameter values that maximize the (log-) likelihood function.
One situation where this arises is in fitting parametric distributions to univariate data.

18

Hands-on WorkshopsSAS Global Forum 2013

For example, suppose you want to fit a normal density curve to the SepalWidth variable in Fisher’s famous
iris data set (Sashelp.Iris). To fit the data well, you have to find some way to choose the parameters � and
� of the normal density. Maximum likelihood estimation produces one way to fit the data. For the normal
distribution, the maximum likelihood estimates (MLE) can be found by calculus. The optimal values are
.�; �/ D . Nx; sn/, where Nx is the sample mean and s2

n D †
n
iD1.xi � Nx/=n is the biased sample variance.

The following statements read the SepalWidth data from the Sashelp.Iris data set and compute the MLEs,
which are shown in Figure 26:

proc iml;

use Sashelp.Iris; /* read data */
read all var {SepalWidth} into x;
close Sashelp.Iris;

/* print the optimal parameter values */
muMLE = mean(x);
n = countn(x);
sigmaMLE = sqrt((n-1)/n * var(x));
print muMLE sigmaMLE;

Figure 26 Maximum Likelihood Estimates for Normal Parameters

muMLE sigmaMLE

30.573333 4.3441097

Unfortunately, the MLEs do not have a convenient closed-form solution for most nonnormal distributions. For
most distributions, numerical optimization is the only way to obtain the parameter estimates. To demonstrate
numerical optimization, the following example computes the MLEs for the normal example and compares the
numerical solution to the exact values. The same numerical optimization technique can be used for cases in
which an exact solution is not available.

To use maximum likelihood estimation, you need to write a module that defines the log-likelihood function.
The following statements define a module named NormLogLik that takes a single argument: the vector of
parameters to be optimized. A GLOBAL statement enables the function to reference the data in the x matrix.
The function returns the value of the log-likelihood function for any .�; �/ value.

/* 1. compute the log-likelihood function for Normal distrib */
start NormLogLik(parm) global (x); /* param = {mu sigma} */

mu = parm[1]; sigma2 = parm[2]##2;
n = nrow(x);
return(-n/2*log(sigma2) - 0.5/sigma2*sum((x-mu)##2));

finish;

The SAS/IML run-time library supports several functions for nonlinear optimization. The following example
uses the Newton-Raphson (NLPNRA) algorithm, which takes four input parameters:

1. The function to be optimized, which is NormLogLik. This function must take a single argument: the
vector of parameters to optimize. Other relevant information (such as the data values) is specified by
using the GLOBAL clause.

2. An initial value for the parameters to optimize. For this problem, the vector has two elements, which
you can choose arbitrarily to be .�0; �0/ D .35; 5:5/.

3. A vector of options that control the Newton-Raphson algorithm. You can specify many options, but this
example uses only two. The first option specifies that the Newton-Raphson algorithm should find a
maximum, and the second option specifies that the algorithm should print information that is related to
the solution.

4. A constraint matrix for the parameters. For this problem, the � parameter is unconstrained, but the
standard deviation � must be a positive quantity.

19

Hands-on WorkshopsSAS Global Forum 2013

The following statements set up the initial conditions, options, and constraints, and they call the optimization
routine:

parm = {35 5.5}; /* 2. initial guess for solution (mu, sigma) */
optn = {1, /* 3. find max of function, and */

4}; /* print moderate amount of output */
con = {. 0, /* 4. lower bound: -infty < mu; 0 < sigma, and */

. .}; /* upper bound: mu < infty; sigma < infty */

/* 5. Provide initial guess and call NLP function */
call nlpnra(rc, result, "NormLogLik", parm, optn, con);

Figure 27 displays the iteration history for the Newton-Raphson algorithm. The table shows that the algorithm
requires six iterations to progress from the initial guess to the final parameter estimates. For each step,
the “Objective Function” (the NormLogLik function) increases until it reaches a maximum at iteration 7. You
can visualize the process by using the SGPLOT procedure to overlay several normal density curves on a
histogram of the data, as shown in Figure 28. The final parameter estimates differ from the theoretical values
by less than 10�6.

Figure 27 Iteration History for Newton-Raphson Optimization

Iter Mu Sigma LogLik DifLogLik MaxGrad

1 30.504341589 2.9821746798 -323.08441 27.9997 56.4598

2 30.544533045 3.6054833966 -301.25008 21.8343 18.7945

3 30.565604837 4.0908284318 -295.88706 5.3630 4.6812

4 30.572515091 4.3099780251 -295.33251 0.5545 0.5534

5 30.573321872 4.3434465586 -295.32313 0.00938 0.0105

6 30.573333126 4.3441110766 -295.32312 3.497E-6 0.000024

7 30.573333065 4.3441095948 -295.32312 1.52E-11 4.833E-7

Figure 28 Sampling Distribution of Mean

20

Hands-on WorkshopsSAS Global Forum 2013

CONCLUSION

This paper introduces the SAS/IML language to SAS programmers. It also focuses on features such as
creating matrices, operating with matrices, and reading and writing SAS data sets. The paper also describes
how to write efficient programs, how to create user-defined functions, and how to call SAS procedures from
within a SAS/IML program. Finally, it demonstrates two popular uses of the SAS/IML language: simulating
data and optimizing functions.

The SAS/IML language is a powerful addition to the toolbox of a SAS statistical programmer. But like any
powerful tool, it requires practice and experience to use effectively. You can use the resources described in
the following list to learn more about the SAS/IML language:

• Much of this paper is taken from material in Chapters 2–4 of Wicklin (2010b), which contains many
additional examples and practical programming techniques.

• The DO Loop blog often demonstrates statistical programming in the SAS/IML language. You can
browse or subscribe to this blog at blogs.sas.com/content/iml.

• The SAS/IML Support Community at communities.sas.com/community/support-communities
is an online forum where you can ask questions about SAS/IML programming.

• The first six chapters of the SAS/IML User’s Guide are intended for beginners. The “Language
Reference” chapter contains complete cut-and-paste examples for every function in the SAS/IML
language.

• SAS/IML Studio for SAS/STAT Users provides a short introduction to programming dynamically linked
graphics in SAS/IML Studio.

REFERENCES

Wicklin, R. (2010a), “Rediscovering SAS/IML Software: Modern Data Analysis for the Practicing Statistician,”
in Proceedings of the SAS Global Forum 2010 Conference, Cary, NC: SAS Institute Inc.
URL http://support.sas.com/resources/papers/proceedings10/329-2010.pdf

Wicklin, R. (2010b), Statistical Programming with SAS/IML Software, Cary, NC: SAS Institute Inc.

Wicklin, R. (2013), Simulating Data with SAS, Cary, NC: SAS Institute Inc.

ACKNOWLEDGMENTS

The author is grateful to Maribeth Johnson for the invitation to present this material as a Hands-On Workshop.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Rick Wicklin
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

21

Hands-on WorkshopsSAS Global Forum 2013

blogs.sas.com/content/iml
communities.sas.com/community/support-communities
http://support.sas.com/resources/papers/proceedings10/329-2010.pdf

	2013 Table of Contents

