
1

Paper 117-2013

A Day in the Life of Data – Part 2
Harry Droogendyk, Stratia Consulting Inc.

ABSTRACT

As a new SAS® programmer, you may be overwhelmed with the variety of tricks and techniques that you see from
experienced SAS programmers; as you try to piece together some of these techniques you get frustrated and
perhaps confused because the data showing these techniques are inconsistent. That is, you read several papers and
each uses different data. This series of four papers is different. They will step you through several techniques but all
four papers will be using the same data. The authors will show how value is added to the data at each of the four
major steps: Input, Data Manipulation, Data and Program Management, and Graphics and Reporting.

INTRODUCTION

The first paper (116-2013) in this series of four has demonstrated how to import data from a variety of sources. This
paper, the second in the series, will illustrate how data is to be manipulated by joining tables, transforming and
summarizing the data to make it suitable for reporting and visualization. Various techniques will be explored outlining
the advantages and disadvantages of each method.

JOINING DATA

In a typical enterprise setting we deal with millions of rows and thousands of columns of data. Not all this information
is going to be available in a single table or dataset. Proper database design demands that the data be normalized as
much as practically possible. Normalization is the process that attempts to ensure each data item is stored in only
one table. This usually results in multiple tables as the data is broken into components or categories (e.g. personal
data, address data, transaction data etc…) to ensure uniqueness. The end result greatly minimizes the potential for
data anomalies which may occur by storing the same information in multiple tables. However, that also means that
most often tables must be joined to provide data stores suitable for reporting and visualization.

When joining tables, care must be taken to ensure the relationships between the tables do not introduce unwanted
results. For instance, typically relationships between tables result in a one-to-one or a One-to-Many Relationship. A
One-to-One Relationship would result when the join criteria results in a single row from one table being joined to a
single row in another table, e.g. an Employee Master table joined to an Employee Salary table. A one-to-many
relationship would result when joining Employee Master to an Employee Hierarchy table where a single manager has
multiple reporting employees. A many-to-many relationship would most probably exist between Customer and
Product – many customers can order the same product, and many products may be ordered by a single customer.
Sometimes the product of a Many-to-Many Relationship is the desired result, but if not, the result set will be much
larger than anticipated and results will be incorrect. The examples below will illustrate each of these relationships.

This paper will introduce the two most common techniques for joining tables in SAS is via the data step MERGE and
PROC SQL joins. For a fuller treatment of MERGE and PROC SQL usage, see the 178-2008 SUGI paper.

Before moving on, note the following diagram which illustrates which rows from the contributing tables are
represented in the final result set for the four different types of joins.

Inner (or Equi -) Join

Match rows only

 Left Outer Join

All rows from A,
matching rows from B

Right Outer Join

All rows from B,
matching rows from A

Fuller Outer Join

All rows from both tables

Error! Reference source not found.: illustrating types of joins

Foundations and FundamentalsSAS Global Forum 2013

2

DATA STEP MERGE

Some databases provide an SQL MERGE statement to insert into and update a target table from a source table. The
data step MERGE is a quite different in that it allows multiple tables to be brought together with the opportunity to fully
control the process with data step logic. Most often the MERGE join criteria is regulated by specifying a common set
of BY variables that define the relationship(s) between the tables.

Before joining tables using the data step MERGE, SAS requires that the tables be sorted in BY variable order, or an
index must exist that includes the BY variables specified.

One-to-One Relationship

data employee_master;
 emp_id = 32 ; name = 'George' ; hire_dt = '03Feb2012'd ; gender = 'M' ; output ;
 emp_id = 13 ; name = 'Susan' ; hire_dt = '23Nov1999'd ; gender = 'F' ; output ;
 emp_id = 7; name = 'Peter' ; hire_dt = '12Apr1998'd ; gender = 'M' ; output ;
 emp_id = 45 ; name = 'Egbert' ; hire_dt = '31Dec2011'd ; gender = 'O' ; output ;
 format hire_dt yymmddd10. ;
run ;

data employee_salary;
 emp_id = 7; salary = 52000 ; increase_dt = '03Feb2012'd ; output ;
 emp_id = 13 ; salary = 70500 ; increase_dt = '14Nov2012'd ; output ;
 emp_id = 32 ; salary = 67800 ; increase_dt = '03May2011'd ; output ;
 emp_id = 45 ; salary = 43200 ; increase_dt = '02jan2012'd ; output ;
 format salary dollar10. increase_dt yymmddd10. ;
run ;

data employee_data;
 merge employee_master
 employee_salary;
 by emp_id;
run ;

150 data employee_data;

151 merge employee_master

152 employee_salary;

153 by emp_id;

154 run;

ERROR: BY variables are not properly sorted on data set WORK.EMPLOYEE_MASTER.

emp_id=32 name=George hire_dt=2012-02-03 gender=M salary=67800 increase_dt=18750 FIRST.emp_id=1

LAST.emp_id=1 _ERROR_=1 _N_=3

NOTE: The SAS System stopped processing this step because of errors.

NOTE: There were 2 observations read from the data set WORK.EMPLOYEE_MASTER.

NOTE: There were 4 observations read from the data set WORK.EMPLOYEE_SALARY.

Figure 2: results of MERGE with incorrect BY variab le order

When tables are not in BY variable order, the MERGE will fail. Before joining these tables, they must both be in
EMP_ID order – Employee Salary is in the correct order but Employee Master must be sorted. Figure 2 shows the
successful code and partial log.

proc sort data = employee_master;
 by emp_id;
run ;

data employee_data;
 merge employee_master
 employee_salary;
 by emp_id;
run ;

Foundations and FundamentalsSAS Global Forum 2013

3

155 proc sort data = employee_master;

156 by emp_id;

157 run;

NOTE: There were 4 observations read from the data set WORK.EMPLOYEE_MASTER.

NOTE: The data set WORK.EMPLOYEE_MASTER has 4 observations and 4 variables.

158

159 data employee_data;

160 merge employee_master

161 employee_salary;

162 by emp_id;

163 run;

NOTE: There were 4 observations read from the data set WORK.EMPLOYEE_MASTER.

NOTE: There were 4 observations read from the data set WORK.EMPLOYEE_SALARY.

NOTE: The data set WORK.EMPLOYEE_DATA has 4 observations and 6 variables.

title 'Employee Data' ;
proc print data = employee_data noobs ;
run ;

Employee Data

 increase_

emp_id name hire_dt gender salary dt

 7 Peter 1998-04-12 M $52,000 2012-02-03

 13 Susan 1999-11-23 F $70,500 2012-11-14

 32 George 2012-02-03 M $67,800 2011-05-03

 45 Egbert 2011-12-31 O $43,200 2012-01-02
Figure 3: output of successfully merged data

One-to-Many Relationship

The next example introduces a gender table which will be used to supply a description for the gender code stored on
the Employee Master table. Since the Employee Master table created in the previous example has multiple rows with
the same gender code, the tables have a one-to-many relationship. There is a wrinkle… each table has a gender
code that is not found on the other table. The type of join we elect to use in this example will affect our results.

Rather than sorting the Employee Master table again, we’ve elected to create an index on the table using the gender
code. Create the Gender dimension table – adding a code for Unknown and merge the two tables on gender code.

proc sql ;
 create index gender on employee_master;
quit ;

data gender;
 gender = 'F' ; gender_desc = 'Female ' ; output ;
 gender = 'M' ; gender_desc = 'Male ' ; output ;
 gender = 'U' ; gender_desc = 'Unknown' ; output ;
run ;

data employee_gender;
 merge employee_master
 gender;
 by gender;
run ;

Foundations and FundamentalsSAS Global Forum 2013

4

369 data employee_gender;

370 merge employee_master (in = m)

371 gender (in = g);

372 by gender;

373 run;

NOTE: There were 4 observations read from the data set WORK.EMPLOYEE_MASTER.

NOTE: There were 3 observations read from the data set WORK.GENDER.

NOTE: The data set WORK.EMPLOYEE_GENDER has 5 observations and 5 variables.

Error! Reference source not found.: full join of gender data

We have added no additional data step logic to deal with the mismatched data – a full outer join will result. Since the
Gender table code value of ‘U’ did not exist in the Employee Master table, an extra row has been created. If a
subsequent step was summarizing this data, the additional record would be counted and the number of employees
would be overstated, probably not what we want to occur. See the PRINT output in figure 5.

title 'Employee Gender' ;
proc print data = employee_gender noobs ;
run ;

Employee Gender

 gender_

emp_id name hire_dt gender desc

 13 Susan 1999-11-23 F Female

 7 Peter 1998-04-12 M Male

 32 George 2012-02-03 M Male

 45 Egbert 2011-12-31 O

 . . U Unknown
Figure 5 Error! Reference source not found.: full join of gender data – extra row generated wi th no
employee_master data

In conjunction with the IN data set option, the data step allows us to specify logic to ensure extra rows are not
introduced into the employee data in cases where the dimension table has values not found in the employee master.
In addition, if employee gender code values are not found in the dimension table, a gender_desc value can be
supplied.

data employee_gender;
 merge employee_master (in = m)
 gender (in = g);
 by gender;

 if m; * subsetting if, need employee_master rows;
 if ^g then gender_desc = 'Invalid' ;
run ;

NOTE: There were 4 observations read from the data set WORK.EMPLOYEE_MASTER.

NOTE: There were 3 observations read from the data set WORK.GENDER.

NOTE: The data set WORK.EMPLOYEE_GENDER has 4 observations and 5 variables.

Figure Error! Reference source not found.6: employee_master left joined to gender dimension table

The IN= data set option supplies a variable which will be set to true if the data set is contributing to the current
observation (that variable is automatically dropped from the output dataset). The “if m; ” is a subsetting if
statement that causes the data step to continue processing the current observation only if the condition is true. If it is
false, SAS does not output the current observation but immediately returns to the top of the data step and resumes
processing with the next observation. In this case, if the Employee Master has not contributed an observation (i.e.
we’ve read a row from the Gender dimension table with a gender code that does not exist on the employee_master) ,
we do not want to output this observation.

Foundations and FundamentalsSAS Global Forum 2013

5

In similar fashion, the “if ^g then gender_desc = 'Invalid' ; ” statement assigns a value to gender_desc if
the gender table does not have a row for the employee_master gender code value.

The end result is what’s known as a “left join” in SQL nomenclature. As the log snippet shows, the output table
contains 4 observations, the same number as the Employee Master table. The gender code not found on the Gender
dimension table now has a value as well.

title 'Employee Gender' ;
proc print data = employee_gender noobs ; run ;

Employee Gender

 gender_

emp_id name hire_dt gender desc

 13 Susan 1999-11-23 F Female

 7 Peter 1998-04-12 M Male

 32 George 2012-02-03 M Male

 45 Egbert 2011-12-31 O Invalid

Figure Error! Reference source not found.7: results of employee_master left joined to gender dimension table

Many-to-Many Relationship

Unfortunately another user didn’t care for “Female” / “Male” gender descriptions and decided “Woman” / “Man” might
be more suitable. Rather than replacing the existing Gender table, the new values were appended to the existing
data. The end result? A Gender table with duplicate values, two records each for the codes F, M and U. If we join
Employee Master to the new Gender table, the result set will not be what we want. We’re specifying the IN= data set
options to supervise the join to ensure we don’t create extra observations. Unfortunately those options don’t help us
with the many-to-many relationship.

data gender;
 gender = 'F' ; gender_desc = 'Female ' ; output ;
 gender = 'F' ; gender_desc = 'Woman ' ; output ;
 gender = 'M' ; gender_desc = 'Male ' ; output ;
 gender = 'M' ; gender_desc = 'Man ' ; output ;
 gender = 'U' ; gender_desc = 'Unknown' ; output ;
 gender = 'U' ; gender_desc = 'Unknown' ; output ;
run ;

data employee_gender;
 merge employee_master (in = m)
 gender (in = g);
 by gender;

 if m; * subsetting if, need employee_master rows;
 if ^g then gender_desc = 'Invalid' ;
run ;

NOTE: MERGE statement has more than one data set with repeats of BY values.

NOTE: There were 4 observations read from the data set WORK.EMPLOYEE_MASTER.

NOTE: There were 6 observations read from the data set WORK.GENDER.

NOTE: The data set WORK.EMPLOYEE_GENDER has 5 observations and 5 variables.

Figure 8: many-to-many MERGE

Foundations and FundamentalsSAS Global Forum 2013

6

Once again an extra observation has been introduced – though this time it’s not because of the gender code value of
‘U’. When the Employee Gender table is printed, the results are somewhat surprising. Susan now appears twice but
the extra “M” row in the Gender table has had a different effect - Peter or George now have different gender
description values.

Employee Gender

 gender_

emp_id name hire_dt gender desc

 13 Susan 1999-11-23 F Female

 13 Susan 1999-11-23 F Woman

 7 Peter 1998-04-12 M Male

 32 George 2012-02-03 M Man

 45 Egbert 2011-12-31 O Invalid
Figure Error! Reference source not found.9: many-to-many MERGE results

See Figure 10 for a visual representation of the actions of the MERGE statement when it encounters a many-to-many
situation – very unlike what we’ll see from PROC SQL.

Figure 10: many-to-many MERGE matching action

MERGE does not produce a Cartesian product when a many-to-many relationship is encountered. Instead, based on
the BY variables values, the first row from the first table will be joined to the first matching row from the second table.
If both tables have additional matching rows, the second row from each will be joined and so on. When one table no
longer has matching rows, the final matching row will be joined to the rest of the matching rows from the other table.
Yeah, I know, I’m confused too. ☺ See the SAS Online Docs for a fuller description of MERGE behavior.

MERGE Advantages

• allows use of familiar data step syntax to govern join logic and data manipulation
• simpler for novice users

MERGE Disadvantages

• requires contributing tables to be sorted or indexed by join variables
• variable names and type must be identical in contributing tables
• many to many joins do not create Cartesian products
• post join summaries must be coded as a separate step

PROC SQL JOIN

PROC SQL allows the programmer to code table joins with SQL syntax very similar or identical to RDBMS SQL
syntax for the same purpose. The full suite of joins found in most any database are available in PROC SQL, i.e. inner
(or equi-), left, right, full and cross joins. While SQL joins have their “gotchas”, it is typically easier to prevent these
by the use of sub-queries and syntax such as DISTINCT to ensure undesired results are not generated.

The SQL examples below use the same input data sets as those for the previous MERGE examples.

Foundations and FundamentalsSAS Global Forum 2013

7

One-to-One Relationship

Note the specification of the SQL _METHOD option which generates LOG output outlining the execution method
chosen to do the join. Deciphering the rather cryptic output will tell you if SAS has sorted the tables first behind the
scenes or used the more efficient hash method. To encourage SAS to use the hash method, specify a large
BUFFERSIZE= option as well. In this case, SAS has elected to use the hash method, i.e. see sqxjhsh in the LOG.
Listing tables in the FROM clause separated by commas results in an inner or equi-join.

proc sql _method buffersize =1e6 ;
 create table employee_data_sql as
 select m.*, s.salary, s.increase_dt
 from employee_master m,
 employee_salary s
 where m.emp_id = s.emp_id
 ;
quit ;

248

249 proc sql _method buffersize=1e6;

250 create table employee_data_sql as

251 select m.*, s.salary, s.increase_dt

252 from employee_master m,

253 employee_salary s

254 where m.emp_id = s.emp_id

255 ;

NOTE: SQL execution methods chosen are:

 sqxcrta

 sqxjhsh

 sqxsrc(WORK.EMPLOYEE_SALARY(alias = S))

 sqxsrc(WORK.EMPLOYEE_MASTER(alias = M))

NOTE: Table WORK.EMPLOYEE_DATA_SQL created, with 4 rows and 6 columns.

Figure 11: one-to-one SQL equi-join

One-to-Many Relationship

Because the initial MERGE example in the One-to-Many Relationship did not govern the join by using the IN=
variables, the output table was the product of a full join. In SQL, one must specify “full join” and use the ON clause to
specify the join criteria to achieve the same result.

proc sql ;
 create table employee_gender_sql as
 select m.*, g.gender_desc
 from employee_master m
 full join
 gender g
 on m.gender = g.gender
 ;
quit ;

NOTE: Table WORK.EMPLOYEE_GENDER_SQL created, with 5 rows and 5 columns.

Figure 12: one-to-many SQL full join

Just as we saw in the MERGE example, the extra “U” Gender row has created an extra row in the output table –
probably not what we want. In the MERGE example, the use of the IN= variable was used to ensure the output table
only contained rows where the Employee Master table contributed. The same result can be obtained in SQL using
the “left join” syntax. The “left” table, i.e. the table name to the left of the “left join” clause governs which rows are
included. In cases where the Employee Master table has a gender code that is not found on the Gender table, that
row will still be included. To ensure the gender_desc field has a value in those cases, the COALESCE function is
used. COALESCE will use the first non-missing value in the argument list provided. If gender_desc is not available
from the Gender table because no matching Gender row is found, the value “Invalid” will be used.

Foundations and FundamentalsSAS Global Forum 2013

8

proc sql ;
 create table employee_gender_sql as
 select m.*, coalesce(g.gender_desc, 'Invalid') as gender_desc
 from employee_master m
 left join
 gender g
 on m.gender = g.gender
 ;
quit ;

401

402 proc sql ;

403 create table employee_gender_sql as

404 select m.*, coalesce(g.gender_desc,'Invalid') as gender_desc

405 from employee_master m

406 left join

407 gender g

408 on m.gender = g.gender;

NOTE: Table WORK.EMPLOYEE_GENDER_SQL created, with 4 rows and 5 columns.

Employee Gender SQL

 gender_

emp_id name hire_dt gender desc

 13 Susan 1999-11-23 F Female

 32 George 2012-02-03 M Male

 7 Peter 1998-04-12 M Male

 45 Egbert 2011-12-31 O Invalid

Figure 13: one-to-many SQL left join

Many-to-Many Relationship

Recall that the Gender table was modified incorrectly when another user wanted different gender_desc values for “F”
and “M”. MERGE produced a peculiar result, joining matching rows one-to-one and did not produce the Cartesian
product we expected – only 5 rows appeared in the output table. SQL creates a different result, matching all rows
from the first table to all rows from the second table where the join criteria is satisfied netting 7 rows. Note the
ORDER BY clause which sorts the output table.

proc sql ;
 create table employee_gender_sql as
 select m.*, coalesce(g.gender_desc, 'Invalid') as gender_desc
 from employee_master m
 left join
 gender g
 on m.gender = g.gender

 order by m.name
 ;
quit ;

NOTE: Table WORK.EMPLOYEE_GENDER_SQL created, with 7 rows and 5 columns.

Employee Gender

 gender_

emp_id name hire_dt gender desc

 45 Egbert 2011-12-31 O Invalid

 32 George 2012-02-03 M Man

 32 George 2012-02-03 M Male

 7 Peter 1998-04-12 M Male

 7 Peter 1998-04-12 M Man

Foundations and FundamentalsSAS Global Forum 2013

9

 13 Susan 1999-11-23 F Woman

 13 Susan 1999-11-23 F Female

Figure 14: one-to-many SQL left join

As Figure 15 illustrates, each Employee Master row with a gender code value of “F” was matched with each “F” row
from the Gender dimension table, same action for the “M” values. Rather than the 4 rows we expected to have, it
now appears we have 7 employees. Using this table for reporting will lead to erroneous results.

Figure 15: many-to-many SQL join matching action

Real World SQL Join Examples

In the preamble at the top of the JOIN DATA section, we discussed data mart normalization. Typically this results in
many tables, thus the need to join different types or groups of data back together again when surfacing it in reports or
graphs. Sometimes the join criteria isn’t straightforward and non-technical users find it difficult to make the proper
associations to use the data easily. In those cases, it’s often helpful to create a view of the many tables and provide
access to that view for those requiring non-normalized data. The example below accomplishes this for the Orion
Gold data, joining the Order Fact table to the various dimension tables, creating a wide data store of all columns that
might be required.

If we use the table_alias.* syntax to select all columns from each of the tables, we will end up with duplicate column
names and SQL will complain (though it will execute successfully). Rather than have the warning appear in the
LOG, we’d rather explicitly specify the non-join columns from Order Fact in the SELECT and use the * to pull all
columns from the dimension tables. However, we’re lazy – we don’t actually want to type all the column names.

Thankfully SAS (and most databases) maintain meta data, or dictionary tables, which tells us things about the data
in our repository. From the SAS meta data we can derive many things:

• librefs assigned to our session
• global and automatic macro variables
• tables and columns in the assigned librefs
• etc… see the views in the automatic library reference SASHELP, e.g. VCOLUMN

Rather than trying to remember which columns we need and type them in, we’re going to query the list of column
names from the SAS meta data, send that list to a macro variable, and use the macro variable in the SELECT. Lazy
programmers are often efficient programmers.

We want the list of Order Fact column names that are not in common with the key fields of the dimension tables.
We’ll create a table of these columns, their data types and position within the table. A second query will take the
resulting column names and create a macro variable which contains the SELECT syntax we need to select the Order
Fact columns – specifying the table alias to be used for the Order Fact table, eg. ord.column_name.

proc sql noprint ;
 create table order_fact_cols as
 select name, type, varnum
 from sashelp.vcolumn
 where upcase(libname) = 'GOLD'
 and upcase(memname) = 'ORDER_FACT'
 and upcase(name) not in
 ('STREET_ID' , 'PRODUCT_ID' , 'EMPLOYEE_ID' , 'CUSTOMER_ID')
 ;

Foundations and FundamentalsSAS Global Forum 2013

10

 select cats('ord.' ,name)
 into :order_fact_select separated by ', '
 from order_fact_cols
 order by varnum
 ;
quit ;

%put Selecting ORDER_FACT columns: &order_fact_select;

Figure 16: querying meta data to derive column name s

Note the syntax of the second query. The INTO : clause sends the results of the SELECT into a macro variable
named order_fact_select. Because we’re expecting multiple values (because Order Fact has many columns), the
SEPARATED BY clause tells SQL to insert a comma between values. The end result is a comma-delimited list of
qualified column names separated by commas – valid SQL syntax. Lazy programmers rock.

826 proc sql noprint;

827 create table order_fact_cols as

<snip>

833 ;

NOTE: Table WORK.ORDER_FACT_COLS created, with 8 rows and 3 columns.

834 select cats('ord.',name)

835 into :order_fact_select separated by ', '

836 from order_fact_cols

837 order by varnum

<snip>

841 %put Selecting ORDER_FACT columns: &order_fact_select;

Selecting ORDER_FACT columns: ord.Order_Date, ord.Delivery_Date, ord.Order_ID, ord.Order_Type,

ord.Quantity, ord.Total_Retail_Price, ord.CostPrice_Per_Unit, ord.Discount

Figure 17: LOG results from meta data query

Building the view is straightforward. Note the inclusion of &order_fact_select. Before the query runs, SAS will
substitute the value of the macro variable from the global symbol table (for more macro stuff, see this paper from my
website) and the SELECT will be complete. Because we’ve omitted the various *_ID variables from the macro
variable list, we can use the * syntax to select all columns from the dimension tables and not generate nasty warning
messages in the log.

proc sql ;
 create view order_fact_all_dims as
 select &order_fact_select
 , cust. *
 , geo. *
 , org. *
 , prod. *
 from gold.order_fact ord
 left join
 gold.customer_dim cust
 on ord.customer_id = cust.customer_id
 left join
 gold.geography_dim geo
 on ord.street_id = geo.street_id
 left join
 gold.organization_dim org
 on ord.employee_id = org.employee_id
 left join
 gold.product_dim prod
 on ord.product_id = prod.product_id ;
quit ;
Figure 18: creating the view using the macro variab le created from the meta data

Foundations and FundamentalsSAS Global Forum 2013

11

In the next section, we’ll use this view to summarize the Order Fact data, incorporating some of the dimension table
columns in our summary definition.

A second real world example illustrates how SQL is also very helpful when creating more complex result sets
involving multiple tables and join criteria that includes ranges rather than simple equality conditions. The Orion order
data includes a DISCOUNT table which indicates when different products were marked down. We’d like to identify
the full-price order items and the number of days by which the customer bought before or after the discount period
started or ended. Since it’s possible that a product be discounted more than once summary functions will be utilized
to ensure we find the discount period closest to the order date.

proc sql ;
 create table orders_no_discount_days as
 select o.order_id, i.order_item_num, i.product_id

, o.order_date, o.delivery_date
 , min(case when o.order_date < d.start_date

then d.start_date - o.order_date else . end) as days_before
 , min(case when o.order_date > d.end_date

then o.order_date - d.end_date else . end) as days_after
 from orion.orders o
 inner join
 orion.order_item i
 on o.order_id = i.order_id
 inner join
 orion.discount d
 on i.product_id = d.product_id
 where o.order_date > '01dec2008'd
 and i.discount = .
 and (o.order_date < d.start_date or o.order_date > d.end_date)
 group by 1, 2, 3, 4, 5

having calculated days_before <= 30 or calculated days_after <= 30
 order by 1, 2, 3, 4, 5 ;
quit ;

Figure 19: multiple table summary query

The query involves three equi-joins (or inner joins), bringing together three tables where the join criteria specified in
the ON phrase is satisfied. The WHERE clause is filtering the results to ensure we’re only considering orders after a
certain date and without a discount. CASE statements are used to generate values only where specific conditions
are met. Since we only want the discount period closest to the full-price order item, the MIN() summary function is
being employed. When using summary functions, grouping columns must be defined, hence the GROUP BY. The
HAVING clause is like a where clause, but it is applied to the data after grouping and summarization has occurred.

How many data and sort steps would be required to accomplish what one SQL query has generated?

PROC SQL Advantages

• contributing data sets do not need to be sorted or indexed by the joining variables, SQL will sort
automatically or use hash tables behind the scenes

• variables used to join can have different names on each contributing table
• variable types can be modified in the join criteria where necessary to make them match
• multi-table joins where join criteria is different for each relationship can be performed in a single query
• syntax is portable and may be used with RDBMS queries if tables are subsequently hosted on a different

platform
• ranges can be used when joining, e.g. when a.date between b.start_dt and b.end_dt
• sub-queries can be used create sets of distinct values to avoid Cartesian products
• where a Many-to-Many Relationship is required, the correct Cartesian product is created
• summarization can occur in the same SQL statement as the join

PROC SQL Disadvantages

• data manipulation is less flexible since conditional processing is more difficult
• SELECT variable lists must often be coded explicitly

Foundations and FundamentalsSAS Global Forum 2013

12

SUMMARIZING DATA

Most reporting we do requires summarized data. While a very granular report is sometimes helpful, it’s often most
useful to generate summary reports and only drill-down into the details when warranted.

SAS provides a number of ways to summarize data. As seen in the second real world example, one of those ways is
SQL. However, given the choice, if SAS has created a PROC to do something, usually it’s most efficient to use the
PROC to do the heavy lifting – that’s what it’s been designed to do.

Using the view created in the previous section, a summary table is to be created by Organization Group, Job Title
and Month. Separate summaries are to be created for the NWAY (i.e. all combinations of summary variables),
Org_Group and Month, and by Month. While PROC SUMMARY will not be discussed in detail, the code below does
show some typical summarization work that is often required when readying data reporting and visualization.

/* Summarize the order data by Org Group, Job Titl e and Month */

proc summary data = order_fact_all_dims missing chartype ;
 class org_group job_title order_date;
 var quantity total_retail_price;
 output out = monthly_org_job_sales
 (rename = (_freq_ = sales_cnt)
 where = (_type_ in ('111' , '101' , '001'))
) sum=;
 format order_date yymmn6. ;
run ;

/* Join sales summary data to monthly targets */

proc sql ;
 create table monthly_sales_targets as
 select s. *, t.sales_target, s.quantity - t.sales_target as variance
 from monthly_org_job_sales_me s
 full join
 sales_target_data t
 on t.org_group = s.org_group

 and t.job_title = s.job_title
and t.target_date = intnx('month' ,s.order_date, 0, 'end')

 ;
quit ;
Figure 20: multiple summary table join to monthly t argets

The PROC SUMMARY is creating three separate summary points in one pass through the data – something PROC
SQL cannot do. The _type_ variable dictates which summary combinations of the CLASS variables are be kept in
the summary output data set. In this case, the summary points included are org_group * job_title * month, org_group
* month and month. The number of rows at each summary point is the number of order items rolled up to that
summary point, hence the output data set option renaming the automatic variable _freq_ to sales_cnt. The inclusion
of the FORMAT statement indicates the ORDER_DATE values are to be summarized at the formatted value, i.e. year
& month and not the raw order_date values (scattered through the month as they likely are). The actual order_date
value stored in the summarized output dataset will be the minimum order_date value in the group.

After summarizing the sales figures, the target data is merged in to determine sales target variances. Since the sales
target data uses month-end dates, the join criteria is advancing the order_date value to the end of the month using
the INTNX function to line-up with the month-end values of the target dates.

The resulting MONTHLY_SALES_TARGETS table is now ready for the reporting group. Using the reporting and
graphing capabilities of SAS, the summarized data will be presented in an easily digestible manner, allowing the data
to tell their story.

Foundations and FundamentalsSAS Global Forum 2013

13

CONCLUSION

Our enterprises are accumulating vast amounts of data every day – much of it stored in data warehouses. Gaining
insight into the data and leveraging the usefulness of it usually requires combinations of tables, data transformation
and summarization. SAS is a toolbox that often provides multiple means of solving business problems. Data step
MERGE and PROC SQL both have their strengths and can be employed as the situation warrants. However, it is
imperative that one know their data and ensure table joins do not “multiple” rows through careless join criteria, non-
distinct key values etc..

ACKNOWLEDGMENTS

Thanks to Peter Eberhardt for creating this series of papers – great idea!

RECOMMENDED READING

Bee, Brian “A Day in the Life of Data – Part 1”, Proceedings of the 2013 SAS Global Forum 2013

Crawford, Peter “A Day in the Life of Data – Part 2”, Proceedings of the 2013 SAS Global Forum 2013

Matange, Sanjay “A Day in the Life of Data – Part 4”, Proceedings of the 2013 SAS Global Forum 2013

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Harry Droogendyk
Stratia Consulting Inc.
PO Box 145
Lynden, ON L0R 1T0
conf@stratia.ca
www.stratia.ca

To request the Orion and Orion Gold data used in this paper, send an email to dayinlife@fernwood.ca to obtain the
download address.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Foundations and FundamentalsSAS Global Forum 2013

	2013 Table of Contents

