

1

Paper 295-2013

CLISTS: Improve Efficiency of TSO Applications Using Mainframe SAS®

Dr. Russell Jay Hendel, Towson University and CMS

ABSTRACT

Have you been spending a few hours every month submitting several dozen SAS® jobs to mainframe
systems using an IBM TSO environment with the Interactive System Productive Facility (ISPF)? You know
that within SAS, SAS macros can efficiently manage repetitive tasks; but how do you manage repetitive
tasks with JCL, the TSO control language? CLIST is precisely what you need: It enables you to automate
repetitive tasks that use JCL and SAS. CLIST is an easy language to learn, requiring no former
knowledge and using only a handful of basic commands. We present illustrative CLIST code covering
basic groups of CLIST commands. People already familiar with JCL and SAS who write jobs using both of
them will benefit from this presentation.

INTRODUCTION and GOALS

This paper describes the CLIST programming language. The CLIST language may be used within the TSO
environment on an IBM mainframe machine. In fact, CLISTS are written and stored in the same way that JCL code is
written and stored. Consequently, this paper assumes familiarity with TSO, JCL and mainframe SAS.

Why would you want to use a CLIST? The CLIST can routinize complex sets of mainframe tasks saving the
programmer time and reducing errors. The entire CLIST language with illustrative programming examples may be
found in the CLIST manual. This paper takes a task of intermediate complexity, producing data for a triangle payment
report, to illustrate key features of the CLIST language including, interaction with the user, modularization, basic
arithmetic and string functions, special useful CLIST functions, as well as writing and submitting, via the CLIST, TSO
and SAS code. Upon reading this paper a reader will have the ability to routinize groups of related mainframe tasks
using a CLIST.

TRIANGLE REPORTS

Triangle payment reports occur in a variety of settings. A sample triangle report with explanatory comments
preceding it, is presented in Table 1. The actual example inspiring this paper produced data for a three-year , 36 x 36
triangle report. When I was assigned the task, I was surprised to find that one programmer routinely downloaded 36
files from the mainframe into an ACCESS database which then extracted key data elements to produce the report.

However, this is unnecessary and wasteful of time and resources. For example, one does not need each of the
entire 36 monthly payment files; rather, one modestly needs a summary of payments and the months they were
allocated to. In other words, a simply proc means summary is all that is needed from each of the 36 files. The 36 proc
summaries can then be coalesced as the final mainframe output. The actual triangle report can then be produced and
formatted in Microsoft excel from this raw data.

Table 1 shows part of a sample triangle report. The report shows 1 million dollars spent in January 2010 for January
2010. In February 2010, $10,000 was retroactively spent for January 2010. In March, $5,000 was spent for January
2010. Thus, through March 2010, the total spent for January 2010 was $1,015,000, not $1,000,000. Similarly, through
March, $1,650,000 was spent for February 2010. The name triangle report, comes from the intrinsic triangular
formation.

Quick TipsSAS Global Forum 2013

2

 Jan 2010 Feb 2010 March 2010
January 2010 $1,000,000 $10,000 $5,000
February 2010 $1,500,000 $15,000
March 2010 $900,000
Table 1. Sample triangle report.

It is immediately apparent that the code producing the proc means summary for each of the 36 monthly payment files
was similar, differing in the name of the file used for that particular month. Furthermore, obtaining the raw data for
different contracts (call H# in the figures) and different review periods, requires adjusting three variables – H, Y, M –
which stored the contract H#, the start year and start month respectively.

This is precisely a situation for which a CLIST is useful. H, Y and M can be obtained by user interaction at the
terminal. The names of the 36 payment files can be code-generated using H,Y and M. The CLIST is also useful for
checking whether each monthly file is available prior to processing the file.

BASIC ILLUSTRATIVE MODULES

Figure 2 illustrates a module communicating instructions to the user about what is needed to run the program. Figure
3 illustrates basic user input-output. Figure 4 illustrates basic arithmetic and string functions. Explanations of the
code are contained in the figure captions. Some illustrations of how filenames depend on user-inputted values are
given by the following: HKH.@BGD5050.PLNH1234.R082005,MONMEMD,
HKH.@BGD5050.PLNH1234.R102005.MONMEMD,
P#MMA.@BGD5050.PLNH1234.R012006.MONMEMD,HKH.@BGD5050.PLNH2345.R072004.MONMEM.

 000100 SYSCALL INSTRUCTIONS
 …
 007700 INSTRUCTIONS: PROC 0
 007800 K
 007900 K
 008000 WRITE HELLO USER: YOU MUST DO 4 THINGS PRIOR TO RUNNING PROGRAM
 008100 WRITE -------- 1) YOU MUST INPUT AN H# - E.G. H1234
 008200 WRITE -------- 2) YOU MUST INPUT A START YEAR - E.G. 2001
 008300 WRITE -------- 3) YOU MUST INPUT A START MONTH - E.G. 1,3,11
 008400 WRITE -------- 4) RUN 'DEARCHIVE' - ASCERTAIN FILE AVAILABILITY
 008500 WRITE IF YOU DONT HAVE THIS INFO - COME BACK LATER
 008600 WRITENR THANK YOU - KINDLY HIT ENTER TO CONTINUE
 008700 READ &TEMP
 008800 END

 Figure 1. Sample code for a module with instruction communications to the user.

Figure 1 contains sample code illustrating a module communicating to the user. One calls the module in the main
program using the syscall keyword. The code for the actual module is contained on lines 7700-8800. “K” clears the
TSO screen. The write keyword is used to display instructions on the terminal. Lines 8100-8500 illustrate a bulleted,
or menu, list of instructions. The writenr keyword on line 8600 is used when user input is expected which is stored in
a dummy variable named temp. Line 7700 illustrates the module format: The module name instructions, followed by
a colon, followed by the keyword proc, followed by an integer counting the number of parameters – in this case none
– used by the module.

Quick TipsSAS Global Forum 2013

3

 000300 SYSCALL USERINPUT
 ….
 008900 /* *********************** USERINPUT ****************** */
 009000 USERINPUT: PROC 0
 009100 NGLOBAL H,Y,M
 009200 K
 009300 WRITENR ENTER THE H# IN FORM H1234 >>>>
 009400 READ &H
 009500 WRITENR ENTER THE YEAR IN THE FORM 2001 >>>>
 009600 READ &Y
 009700 WRITENR ENTER THE MONTH AS A NUMBER BETWEEN 1 AND 12 >>>>
 009800 READ &M
 009900 END
Figure 2. Sample code for a module requesting user input.

Figure 2 presents a module with sample code illustrating user-input. Line 300 illustrates calling the module in the
main program. The actual module is found on lines 8900-9900. Line 8900 illustrates comments (/* */). CLIST is poor
on return values; a workaround is using global variables declared on line 9100. The three user inputs are illustrated
on lines 9300-9400, 9500-9600, and 9700-9800; the writenr keyword (lines 9300,9500,9700) is used to both write
messages to the terminal and wait for user response. User response is stored in variables H,Y,M using the keyword
read. Note: To properly store values, the ampersand (&) must precede the variable name similar to the by-value vs.
by reference in several programming languages. The variables H,Y,M with the user-inputted information are now
available throughout the program.

Figure 3 presents sample code that illustrates a loop (lines 600-800) calling a module (lines 11100 - 14000)
illustrating basic CLIST arithmetic and string functions. The module takes one parameter (the counter from the loop)
(line 11200) and "returns" one global variable, FI (line 11300), containing a filename. The filename depends on the
loop counter and the initial year and date of the review period. The comments illustrate desired goals. If your start
date is August 2005 and I=0 the R string should R082005; when I=1, the R string is R092005, when I=2, R=R102005;
when I=6,R=R022006. The if-then-else statement, lines 12200-13100, using the do-end block structure, and the "+"
line continuation character uses the division (/) and remainder (//) arithmetic operators (e.g. 25/12=2; 25//12=1). The
setting of the R string value, lines 13200-13300, uses the &Str function to ensure that variable values (vs. actual
variable names) are used. The actual mainframe filenames are set on lines 13400-13500 which illustrates the period
concatenation operator. Vestiges of module testing are retained and illustrated as comments on lines 13800-13900.

SUBMISSION OF JCL and SAS CODE

We have already stated the key idea above: Write a basic JCL/SAS template and modify it for each payment month.
The JCL/SAS code should produce as output the summary of the proc means procedure for that payment month with
subtotals of payments for each allocated month. The CLIST accomplishes this task by communicating the values of
certain JCL and SAS variables from CLIST variables.

Figured 4 and 5 show the basic template for submitting JCL with accompanying SAS within the CLIST. Both figures
also illustrate communication between global CLIST variables and JCL and SAS variables.

The key idea in Figure 4 is contained in lines 93,94,202: Within the CLIST you edit a dummy file (line 93) by first
clearing the file (line 94) and then writing your JCL and SAS code (see Figure 5). You then submit the newly written
file (line 202), write, if desired, any messages to the user (line 203) and end the edit session without saving the newly
written file (line 204). Lines 89,90 and 205 illustrate, as a condition for submitting the JCL, how to check file
availability using the CLIST sysdsn function.

Quick TipsSAS Global Forum 2013

4

 Figure 3. Sample code illustrating loops, basic arithmetic and string functions.

Figure 5 complements and continues Figure 4. Figure 5 contains illustrative JCL (lines 95-114) and mainframe SAS
code (lines 115-194). Only portions of the entire code are presented. Note the double numbering: the leftmost
number is the numbering within the CLIST code while the rightmost number is the JCL numbering used in the
submission to TSO. This illustrative code shows how the CLIST can take a basic JCL/SAS template and reuse it with
minor modifications. Examples of the CLIST communicating with the JCL code are as follows: i) by changing the IN1
filename (line 110); here FI was produced in the sample code of Figure 3; ii) by changing the values of the SAS
variables INPUTH, INPUTM and INPUTY according to the user inputted information stored in the CLIST global
variables, H,M & Y declared in the CLIST code of Figure 2 (line 120); by using the CLIST function, sysdate, to
capture the system date and store it in a SAS variable, temp1 (line 194).

.000600 DO &I=0 TO 15

.000700 SYSCALL FILENAMECREATE &I

.000800 END
 ….
 011100 /* ******************* FILENAMECREATE *****************/
 011200 FILENAMECREATE: PROC 1 &J
 011300 NGLOBAL FI /* STORES FILENAME TO OPEN
 011400 /* *************** COMPUTE RELATIVE MONTH/YEAR */
 011500 /* */
 011600 /* E.G. M=8,Y=2005 I=0===> R082005 */
 011700 /* I=4===> R122005 */
 011800 /* I=6===> R022006 */
 011900 /* */
 012000 /* *** */
 012200 IF (&M+&J)//12 =0 THEN +
 012300 DO
 012400 SET &M1=12
 012500 SET &Y1=&Y +(&M+&J-1)/12
 012600 END
 012700 ELSE +
 012800 DO
 012900 SET &M1=(&M+&J)//12
 013000 SET &Y1= &Y+(&M+&J)/12
 013100 END
 013110 /* *************** COMPUTE R STRING ******************* */
 013120 /* */
 013130 /* E.G. R082005, R032006, R102005 */
 013140 /* */
 013150 /* ** */
 013200 IF &M1 LT 10 THEN SET &R = R&STR(0)&STR(&M1)&STR(&Y1)
 013300 ELSE SET &R = R&STR(&M1)&STR(&Y1)
 013310 /* *************** COMPUTE FILENAME ******************* */
 013320 /* */
 013330 /* 2 FILENAMES DEPENDING ON BEFORE AFTER 2005 */
 013340 /* */
 013350 /* ** */
 013400 SET &FI1 =HKH.@BGD5050.PLN&H..&R..MONMEMD
 013500 SET &FI2 =P#MMA.@BGD5050.PLN&H..&R..MONMEMD
 013600 IF Y1 GT 2005 THEN SET &FI = &FI2
 013700 ELSE SET &FI = &FI1
 013800 /* WRITENR &EVAL(&FI)>>> USED DURING TESTING */
.013900 /* READ &TEMP USED DURING TESTING */
.014000 END

Quick TipsSAS Global Forum 2013

5

CONCLUSION

We have reviewed CLISTS as a tool for user modularization, input-output, storage in global variables, manipulation of
global variables with standard arithmetic and string functions, and editing and submission of JCL and SAS mainframe
code. The tools presented in this paper, in conjunction with the user manuals cited in the references, should prove
useful to programmers to immediately apply CLIST code to streamline tasks of intermediate capacity.

 000089 IF &SYSDSN('&FI.') EQ OK THEN +
 000090 DO
 000093 EDIT 'H1C9.LIB.CNTL(DUMMY)' CNTL
 000094 DELETE * 999999
 …… /* Place here: JCL and MAINFRAME SAS programs (See Figure VI)
 000202 SUBMIT
 000203 WRITE YOU JUST DID MONTH &EVAL(&I+1) OF 36
 000204 END NOSAVE
 000205 END
 Figure 4. A code shell for submission of JCL with SAS code (The code is continued in Figure 5).

Figure 5. Continuation of Figure 4. The figure illustrates submission of JCL and SAS code within a CLIST.

RECOMMENDED READING

IBM Reference manuals, http://ibmmainframes.com/manuals.php

IBM, z/OS V1R11.0 TSO/E CLISTS (Manual), Document Number, SA22-7781-05, http://publibz.boulder.ibm.com/cgi-
bin/bookmgr_OS390/BOOKS/IKJ4B850/CCONTENTS

CONTACT INFORMATION
Russell Jay Hendel
7500 Security Boulevard
Baltimore, MD 21244
Phone: 410 786 0329
Russell.Hendel@cms.hhs.gov

 000095 000010 //H1C9TRI JOB (FDAFDA8080,CO5),
 000096 000020 // H1C9TRI,
 000097 000030 // CLASS=B,
 000098 000040 // MSGCLASS=Q,
 000099 000050 // NOTIFY=H1C9
 000108 000140 //S1 EXEC SAS9,WORK='20000,1000'
 000109 000150 //*
 000110 000160 //IN1 DD DSN='&FI.',DISP=SHR
 000111 000170 //*
 000112 000180 //OUT1 DD DSN=H1C9.@CLIST.P&I,DISP=OLD
 000114 000200 //SYSIN DD *
 000115 000210 DATA OUT1.A;
 000116 000220 KEEP ...
 000119 000233 PERIOD INPUTH INPUTM INPUTY;
 000120 000236 INPUTH='&H'; INPUTM='&M'; INPUTY='&Y';
 …
 000194 000734 TEMP1='&SYSDATE';
 …

Quick TipsSAS Global Forum 2013

6

Russell Jay Hendel
Dept. of Mathematics,
8000 York Road
Towson, MD 21252
Phone: 410 704 3091
RHendel@Towson.Edu, ProfessorHendel@GMail.Com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

Quick TipsSAS Global Forum 2013

	2013 Table of Contents

