

1

Paper 312-2013
Some Useful Utilities on Unix Platform

Kevin Chung, Fannie Mae, Washington DC

ABSTRACT
While using SAS® on Unix platform, one might want to quickly browse data; obtain contents; or perform a frequency
on various data fields within a SAS data set. You can always write a specific one use SAS program and submit the
program to get the results you need. However we are able to obtain this information in more efficient and effective
manner by using the Unix shell script along with SAS codes. This paper demonstrates some useful utilities in Unix.
Because of the flexibility of this Unix shelling structure, a user will both save time and increase productivity.

INTRODUCTION
All the SAS programs demonstrated in this paper are triggered by an associated Unix Korn shell script. By combining
the Unix shell scripts and SAS codes, the user can execute each utility and acquire the results either to be displayed
on the screen or sent out to the user via email. The following seven Korn shell scripts are used to trigger the same-
named SAS programs.

 con – display the contents of a SAS data set
con2excel – write the contents of a SAS data set to an Excel file and sent out to the user via email

 list – print the data portion of a SAS data set on the screen
list2excel – write the data portion of a SAS data set to an Excel file and sent out to the user via email.

 freq – list the frequency table on the screen

 comp_var – compare the variables, case-insensitive, of two SAS data sets

 find_var – List all names of SAS data sets that contain a particular variable name

The SAS procedures used by each program are fundatemtal and simple. Each job is executed by the following
program flow:

 User invokes a shell script and provides arguments at the command line of the shell script

 Shell script performs basic validation and creates Unix environment variables

 SAS program is triggered by shell script

 SAS reads the Unix environment variables by %sysget and creates macro variables

 Macro variables are placed in appropriate location to form a customized procedure

 Procedure is executed and results are displayed either on the screen or sent to user via email

These utilities are handy tools and you can save many keystrokes typing and obtain the results quickly. This paper is
intended for any SAS user who is currently using SAS on Unix platform and is willing to use any tools to improve
his/her productivity.

The SAS codes and Korn shell scripts discussed in this paper have been tested thoroughly using SAS 9.2 on IBM
AIX 6.1 platform.

Quick TipsSAS Global Forum 2013

2

ENVIRONMENT SETUP

Assume the utilities are only used by a single user; therefore, you can save all programs and output files in your
home directory. The diagram below shows the directory structure for the utilities. You can change the alias you like
but remember to point to the right script.

Directory Structure

/home/SGF2013

pgm

macro

log

Unix
Server

lst

script

data

data2

Figure 1

The aliases below must be sourced first. The part you choose
is based on the Unix shell you logon. You can save these in
either .cshrc for C shell or .profile for Korn shell.

for ksh
export UTIL=/home/SGF2013/script
alias con='$UTIL/con'
alias con2excel='$UTIL/con2excel'
alias list='$UTIL/list'
alias list2excel='$UTIL/list2excel'
alias freq='$UTIL/freq'
alias find_var='$UTIL/find_var'
alias comp_var='$UTIL/comp_var'

for csh
setenv UTIL /home/SGF2013/script
alias con $UTIL/con
alias con2excel $UTIL/con2excel
alias list $UTIL/list
alias list2excel $UTIL/list2excel
alias freq $UTIL/freq
alias find_var $UTIL/find_var
alias comp_var $UTIL/comp_var

The descriptions of each directory are listed below.

 pgm – store all sas programs
 macro – store all supporting sas macros
 script – Korn shell scripts
 data – Test data copied from sashelp contain class.sas7bdat and shoes.ss7bdat
 data2 – Test data copied from sashelp contain prdsale.sas7bdat
 log – log files
 lst – output files

The directories data and data2 are not required and they are created for demo purpose.

The file site.info below should be defined manually based on the SAS installation and directory structure you use.
This file is saved under script directory and is sourced by each shell script at the beginning.

site.info

export dir=/home/SGF2013  change this
export pgm_dir=$dir/pgm
export log=$dir/log/$pgm.log
export lst=$dir/lst/$pgm.lst
export mac=$dir/macro
export FPATH=$dir/script
export SASEXE=[fullpath]/sas  depends on your site
export SASTEMP=/sastemp  change this
export RECIPIENT=kevin_chung@fanniemae.com  email user

opt="-nonews -noautoexec -work $SASTEMP -log $log -print $lst"
autoload chk_input_data chk_where_clause disp_usage disp_result

Quick TipsSAS Global Forum 2013

3

SYNTAX AND USAGE

The utilities are triggered based on the syntax below. A Korn shell script is invoked and then followed by a SAS data
set, with or without the full or relative path, as the first argument. Then one or more optional arguments can be placed
after the SAS data set. Three scripts, list, list2excel, and freq also support the WHERE condition. The [and] are
required when condition is applied.

For example,

I want to see how many branches got the shoes sales amount no less than $100,000 in each region. I can run
the freq with the arguments as follows:

 freq shoes region [sales ge 100000]

 OR

 freq /home/SGF2013/data/shoes region [sales ge 100000]

Five scripts, con, con2excel, list, list2excel, and freq only accept command line arguments. The scripts find_var
and comp_var are interactive. After invoked, user has to follow the instructions on the screen and enter the
appropriate data to run the script.
The script con and con2excel work very similar. The only difference is con displays results on the screen and
con2excel creates an XML-based file using ExcelXp tagset and send out to user via email. Same manner applied to
list and list2excel.

If the script itself is submitted without any argument, several lines of text messages are displayed on the screen. The
purpose is to help user understand the syntax and usage of the script. For example, if only con is executed, the
following information displayed on the screen:

Usage:
 con <<SAS data set name>>

Example:
 con class

 OR

 con class.sas7bdat

These information are maintained in a file called usage.txt with the format below. This allows users to define their own
help messages.

con  must match the shell script name
Usage:
 con <<SAS data set name>>

Example:
 con class

 OR

 con class.sas7bdat
EOF-con  use EOF- before shell script name

Quick TipsSAS Global Forum 2013

4

EXAMPLES

con
con2excel

con – display the contents of a SAS data set on the screen
con2excel – Write the contents of a SAS data set to an XML-based file using ExcelXp tagset and sent out to the
user via SAS filename with email method.

How do you quickly view the descriptor portion or contents of a SAS data set on a Unix server? The first option is to
write a small program and run it by either interactive or batch mode. The second option is to run SAS and invoke a
windowing environment on Unix. In this case, you might have to run a third-party software that supports the X
Windows first and then invoke the SAS interactive session. Once you are in the SAS interactive session, you always
can use SAS Explorer to view the contents of a SAS data set.

The Korn shell script con and con2excel perform the validation of the input data as follows:

Check the existence of the directory that contains the SAS data set
Check the existence of the input SAS data set

Since con displays the contents on the screen, it can work with Unix pipe command to find a specific variable. For
example, you can search the variable height in class SAS data set.

con class | grep -ni height

This is similar to the find_var script which is discussed later in this section. The find_var script displays all SAS data
set names based on a specified variable entered by user.

An example of the use of the con is as follow:

 con class

Location: /home/SGF2013/data

Data Set Name LIB.CLASS Observations 19
Member Type DATA Variables 5
Engine V9 Indexes 0
Created Wed, Nov 12, 2008 10:34:38 PM Observation Length 40
Last Modified Wed, Nov 12, 2008 10:34:38 PM Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO

Variable Type Len

1 Name Char 8
2 Sex Char 1
3 Age Num 8
4 Height Num 8
5 Weight Num 8

If you have several hundreds of variables in a SAS data set, it might not be easy to view the output on the screen.
The utility con2excel is the one you can use. For example, you can submit

 con2excel shoes

The result is sent via email. Open the email and
double click on the attachment, you can see the
output as Figure 1 on the right.

The result on the right is created based on the output
of proc contents with noprint option.

Figure 2

Quick TipsSAS Global Forum 2013

5

list
list2excel

list – display the data portion of a SAS data set on the screen
list2excel – Write the data portion of a SAS data set to an XML-based file using ExcelXp tagset and sent out to the
user via SAS filename with email method.

Sometimes you need to do a quick view about the data of a SAS data set you just created, you can use list to view
the data of a given SAS data set. This utility supports the following options:

list prdsale  display the first 100 rows with all variables
list prdsale.sas7bdat  display the first 100 rows with all variables
list prdsale 10  display the first 10 rows with all variables
list prdsale -20  display the last 20 rows with all variables
list prdsale ACTUAL COUNTRY YEAR MONTH  display the first 100 rows with four variables
list prdsale 15 _numeric_  display the first 15 rows with NUMERIC fields
list prdsale 30 pr:  display the first 30 rows with variable name starting with PR
list prdsale -20 ACTUAL _char_  display the last 20 rows with variable ACTUAL plus all
 CHARACTER fields

The list script also supports the where statement as follow:

list shoes region product Subsidiary sales [sales ge 700000]

Location: /home/SGF2013/data
Data: shoes
sales ge 700000

Obs Region Product Subsidiary Sales

102 Canada Men's Dress Vancouver $757,798
104 Canada Slipper Vancouver $700,513
107 Canada Women's Dress Vancouver $756,347

If the data set contains too many fields to view on the screen, you can run list2excel to create the output to an Excel
file and send via email.

freq

freq – display the one-way to n-way frequency tables in list format

Sometimes you need to take a quick look at the frequency of a SAS data set, the freq script is the one for you.
The freq script supports the where condition. For example, I want to see the frequency on SAS data set class for the
variable sex where age=12, then you can run the freq script with the arguments below.

 freq class sex [age=12]

You can see the output on the right
displaying on the screen.

Data: class
age=12

 Cumulative Cumulative
Sex Frequency Percent Frequency Percent
--
F 2 40.00 2 40.00
M 3 60.00 5 100.00

If you need to specify the character type condition between [and], remember to put backslash, \, immediately before
the single or double quote. For example, the condition sex=’M’ is perfect for SAS syntax, but it can not be interpreted
correctly by Unix.
 freq class age [sex=’M’]

The correct syntax should be

 freq class age [sex=\’M\’]  backslash \ must be used

Quick TipsSAS Global Forum 2013

6

comp_var

comp_var – compare all variables in two SAS data sets and display the output in three parts:
1. variables in both data sets
2. variables in first data set only
3. variables in second data set only

You might modify a complicated data step to create a SAS data set. New fields might be added to the data set and
some fields might be dropped from the data set. After the job is done, you want to compare the variables in both data
sets to make sure the modification was made correctly. You can use comp_var to achieve this. This script is run
interactively only.

In Unix prompt, invoke comp_var and hit enter. The following message displayed on the screen.

1st data set info:
 Name: class  1st SAS data set name
 Full path: .  Enter full path or . for current directory

2nd data set info:
 Name: class2  2nd SAS data set name
 Full path:  Enter full path or press enter to use the same
 directory as 1st data set

Select
 1. Disply output on screen
 2. Send email with Excel file attachment
Enter choice (1 or 2): 1  output destination

1st data set
 Name: class
 Path: /home/SGF2013/data

2nd data set
 Name: class2
 Path: /home/SGF2013/data

Disply output on screen

Are the info above correct(Y/N): y  Enter y to confirm

 case-insensitive

1st - /home/SGF2013/data/class NOBS: 19
2nd - /home/SGF2013/data/class2 NOBS: 19

 3 Variables 2 Variables 2 Variables
 In Both Data Set In class Only In class2 Only
==================== ==================== ====================

 AGE Height ht
 NAME Weight wt
 SEX

NOTE:

Two test data sets, class and class2, are created under /home/SGF2013/data directory.

Quick TipsSAS Global Forum 2013

7

find_var

find_var – display all SAS data set names that contain a variable that entered by user

Suppose you need to use a variable to do some query, but you don’t know which data sets contain this variable? Or
you might already know a variable is created in several data sets but you want to know which data set first creates
this variable? By using the find_var script, you can easily identify the data set you need. You can invoke this script by
two ways: command line argument or interactive.

By command line –
find_var name /home/SGF2013/data

By interactive –

 Invoke find_var
 The following message displayed on the screen. Enter data at the right of the prompt.

 Input variable name to be searched:
 Variable Name: name  This is the first argument in the command line

 Input directory with full path:
 Directory Name: /home/SGF2013/data  this is the second argument in the command line

Both ways produce the same result as follow:

Output –

Location: /home/SGF2013/data

Table Name Date Created

CLASS2 02/18/2013 20:41:55
CLASS 11/12/2008 22:34:38

INSTALL UTILITIES

All source codes can be downloaded from the web site provided in CONCLUSION section. Follow the instructions
below to install the utilities.

1. Choose a location on Unix as the working directory
2. Copy the zip file, 312-2013.zip, to the working directory.
3. Unzip this file. All directories are created with all source codes and data restored to each directory
4. Update site.info in script directory. Refer to ENVIRONMENT SETUP at page 2.
5. Depend on the Unix shell you use, modify the content of variable UTIL
6. You can save the aliases in .cshrc or .profile.

Quick TipsSAS Global Forum 2013

8

Appendix A – Korn shell script

#!/bin/ksh

con

export pgm=con
. $UTIL/site.info

[[$# != 1]] && disp_usage
chk_input_data $1

$SASEXE $pgm_dir/$pgm.sas $opt
disp_result Y

#!/bin/ksh

list

export pgm=list
. $UTIL/site.info

[[$# == 0]] && disp_usage
chk_input_data $1

[[$2 = +([-0-9])]] && {
 export nobs=$2
 shift; shift
} || {
 export nobs=100
 shift
}

export var_list=$*
chk_where_clause
[["$var_list" == ""]] && var_list="_all_"

$SASEXE $pgm_dir/$pgm.sas $opt
disp_result

chk_input_data

chk_input_data () {
 export data=$1
 slash=`echo "$data"|awk '{print index($1,"/")}'`

 if [[$slash == 0]] then
 path=$PWD
 ds=$data
 else
 path=`echo $(dirname $data)`
 [[-d $path]] && path=`echo $(cd $path; pwd)` || {
 echo "Directory $path does not exist..."
 exit
 }
 ds=`echo $(basename $data)`
 fi
 export path ds
 echo path=$path
 echo ds=$ds

 dot=`echo "$ds,."|awk -F, '{print index($1,$2)}'`
 (($dot > 0)) && export ds=`echo "$ds"|awk -F. '{print $1}'`

 if [[! -f $path/$ds.sas7bdat]] then
 echo; echo
 echo "SAS data set $ds.sas7bdat does not exist"
 echo "in directory $path"
 echo; echo
 exit
 fi
}

Quick TipsSAS Global Forum 2013

9

disp_usage

disp_usage () {
 clear
 echo; echo
 sed -n "/# $pgm/,/# EOF-$pgm/p" $FPATH/usage.txt|grep -v '#'
 echo; echo
 exit
}

disp_result

disp_result () {
 [[$1 == N]] && echo || {
 clear
 cd $dir/lst
 . $pgm.err

 echo; echo
 if [[$syserr == 0]] then
 if [[$1 == Y]] then # for con only
 head -9 $dir/lst/$pgm.lst
 echo
 sed -n '/ Variable /,$p' $dir/lst/$pgm.lst
 else
 cat $dir/lst/$pgm.lst
 fi
 else
 echo "$err_msg"
 fi
 echo; echo;
 }
}

#!/bin/ksh

freq

export pgm=freq
. $UTIL/site.info

[[$# == 0]] && disp_usage
chk_input_data $1

shift
export var_list=$*
chk_where_clause
[["$var_list" == ""]] &&
var_list="_all_"

$SASEXE $pgm_dir/$pgm.sas $opt
disp_result

chk_where_clause

chk_where_clause () {
 export condition=""

 left=`echo "$var_list"|awk '{print index($0,"[")}'`
 right=`echo "$var_list"|awk '{print index($0,"]")}'`

 if (($left > 0 && $right > 0)) then
 export condition=`echo "$var_list,$left,$right"|awk -F, '{print substr($1,$2+1,$3-
$2-1)}'`
 echo "condition=$condition"
 (($left == 1)) && var_list="" || var_list=`echo "$var_list,$left"|awk -F,
'{print substr($1,1,$2-1)}'`
 elif (($left > 0 && $right == 0)) then
 echo 'Missing "]"'
 exit
 elif (($left == 0 && $right > 0)) then
 echo 'Missing "["'
 exit
 fi
}

Quick TipsSAS Global Forum 2013

10

Appendix B – SAS program

/* con.sas */

option nocenter nodate nonumber
ps=max;
%let dir=%sysget(dir);
%let path=%sysget(path);
%let pgm=%sysget(pgm);
%let ds=%sysget(ds);

libname lib "&path";
filename mactools ("%sysget(mac)");
options sasautos=(mactools
sasautos);

ods noproctitle;
title "Location: &path";
proc contents data=lib.&ds varnum;
run;

%chk_err(&pgm)

/* list.sas */

option nocenter nodate nonumber nofmterr;

%let dir=%sysget(dir);
%let pgm=%sysget(pgm);
%let path=%sysget(path);
%let ds=%sysget(ds);
%let nobs=%sysget(nobs);
%let var_list=%sysget(var_list);
%let condition=%sysget(condition);

libname lib "&path";
filename mactools ("%sysget(mac)");
options sasautos=(mactools sasautos);

%let data=lib.&ds;
%let start=%sysfunc(ifc(&nobs >= 0,1,
%sysfunc(max(1,%eval(%nobs(&data)+&nobs+1)))));
%let nobs=%sysfunc(ifc(&nobs >= 0,&nobs,max));

title "Location: &path";
title2 "Data: &ds";
title3 %sysfunc(ifc(%bquote(&condition)
ne ,&condition,));
%print
%chk_err(&pgm)

%macro print(dest);
 proc print data=&data(firstobs=&start obs=&nobs) %sysfunc(ifc(&dest=xls,noobs,));
 %if (%bquote(&condition) ne) %then %do;
 where &condition;
 %end;
 var &var_list;
 run;
%mend print;

/* freq.sas */

option nocenter nodate nonumber nofmterr;

%let dir=%sysget(dir);
%let pgm=%sysget(pgm);
%let path=%sysget(path);
%let ds=%sysget(ds);
%let var_list=%sysget(var_list);
%let condition=%sysget(condition);

libname lib "&path";
filename mactools ("%sysget(mac)");
options sasautos=(mactools sasautos);

ods noproctitle;
title "Location: &path";
title2 "Data: &ds";
title3 %sysfunc(ifc("&condition" ne "",&condition,));
%freq
%chk_err(&pgm)

Quick TipsSAS Global Forum 2013

11

Appendix C – usage.txt

Partial listing of usage.txt

usage.txt

con
Usage:
 con <<SAS data set name>>

Example:
 con class

 OR

 con class.sas7bdat
EOF-con

list
Usage:
 list <<SAS data set name>> <<n>> <<var list>>

Example:
 list prdsale ==> display the first 100 rows with all variables
 list prdsale.sas7bdat ==> display the first 100 rows with all variables
 list prdsale 10 ==> display the first 10 rows with all variables
 list prdsale -20 ==> display the last 20 rows with all variables

 list prdsale ACTUAL COUNTRY YEAR MONTH
 ==> display the first 100 rows with four variables
 list prdsale 15 _numeric_
 ==> display the first 15 rows with NUMERIC fields
 list prdsale 30 pr:
 ==> display the first 30 rows with variable name starting
with PR
 list prdsale -20 ACTUAL _char_
 ==> display the last 20 rows with variable ACTUAL & all CHAR
fields
EOF-list

Quick TipsSAS Global Forum 2013

12

CONCLUSION
The examples of the utilities in this paper are meant to provide users a handy tool to improve the productivity in the
daily routine job. You still have to write a program for a complex query.
All the source codes and presentation materials can be downloaded from www.kevin-chung.com

REFERENCES
[1] SAS OnlineDoc® 9.2, SAS Institute Inc. Cary, NC.

http://support.sas.com/documentation/cdl/en/lrdict/64316/PDF/default/lrdict.pdf

[2] SAS 9.2 Companion for UNIX Environment

http://support.sas.com/documentation/cdl/en/hostunx/61879/PDF/default/hostunx.pdf

[3] UNIX Shells by Example, 4th edition

By Ellie Quigley, October 2004

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Feel free to contact the author at:

Kevin Chung
Fannie Mae
4000 Wisconsin Ave., NW
Mail Stop: 2H-4S/07
Washington, DC 20016
Work Phone: 202-752-1568
E-mail: kevin_chung@fanniemae.com
 kchung01@hotmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Quick TipsSAS Global Forum 2013

	2013 Table of Contents

