
1

Paper 293-2013

Implementing metadata-driven reports with SAS® Stored Processes

Toby Hill, Charles Marcus Group Services, London, UK

ABSTRACT

As more organizations that use SAS® software are implementing the full Business Intelligence reporting suite, many
SAS programmers are becoming familiar with developing Stored Processes to deliver reports for the business.
Developers are often required to implement content security in the reports or provide additional functionality for users
with specific roles. How can all this be done? One approach is to make use of the SAS metadata. This paper
demonstrates some techniques that you can apply to your SAS code in order to make use of the SAS metadata. This
will allow you to implement security and role-based access in your Stored Process reports and minimize the amount
of changes required as new users access the platform.

INTRODUCTION

Using a Stored Process to deliver reports allows you to surface your BI content via the web or with other SAS client
tools such as the MS Office Add-In.

Large organizations with a varied user base will generally have different business teams with their own security
requirements. With the correct logic you can build a Stored Process that will be aware of the SAS metadata and
display only the appropriate content for the users in these different teams. In order to reduce the overall effort
maintaining a growing collection of SAS Stored Processes it is good practice to adopt a template for the SAS code
that comprises your reporting logic. The examples shown in this paper can be used as the basis for such a template.

By implementing your Stored Process reports to be “metadata-driven” you will:

• reduce maintenance

• provide a flexible and robust interface for reporting

• secure the content of your reports

• adapt to changing user roles

Two scenarios will be considered in this paper:

1. Controlling access to a data source at the row level.

2. Extra functionality for users with the appropriate role.

This paper does not cover in detail the steps required to build a SAS Stored Process. If the reader is completely
unfamiliar with Stored Processes then it is recommended that you consult the documentation and/or one of the many
other SAS papers on the subject.

SAS METADATA

When SAS first released their Version 9 software, it featured an important new module: the metadata server. The
metadata server stores many different types of metadata content such as Stored Processes, Web Reports and Batch
Job Definitions. This content is integral to the SAS BI Reporting platform and used by practically all the other SAS
products and solutions. The metadata server also stores all the users, groups and roles on the platform and this
information can be directly accessed from your SAS code.

When a SAS deployment is first implemented a support staff member will act as the SAS Administrator. They will
create the users and set up their groups and roles. Full security can be applied to the SAS metadata; and
permissions can be configured to prevent users from switching roles or adding another group to their profile.

Quick TipsSAS Global Forum 2013

2

Display 1. SAS Management Console showing the metadata groups and roles

In order to access the metadata, SAS has provided a set of functions that can be invoked in your SAS code. The full
list of functions follows:

• METADATA_DELASSN

• METADATA_DELOBJ

• METADATA_GETATTR

• METADATA_GETNASL

• METADATA_GETNASN

• METADATA_GETNATR

• METADATA_GETNOBJ

• METADATA_GETNPRP

• METADATA_GETNTYP

• METADATA_GETPROP

• METADATA_NEWOBJ

• METADATA_PATHOBJ

• METADATA_PAUSED

• METADATA_PURGE

• METADATA_RESOLVE

Quick TipsSAS Global Forum 2013

3

• METADATA_SETASSN

• METADATA_SETATTR

• METADATA_SETPROP

• METADATA_VERSION

The code examples in this paper only utilize the METADATA_GETNOBJ and METADATA_GETATTR functions. Full
details regarding all the functions can be accessed from the SAS online documentation. The code examples have
been tested in a SAS 9.3 and SAS 9.2 environment.

When using the metadata functions you essentially run “queries” against the metadata server. Then you retrieve the
results and use logic in your code to handle the result values. In order to effectively query the metadata you need to
understand the structure of the SAS metadata and also learn the query syntax for the functions.

The metadata functions use several SAS system options to determine how to connect to the metadata server. These
are:

• METASERVER

• METAPORT

• METAPROTOCOL

• METAREPOSITORY

• METAUSER

• METAPASS

Generally these settings are configured with appropriate values automatically when running a Stored Process. They
are not detailed in this paper but the settings can be manually assigned with an options statement for testing
purposes.

The reader may also note that there is a SAS procedure that provides access to the metadata: PROC METADATA.
This paper focuses only on the use of the SAS metadata functions; consult the SAS online documentation for
information about PROC METADATA if you are curious.

SAS STORED PROCESSES

When a Stored Process is created, usually it is configured to run on the Stored Process Server. This means
whenever the Stored Process is invoked it will be run by a system account (the default system account name is:
sassrv). This allows the Stored Process to mediate access to the underlying data. Security is configured to only allow
the system account (sassrv) to access the SAS datasets then users run the Stored Processes to report on the data.
Users cannot change the Stored Process code (usually they cannot even see the code!) so they will not be able to
circumvent the logic in the Stored Process and can only see the content that is displayed for them.

The following reserved SAS macro variables are used by a SAS Stored Process to identify the user who is invoking
the Stored Process:

 _METAUSER – Userid of the person invoking the Stored Process

 _METAPERSON – Metadata Identity of the person invoking the Stored Process

These are key parameters. If you want to identify the metadata groups for a user then you need to be able to identify
who is invoking the Stored Process. The code examples in this paper make use of the _METAPERSON macro
variable.

SCENARIO 1: CONTROLLING ACCESS TO A DATA SOURCE AT THE ROW LEVEL

Consider this scenario: You want to build a report that will display some tabular data. For example, sales figures, key
economic indicators or patient health attributes. When different users run your report, you only want to display the
appropriate data. This could be because you don’t want to display irrelevant information to a user or it could be
because of security concerns.

The following SAS code will demonstrate a technique to accomplish this goal. In this example a simple table of sales
figures is used. The following display depicts a sample of the data (the dataset name in this example is:
SASTEST.ALL_DATA).

Quick TipsSAS Global Forum 2013

4

Display 2. Sample of the SASTEST.ALL_DATA table

In the metadata, each user is set up in different metadata groups. These groups correspond to the Division field in the
data (eg. “Northeast Division”, “Midwest Division”, etc).

The following display shows how different users are members of the “Midwest Division” metadata group.

Quick TipsSAS Global Forum 2013

5

Display 3. SAS Management Console: Properties view for Midwest Division group

The basic overview of the Stored Process code is:

1. Use metadata functions to query the metadata. Use the _METAPERSON macro variable to find the groups
for the user who is invoking the stored process.

2. Construct a WHERE clause based on these metadata groups.

3. Apply the WHERE clause when displaying the tabular data.

The Stored Process code follows:

*ProcessBody;

%stpbegin;

* this library is directly assigned here ;

* however it could be configured as a predefined metadata library or in an autoexec

file ;

libname SASTEST "/tmp/SASTest";

* use a datastep to build the WHERE clause into a macro variable ;

data _NULL_;

 length

 obj uri name metaperson $256

 division_list where_clause $1000

 ;

 * construct metadata query string ;

 metaperson = symget('_METAPERSON');

Quick TipsSAS Global Forum 2013

6

 obj = "omsobj:IdentityGroup?IdentityGroup[@GroupType ne

'ROLE'][MemberIdentities/Person[@Name='" !! strip(metaPerson) !! "']]";

 * loop through for each metadata group that is returned ;

 n = 0;

 nobj = 1;

 do while(nobj gt 0);

 n = n + 1;

 nobj = metadata_getnobj(obj, n, uri);

 if nobj gt 0 then do;

 * retrieve the name of the metadata group ;

 rc = metadata_getattr(uri, "Name", name);

 if rc eq 0 then do;

 * build the list of divisions

 into a comma-separated string

 ;

 if division_list eq " " then

 division_list = quote(strip(name));

 else

 division_list =

 strip(division_list) !! ", " !!

 quote(strip(name))

 ;

 end;

 end;

 end;

 * build the WHERE clause and store it in a macro variable ;

 where_clause = "where DIVISION in (" !! strip(division_list) !! ")";

 call symputx("WHERE_CLAUSE", where_clause);

run;

* print the WHERE clause to the log - useful for debugging ;

%put WHERE_CLAUSE=&WHERE_CLAUSE;

* display tabular report data ;

title "Scenario 1 Report";

proc print data=SASTEST.ALL_DATA noobs;

 &WHERE_CLAUSE; * use the WHERE clause to filter the data ;

run;

%stpend;

The following display shows the output when a user in the “Midwest Division” metadata group invokes the Stored
Process.

Quick TipsSAS Global Forum 2013

7

Display 4. Report Output from Stored Process for Midwest Division group

The above scenario has been simplified for the sake of example. It could be that the relationship between SAS
metadata groups and the values in the data is not a direct one-to-one match like this scenario. In this case, some
form of lookup table could be used to map the groups to appropriate values in the data. You could also look at
handling the situation where the user is not a member of any valid groups. In this case you could display some form
of message rather than simply returning blank empty output. A further complication can arise where nested metadata
groups are used, in order to correctly handle this situation you would need to perform additional metadata queries to
traverse the metadata group hierarchy and determine the complete set of group memberships for the user.

SCENARIO 2: EXTRA FUNCTIONALITY FOR USERS WITH THE APPROPRIATE ROLE

Consider this scenario: You want to build a report that will display some tabular data similar to Scenario 1. However,
you only want to display the report for certain types of users and you also want to display a chart for special types of
users. Basically, you are looking at user roles and want to adjust the functionality of the report accordingly.

The following SAS code will demonstrate a technique to accomplish this goal. In this example the same table of sales
figures is used as for Scenario 1.

The basic overview of the Stored Process code is:

1. Use metadata functions to query the metadata. Use the _METAPERSON macro variable to find the roles for
the user who is invoking the stored process.

Quick TipsSAS Global Forum 2013

8

2. Use SAS %MACRO logic to control the code based on these metadata roles.

3. Display appropriate functionality in the report based on the %MACRO logic.

The Stored Process code follows:

*ProcessBody;

%stpbegin;

* this library is directly assigned here ;

* however it could be configured as a predefined metadata library or in an autoexec

file ;

libname SASTEST "/tmp/SASTest";

* use a datastep to build the list of roles into a macro variable ;

data _NULL_;

 length

 obj uri name metaperson $256

 role_list $1000

 ;

 * construct metadata query string ;

 metaperson = symget('_METAPERSON');

 obj = "omsobj:IdentityGroup?IdentityGroup[@GroupType eq

'ROLE'][MemberIdentities/Person[@Name='" !! strip(metaPerson) !! "']]";

 * loop through for each metadata role that is returned ;

 n = 0;

 nobj = 1;

 do while(nobj gt 0);

 n = n + 1;

 nobj = metadata_getnobj(obj, n, uri);

 if nobj gt 0 then do;

 * retrieve the name of the metadata role ;

 rc = metadata_getattr(uri, "Name", name);

 if rc eq 0 then do;

 * build the list of user roles into a '&'-separated string

 (this is a suitable delimiter character because metadata

 role names cannot contain '&')

 ;

 if role_list eq " " then

 role_list = strip(name);

 else

 role_list = strip(role_list) !! '&' !! strip(name);

 end;

 end;

 end;

 * store into a macro variable ;

 call symputx("ROLE_LIST", role_list);

run;

* print the list to the log - useful for debugging ;

%put ROLE_LIST=%superq(ROLE_LIST);

* use this macro to control the report logic ;

%macro report_logic;

 * define helper function to search the list of roles ;

 %macro roleSearch(role);

 %sysfunc(indexw(%superq(ROLE_LIST), &role, %str(&)))

 %mend roleSearch;

 %if %roleSearch(ReportingRole) ne 0 %then

 %do;

Quick TipsSAS Global Forum 2013

9

 * display tabular report data ;

 title "Scenario 2 Report";

 proc print data=SASTEST.ALL_DATA noobs;

 run;

 %if %roleSearch(ReportingAdvancedRole) ne 0 %then

 %do;

 * display a chart as well - if the user has this role ;

 proc gchart data=SASTEST.ALL_DATA;

 vbar product / sumvar=sales;

 run;

 quit;

 %end;

 %end;

 %else

 %do;

 * display a message indicating no access ;

 data MESSAGE;

 Note = "You do not have the ReportingRole.";

 run;

 title "Scenario 2 Report";

 proc print data=MESSAGE noobs;

 run;

 %end;

%mend report_logic;

%report_logic;

%stpend;

When a user invokes the Stored Process depending on their role they will see either:

• a table of data

• a table and a bar chart

• or, a message telling them they do not have the appropriate role for this report

The above scenario could be further enhanced to display web form controls and/or links providing access to other
reports based on the user having the necessary roles. The code could also be combined with the template from
Scenario 1 to provide row-level data security in the same report.

CONCLUSION

Using the above techniques, you can implement security in your Stored Process reports as well as role-based
access. The two scenarios covered can be built upon and generalized to implement more advanced reporting
requirements. As new users are added or existing users are removed there will be minimal change required to your
Stored Processes due to the use of the SAS metadata.

ACKNOWLEDGMENTS

The author would like to thank Paresh Patel and Sebastian Scanzi for their contributions to this paper.

RECOMMENDED READING

• SAS
®
 9.3 Stored Processes – Developer's Guide

• SAS
®
 9.3 Language Interfaces to Metadata

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Toby Hill
Enterprise: Charles Marcus Group Services Ltd

Quick TipsSAS Global Forum 2013

10

Address: Cams Hall, Cams Hill
City, State ZIP: Fareham, Hants, PO16 8AB
E-mail: thill@charlesmarcus.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Quick TipsSAS Global Forum 2013

	2013 Table of Contents

