
1

Paper 018-2013

Extraction, Transformation, and Loading (ETL) for Outcomes Measures of
Workers’ Compensation Benefits

Mike Maier, Oregon Department of Consumer and Business Services

ABSTRACT

Base SAS® was used to create a data sub-system for measuring outcomes, added to a data system (coded in SAS)
of benefit costs and employment. One claim per injured worker per fiscal year is extracted as a study or control
record, using business-rule code. Disability benefits and employment data are transformed to time-series records for
claims, which are transformed to time-series statistics by fiscal year. Programs are run remotely on a UNIX data
warehouse, and SAS data sets and metadata are loaded to the warehouse and downloaded to a LAN. Quarterly
generations are kept for analysis of claim development.

INTRODUCTION

The Department of Consumer and Business Services (DCBS) is Oregon’s largest business regulatory and consumer
protection agency, and it is the regulator for workers’ compensation insurance and the benefits paid to injured
workers from that insurance. Among the services that the Information Technology and Research Section provides for
DCBS is development and maintenance of data systems for workers’ compensation claims and reports about costs,
benefits, and performance or outcome measurements. Since the 1980s, analysts have relied more and more on Base
SAS® and sometimes SAS/STAT® code for extraction and transformation of operational data to load statistical
reports, data sets, and metadata. For the last decade or so, programs are stored on a LAN and run on a UNIX server
and warehouse via SAS/Connect®. The primary source for data has become Oracle databases made available
through SAS/Access®, and SAS/Share® is also part of the architecture for serving data to multiple SAS users.

Indeed, Oregon policy makers have shown continuing commitment to data-driven decisions and interest in measures
of workers’ compensation system performance. One such measure, from the Oregon Workers’ Compensation
Premium Rate Ranking Study, has become a national resource for interstate comparison of insurance rates paid by
employers. Two performance measures for Oregon’s return-to-work programs have been reported to the Oregon
legislature for over a decade. Recent work has refined those measures of wage replacement and employment
retention toward claim-outcome statistics, which serve as companion and counterpoint to the rate-ranking statistics.

Both the return to work and the claim outcomes measures represent adaptations of techniques used by the Rand
Corporation, Upjohn Institute, and others to compare wages and disability benefits of injured workers to the wages for
a control group. Both sets of measures are made possible by a SAS application that creates a data system for
benefits and wages paid to injured workers. Application development began more than a decade ago with the nearly
concurrent provision of flat-file data written to specifications by external researchers: RAND, for derivation of wage-
replacement statistics, and Michigan State University, for analysis of changes in the cost of workers’ compensation
insurance in Oregon. Today, that application is a highly integrated set of programs, data sets, and statistical reports.

Fiscal year Sequential relative-injury
quarter

Wages, percent base
wages

Disability benefits,
percent base wages

2001 0 76.8 21.4

 1 75.4 15.4

 2 74.8 12.0

Table 1. Sample Claim Outcomes Statistics

Table 1 shows some statistics that may be generated from the claim outcomes data, covering the injury quarter
(quarter 0) and the two subsequent quarters, for claims with injuries during fiscal year 2001. In the quarter of injury,
workers earned almost 77 percent of their base or pre-injury wages, and the disability indemnity benefits paid came
to about 21 percent of their pre-injury wages. The focus of this paper is the extraction, transformation, and load of the
claim outcome data—the SAS code and programs that make these statistics possible.

THE WCBEN SYSTEM, BENEFITS AND WAGES PAID TO INJURED WORKERS

 “Data preparation is the big thing…” for successful performance measures and sophisticated analytics (Siegel; used
by permission). The operational and historical data about Oregon workers’ compensation claims and disability benefit
payments reside in many data tables in three Oracle data bases, flat files of legacy data, and spreadsheet responses
to data calls. Employment and wage data are provided to DCBS as flat files in federal government-defined format.
Not surprisingly, variables with similar meanings have differing attributes: dates may be date-time, numeric, or
character, for example. Most variables of interest have minimal data reporting and entry edits; data quality is often

Applications DevelopmentSAS Global Forum 2013

2

marginal, especially as analysis extends down to finer levels. From those disparate sources, a couple dozen SAS
programs, two or three thousand lines in total, provide the ETL to the WCBEN data system of SAS data sets and
standard reports. These programs are organized into sub-systems, groups of programs with a common theme and
purpose:

 CSC signifies a claim and its status;

 CST is zero-to-many (usually many) transaction records of benefits, employment, and wages for a claim;

 CSY summarizes many claims; and

 CSO is the new outcomes measures.

Figure 1 is a simplified and partial flow chart of the extraction and load for the first three data sub-systems. Not only is
data preparation a big thing, it’s also not very pretty. This diagram is meant to convey the many dependencies, with
one implication being lots of room for programming errors.

CLAIMS (Oracle,

legacy, and

spreadsheet)

Medical bills (Oracle

and legacy)

CSYRA002

CSCRA003

CSYRA003

CSYRA004

CSYRA007

CSYRA005

CSYRA006

CSYRA008

CSTRA017

CSTRA007

CSTRA013

CSTRA008

CSTRA009

CSTRA010

CSTRA012

CSTRA005

CSTRA003

CSTRA018

CSYRA009

CSCRA004

CSTRA031

CSCRA019

CSCRA016

Litigation

 (Oracle and legacy)

Operational data WCBEN data set Statistical report

CSTRA027

Figure 1. Simplified Extraction and Load for the WCBEN Data System, Excluding CSO Claim Outcomes

The programs may not be a model of efficiency, but the 13 that run in a production sequence every quarter require
less than 30 minutes of wall time to load metadata and millions of claim and transaction records covering workplace
injuries and illnesses since the mid-1980s. Production is in a scheduler, and each generation overwrites the previous,

Applications DevelopmentSAS Global Forum 2013

3

though back-ups are available for a year. Appending records, an obvious way to simplify the extraction and load
pathways, would be a larger task than is immediately apparent because of primary keys that may change and records
that are sometimes deleted. Nevertheless, development of WCBEN programs has been an iterative process toward
better understanding of more than 25 years of complex and changing data, business rules, data-entry, and data
archiving practices. The level of that understanding shows itself in at least six facets of data preparation:

 A coherent structure for the data,

 minimal duplication of data,

 efficient SAS code,

 better data cleansing,

 useful documentation and metadata, and

 easy creation and validation of statistics.

Some of the advantages of working with Base SAS for good data preparation and successful application
development are query capability through both the traditional DATA step and the SQL procedure; and built-in
functions, formats, and procedures that replace many lines of code. Following are some highlights of extraction,
transformation, and load operations done by the seven SAS programs that currently make up the CSO claim
outcomes sub-system. Most of these are universally applicable, rather than UNIX-specific.

EXTRACTION

The goal of extraction is to get the rows and columns needed from their different data sources and formats and put
them into a common structure. The most difficult extractions for the WCBEN system are in CSC and CST sub-system
programs, from Oracle tables, flat files, and spreadsheets; but that would be the subject for another paper. Many of
the resulting SAS data sets are the primary inputs for the CSO outcomes measures.

Each of the seven CSO programs has a well-defined and distinct purpose, including identification of outcomes-
measure control and study claims (CSORA001), disability benefits for study claims (CSORA002 and 003), time-series
benefits, employment, and wages for individual control and study claims (CSORA004 and 005), and summarized
time-series data (CSORA006 and 007), which are in essence data sets of statistics.

CLAIMS

(Oracle)

CSCRA003

CSTRA033

Operational data WCBEN data set

CSTRA005

CSTRA012

CSORA001

CSORA002 CSORA003

CSTRA006

CSTRA008

CSTRA013

CSTRA007

CSTRA009

CSORA004 CSORA005

CSORA006 CSORA007

Figure 2. Simplified Extraction and Load for CSO Claim Outcomes

The CSORA001 claim record has identifiers that permit joins and match-merges to data about workers’ compensation
benefit payments and employment and wages, and it is part of the extraction for the remaining six CSO programs, as
shown in Figure 2. Not by coincidence, the CSO load minimizes duplication of data, especially confidential identifiers,
yet it is a much simpler pathway than the extraction and load of the underlying CSC and CST data shown in Figure 1.

FROM MANY RECORDS TO NOT SO MANY

The CSORA001 program has the most complex extraction, a subset of CSC claims records that meet criteria for
assignment to the study and control groups. One claim per worker is allowed per fiscal year, but many workers have
many claims, and some have more than one claim within a fiscal year. The extraction gives preference to study
claims over control, to study claims where benefit payments have been reported to DCBS, and to the earliest such

Applications DevelopmentSAS Global Forum 2013

4

record within a fiscal year. Central to this are two programming tasks: identification of workers with more than one
claim record; and derivation of a hierarchical variable, grp_order, where the lower the value the higher the place in
the ascending sort order for a worker’s claim records and the higher the selection priority.

* 3. Create the study_class var, which splits the claims into study and control.

Create the grp_order var, which prioritizes the claims for inclusion in

the study claims, the controls, or exclusion from further analysis.

ID claims for workers with one and for workers with many. ;

proc format;

value $gord

'ADC Closed'=1

'ADC Init CDA'=2

'ADC Reopen'=3

'ADC Training'=4

'ADC Open'=5

'ANC EAIP'=6

'ANC'=7;

*;

data acc_clm2 (drop=grp_flg);

merge acc_clm1 (in=inf1) EAIP_ATP2 (in=inf2);

by file_no;

if inf1=1;

if claim_grp='ANC' and inf2=0 then study_class='ANC-';

else study_class='ADC+';

if grp_flg='E' and claim_grp='ANC' then grp_order=6;

else if grp_flg='T' then grp_order=4;

else grp_order=put(claim_grp, $gord.);

*;

Proc delete data=acc_clm1 EAIP_ATP2;

proc sort data=acc_clm2;

by worker_id;

data single_acc_clm1 mult_acc_clm1;

set acc_clm2;

by worker_id;

if first.worker_id and last.worker_id then output single_acc_clm1;

 /* unique claims per worker */

else output mult_acc_clm1; /* claims for workers with multiple claims */

run;

This SAS code, even if not the most elegant, illustrates implementation of business rules, attention to increased
efficiency by decreasing use of CPU resources, and provision of documentation.

 Comments, enclosed by * and ; or /* and */ (and here though not in the program editor highlighted in yellow),
don’t execute but serve to explain the logic.

 The FORMAT procedure assists in the derivation of the grp_order variable, with the VALUE statement setting the

business rule for priority.

 DATA statements are queries that create work data sets. The DROP= option deletes any variables no longer
needed after data derivation and writing of the work data set.

 The SORT procedure orders the data going into both work data sets BY a desired variable or variables.

 The first work data set is created with a MERGE statement, of two data sets designated by IN= aliases inf1 and
inf2 respectively. The match-merge is BY file_no. The IF inf1=1 statement assures that all the records from data
set inf1 will be written, along with any data from inf2, which previously had been stripped of duplicate file_no
records according to more business rules.

 The first work data set creates the study_class variable that identifies study and control claims by IF … THEN
and ELSE statements.

 It also derives the grp_order variable. Statements IF … THEN and ELSE … THEN convert single-character
values from an inf2 variable. The last statement in this routine, ELSE, uses the PUT function on multi-character
values for an inf1 variable, applying the character-to-numeric values from the PROC FORMAT. Note that
numeric rather than alpha number values is merely adherence to the way that Oracle handles data.

Applications DevelopmentSAS Global Forum 2013

5

 The DELETE procedure clears work space on the UNIX, a benefit to everyone who happens to be running SAS
against the UNIX server at that moment.

 The second data step is a SET from the first, but it is preceded with PROC SORT to get a different BY variable,
which is the reason for the new query.

 The second DATA step creates two work data sets. One is records for workers with single claims, from an IF
statement that writes via the OUTPUT command a record that is both the FIRST and the LAST observation of
the BY variable worker_id. All of those are loaded to the final CSO claims data set. The other work data set,
mult_acc_clm1, is the records for workers with multiple claims, some of which are loaded.

The creation of the work variables FIRST. worker_id and LAST. worker_id by PROC SORT is a SAS functionality that
is invaluable for common tasks of extraction, such as dealing with multiple records that need to be joined or merged
to a single record when the objective is a single record. It’s also a functionality that is difficult to reproduce in Oracle
SQL. Here, however, the objective isn’t a single record per worker, but a single record per worker within a grouping of
records. The code that accomplishes that is interesting, but also long and involved, too much so for a detailed
presentation in a paper already pressing the upper limits of allowed pages. Following, then, is a summary of the
method chosen.

 The multiple-claims data set, mult_acc_clm1, is joined to itself via PROC SQL by worker_id, creating a table or
work data set mult_acc_clm_excl1 where the injury date for one claim (the appended) is greater than or equal to
another (the base), with the base claim ID, injury date, and grp_order and the appended claim ID, injury date,
and grp_order written to one to many base records as temporary or work variables. The author of this logic
described it as “half a Cartesian product.” For example, the query creates 120 records for a worker with 16 claim
records.

 DATA mult_acc_clm_excl2 SET mult_acc_clm_excl1 identifies records for deletion where the appended injury
date is within 366 days after the base injury date unless the appended grp_order has a higher-priority value. The
resulting record is the claim ID from either the appended or base data. Working data mult_acc_clm_excl2 is
sorted by this variable, with the NODUPKEY option used to get rid of the duplicate records that are a
consequence of a work data set from “half a Cartesian product.”

Multiple-claim records to be kept for load to the final CSO data set result by subtracting the record marked for
deletion from the original data set of multiple claims.

data mult_acc_clm2;

merge mult_acc_clm2 (in=inf1) mult_acc_clm_excl2 (in=inf2);

by claim_id;

if inf1=1 and inf2=0;

The code is similar to DATA acc_clm2 above, with the crucial difference in the IF statement: the records from the inf1
data set are written unless they are in the inf2 data set.

STRANGE DATES

The second and third CSO programs extract from CST transactions the disability benefits paid for the study claims.
Although the five input data sets undergo extensive data-cleansing routines prior to load, the author of CSORA002
discovered a new way to edit some of the data. The methodology was improved so that the logic relies upon
operational data about maximum payment amounts, but with date fields having numeric year-month values, such as
200107, where the day is understood as either the first or last of the month, depending upon the field’s definition.

These “strange” dates—undoubtedly there was a good reason to load them to Oracle in this way—are extracted and
transformed to the SAS-date values characteristic of all the date variables in the WCBEN data system. A SAS date is
a sequential-day date value where 0 represents 01Jan1960, and here it is useful for comparing values—the time
sequence—from different date variables to determine whether a paid amount is above the maximum. Following is
one way to make the transformation.

dby = int(doi_from / 100);

dbm = mod(doi_from, 100);

doi_from_dt = mdy(dbm,1,dby);

drop doi_from dbm dby;

Suppose that an extracted record has the numeric value 200107 for the field doi_from, and that value is shorthand for

01Jul2001. The INT function returns the integer value 2001, rather than 2001.07, from the operation 200107 / 100, as
a temporary year variable. The MOD function returns the remainder from that same operation, which is 7, as a
temporary month variable. The MDY function converts the values of the two temporary variables and the understood
day value, 1, to a single SAS-date variable with a value that represents 01Jul 2001. Use of the DROP statement at
the end of the routine increases efficiency by deleting variables not needed after the logic processes.

Applications DevelopmentSAS Global Forum 2013

6

 A final note about coherent data structure is that moving this data edit from CSORA002 to the applicable CST
programs puts the data cleansing at the level within the WCBEN system where it belongs, because the CST logic
includes a means-imputation routine for estimating values that would otherwise be deleted as outliers. Moving the
data cleansing to CST greatly simplifies the CSORA002 extraction, as well.

TRANSFORMATION

Often enough, extraction requires transformation of the source data, such as seemingly strange dates. Strictly
speaking, transformation is the data manipulation that changes the extracted data to the form and format needed for
the load of the final data. Almost always, new variables are derived, but sometimes, new records.

DERIVING SEQUENTIAL-QUARTER VARIABLES

A transformation common to all seven of the CSO outcomes programs is the sequential-quarter variable, where an
integer value is assigned to a quarter’s worth of date values based on a fixed point in time or relative to a specific
event common to all observations considered. In the CSO sub-system, sequential fixed-quarter variables are
assigned values where 1 is an event during the first quarter of 2000, 2 is an event during 2000Q2, etc. Table 2
depicts the formula for assigning these values.

Date Year of the
date…

Minus 2000
equals….

Multiplied by 4
equals…

Plus quarter of
date…

Equals fixed
sequential quarter

values

30Sep1999 1999 -1 -4 3 -1

01Dec1999 1999 -1 -4 4 0

28Feb2000 2000 0 0 1 1

30Apr2013 2013 13 52 2 54

Table 2. Formula for Sequential Fixed-quarter Variables, Value 1 = 2000Q1

The next two lines of code put this formula into effect by transforming the two different kinds of date values extracted
by the CSO programs to sequential fixed-quarter variables. While var1 is from a SAS date, var2 is from another

“strange date:” a string of five characters for the year and quarter, such as 20001.

var1 = (YEAR(SAS_date)-2000)*4 + QTR(SAS_date);

var2 = (SUBSTR(string,1,4)*1)-2000)*4 + (SUBSTR(string,5,1)*1)

For var1, the SAS date value is first converted to a numeric for the year via the YEAR function and then to a numeric
for the quarter via the QTR function. For var2, the first 4 positions of the character string are extracted via the
SUBSTR function and converted by arithmetic operator to a numeric for a year, and the fifth position of the string is
converted to a numeric for the quarter.

The most important sequential-quarter variable for the times-series data is the sequential relative-injury quarter,
which permits comparison of outcomes statistics at specific quarters relative to the injury no matter what year and
quarter the injury and the outcome happened.

Fiscal
year

Sequential
relative-injury

quarter

Outcomes with
SAS dates for

these
quarters…

Are assigned
fixed sequential
quarter values

where
1=2000Q1…

For injuries with
SAS dates for

these
quarters…

Which are
assigned fixed

sequential
quarter values

where 1=2000Q1

2001 1 2000Q4 4 2000Q3 3

2001 1 2001Q1 5 2000Q4 4

2001 1 2001Q2 6 2001Q1 5

2001 1 2001Q3 7 2001Q2 6

2003 1 2003Q3 15 2003Q2 14

Table 3. Creation of Sequential Relative-quarter Variable from Two Sequential Fixed-quarter Variables

Table 3 illustrates the creation of this variable where the value 1 represents the first quarter after injury. The
derivation is by subtracting the sequential fixed-quarter variable for injury date from the sequential fixed-quarter
variable for outcome date.

Applications DevelopmentSAS Global Forum 2013

7

MANY RECORDS FROM ONE

In addition to their role in deriving the sequential relative-quarter variable, the sequential fixed-quarter variables serve
as part of the primary key or record ID and for MERGE and JOIN operations. Two of these variables are also used to
get around the collection by DCBS of some disability payment data at prescribed events rather than prescribed
intervals. That is to say, the CSORA002 program transforms a transaction record that often represents more than one
quarter of benefit payments to records of payments for each of the quarters implied by the original record. Quarterly
records are created within a DATA statement by a do loop:

do i = bsqtr to esqtr;

psqtr = i;

output;

end;

This iterative logic always starts with a DO statement and finishes with an END statement. The number of iterations is
controlled by an index variable herein named i (and often named i in programs by the mathematically inclined). In the

following example three records are created from one:

 Original record has begin_date 15Feb2001. The value for corresponding sequential-quarter variable bsqtr is 5.

 Original record also has end_date 15Aug2001. The esqtr value is 7.

 Variable i is processed three times, once for each value from bsqtr=5 TO esqtr=7. Note that TO is a key word in
the syntax that indicates point to point, inclusive. Variable i has the values 5, 6, and 7, successively.

 The OUTPUT statement writes a record for each iteration, including another sequential fixed-quarter variable
psqtr, the payment quarter, which takes the value of the i variable at each iteration.

Table 4 shows the three records created by the do-loop processing, where the variables from the original record have
been kept, their values written to each of the new records.

Begin_date
(original
record)

Bsqtr
(original
record)

End_date
(original
record)

Esqtr (original
record)

Pay_amount
(original
record)

Psqtr (payment quarter,
new record, from i =

bsqtr to esqtr)

15Feb2001 5 15Aug2001 7 2000 5

15Feb2001 5 15Aug2001 7 2000 6

15Feb2001 5 15Aug2001 7 2000 7

Table 4. Three records from one

If the original record’s numeric variable pay_amount has a value of 2000, how then is the new variable
qtr_pay_amount calculated for the three records? A quick and dirty way is to insert the next line of code into the do
loop, before the OUTPUT statement:

qtr_pay_amount = round(pay_amount / (esqtr+1 – bsqtr),.01);

This formula uses the ROUND function to control the number of decimal places: cents, but not mils and smaller
fractions. It resolves as 2000 divided by 3 is 666.67, where 3 is the count of quarters derived from the values for the
two sequential fixed-quarter variables on the original record: esqtr is 7 plus 1 becomes 8, from which is subtracted 5,
the bsqtr value.

The quick and dirty formula works best when begin_date is the first day of the quarter and end_date is the last day.
The test for these conditions is most easily accomplished with the INTNX function.

If begin_date=intnx(‘quarter’, begin_date, 0) and

end_date=intnx(‘quarter’, end_date, 0, ’end’) then …

Both lines of this code calculate a SAS-date value based upon the chosen interval ‘quarter’ from a date variable that
has been incremented 0 quarters. The first line has no optional alignment argument after the increment argument 0
and so defaults to ‘beginning’, returning the SAS date for the first day of the same quarter. The second line has
alignment argument ‘end’ and so the SAS-date value returned is the end date of the quarter.

The quick and dirty formula also works when the begin_date and end_date are within the same quarter: when
bsqtr=esqtr, where the do-loop logic outputs one record from one record. In simplified terms, the formula for this
condition is qtr_pay_amount=pay_amount.

Applications DevelopmentSAS Global Forum 2013

8

Unfortunately, “quick and dirty” is an unacceptable method for calculating qtr_pay_amount most of the time, because
the accuracy of the outcomes statistics for a given quarter (see Table 1) is vulnerable to the systematic distortion of
the formula. The three quarterly records from Table 4 are not equal: payment quarter 6 appears to be a full payment
quarter, but the other two quarters are obviously partial. Payment quarter 5, the begin quarter, is derived from
begin_date 15Feb2001, which is in the middle of that quarter; and payment quarter 7, the end, from end_date
15Aug2001, also in the middle. In fact, beginning and end quarters are almost always partial-payment quarters: the
begin date is not the first day of a quarter, and the end date is not the last day of a quarter. The values for
qtr_pay_amount should be closer to 500 for payment quarter (psqtr) 5, 1000 for psqtr 6, and 500 for psqtr 7; and that
may be accomplished by the INTNX function used to calculate ratios from the data retained on each new record from
the original.

Records where psqtr is equal to neither bsqtr nor esqtr are full-payment quarters, assigned a value of 1 for ratio. That
is true for the Table 4 record psqtr=6. Otherwise, the record is probably a partial-payment quarter, with a value for
ratio from comparing begin_date (or end_date) retained from the original record to the INTNX-function derived begin
and end dates for that quarter. Both begin_date and end_date for the Table 4 records are halfway through their
respective quarters, and so ratio would be 0.5 for both the psqtr=5 and psqtr=7 records.

From the same original-record data retained on each new record, a calculation of the total quarters of payment
covered by the original record, qtrs_pd, may be made—in essence, a sum of the ratios, written to each record. This is
a long formula, repeating the derivations of ratio for both bsqtr and esqtr, and adding to that the count of full-payment
quarters, from esqtr-bsqtr-1. Here, the formula resolves as 0.5 + 0.5 +1 equals 2.0 as the value for qtrs_pd, which is
written to each record. It’s then a simple matter to calculate the more accurate values for qtr_pay_amount.

qtr_pay_amount = round((ratio / qtrs_pd) * pay_amount,.01);

LOAD

The SAS code standardizes a quarterly load or writing of the WCBEN data and metadata to the UNIX data
warehouse by applying business rules systematically. The load for the CSO data sets includes the classification
variables needed for the performance measures. While it minimizes the storage of confidential data that would permit
identification of individuals, the load also provides each CSO data set with identifier variables useful for joins and
match merges when even more detailed data from the WCBEN or operational data are needed for analysis of
segments of the study-group claims.

The load is a permanent integration of the disparate data needed for more or less complex extraction and
transformation. The load advances the goal that different analysts will use the same data to get the same answer to a
single analytical question, every time.

GENERATIONAL LOAD

Actually, not quite every time, for workers’ compensation claims data are by their nature a temporary snapshot of the
activity affecting a claim. Whether a claim is still open and payments may be due, how much has been paid to date,
and the like—these are subject to change as a claim develops. In Oregon, getting a handle on claim development,
predicting or forecasting it, is complicated by the DCBS reporting requirement for benefit payments at prescribed
events, which also is the reason for the transformation of one record to many that was just described. A generational
load—where each CSO data set that is created each quarter is kept—is scheduled so that claim development data
for imputing benefit payments are available to estimate outcomes for the substantial number of claims that haven’t
developed to the point of reported benefits. The load is accomplished through PROC SQL.

Libname ben '/mypath/myfolder';

call symputx('date',compress(put(today(),mmddyy10.),'/'));

proc sql;

create table ben.myfile_&date as ...

The LIBNAME statement sets an alias ben for the path to the folder in which the data set is loaded. The CALL
SYMPUTX routine is used with the PUT, COMPRESS, and TODAY() functions to create a macro variable date with

the value of today’s date in the specified format with the special character / removed: for example, 30Apr2013
becomes 04302013. The CREATE statement in the PROC SQL uses these to load a data set, for example
myfile_04302013, to the correct place in the data warehouse. The addition of a date to the data set name, by invoking
the macro variable name with the prefixed symbol &, distinguishes the quarterly generations.

DOWNLOAD TO SPREADSHEET

Optionally, data sets may be loaded to spreadsheet for further analysis and graphical depiction. This has been useful
for the time-series statistical data loaded by the sixth and seventh CSO programs. The SAS Output Delivery System

Applications DevelopmentSAS Global Forum 2013

9

(ODS) is an immense topic, but the next few lines of basic code produce an html that is downloaded from a
temporary file on the UNIX to the desired folder on the LAN. When saved as a true spreadsheet file, these data may
be manipulated according to all the functionality of Microsoft Excel.

filename tab1 '/mypath/myfolder/myfile.xls';

ods html body=tab1 style=minimal;

proc print …

ods html close;

proc download infile='/mypath/myfolder/myfile.xls'

outfile='/mypath/myfolder/myfile.xls';

DATA VALIDATION, DOCUMENTATION, AND METADATA

The SAS programs also produce metadata: the data system documentation that is vital for comprehension of the
WCBEN system by other analysts. Metadata is embedded in the code as attributes for each variable, and through the
ability to write comments that document the logic but aren’t processed by SAS. The comments explain what each
section of code is meant to accomplish.

The processing of the code results in metadata in the SAS Log: an example is the SAS Note that returns a count of
observations (records) and number of variables (fields, columns) produced by a query. These notes are useful for
debugging, especially in those all too common situations where the log returns no ERROR message but results are
otherwise unexpected.

The label attribute for a variable is optionally set by a LABEL statement during the DATA step or a LABEL option in
the SELECT statement of PROC SQL. It’s always applied for WCBEN loads because it provides a description that is
more meaningful than the variable name, which most often is a shorthand name applied to a derived variable.

Variable name Label

dsqtr Sequential relative-injury quarter

pct_wage Wages, percent base wages

pct_indem Indemnity, percent base wages

Table 5. Labels Are Metadata for Variables

Metadata are also created in output from SAS procedures. The LABEL or the variable name may be used in the
output depending upon the purpose, and many lines of explanatory text may be added through TITLE and
FOOTNOTE statements.

 The CONTENTS procedure includes the data set name, location, and number of records; and column (variable)
position, name, data type, length, optional formats, and optional label.

 The FREQ procedure is an easy way to get distributions of classification variables’ values.

 The UNIVARIATE, MEANS, or TABULATE procedure provides statistics about benefits payments, for example,
which assist in validating the SAS program’s logic.

 PROC PRINT yields a list, typically the first 100 records in a data set or a more complex sample of records, from
which the data may be better understood, and problems in the transformation may be detected.

These and other procedures are run against all WCBEN data sets. They may of course also be run against work data
sets when de-bugging a SAS program or otherwise verifying that extraction and transformation have been done
correctly.

Proc sort data=dat1 nodupkey out=dat1_samp;

By var1 var2;

Proc print data= dat1_samp;

This bit of SAS code uses the SORT procedure’s NODUPKEY and OUT option to provide a complex sample of
records, one for each combination of the classifiers var1 and var2. If both variables have 8 values, then there will be a

sample list of 64 records out of let’s say a million records from the work data set dat1.

CONCLUSION

Base SAS is used in a UNIX environment to gain knowledge of disparate and scattered data for workers’
compensation costs paid and employment and wages. It provides ETL capability for application development, a
system of metadata and SAS data sets of worker benefit costs and outcomes statistics, useful for performance
measurement and many other reporting needs.

Applications DevelopmentSAS Global Forum 2013

10

REFERENCES

 Hunt, Allan, et al. April 2006. “Earnings Losses for Injured Worker.” Employment Research. Kalamazoo, MI: W.E.

Upjohn Institute for Employment Research.

 Oregon Department of Consumer and Business Services. February 2013. Oregon Workers’ Compensation
Premium Rate Ranking Calendar Year 2012.

 Reville, Robert, et al. 2001. An Evaluation of New Mexico Workers’ Compensation Permanent Partial Disability
and Return to Work. Santa Monica, CA: RAND Institute for Civil Justice.

 Siegel, Eric. 2012. Predictive Analytics Applied. San Francisco: Prediction Impact, Inc.

 Welch, Edward. 2000. Final Report: Oregon Major Contributing Cause Study. Lansing, MI: Michigan State

University.

ACKNOWLEDGMENTS

Gary Helmer, Economist, is the project leader for conceptual design and oversight, original author and steward of the
outcomes data and statistics, and reviewer of the follow-up work done by the author of this paper. Ronni Rachele,
Research Manager, and Mike Manley, Research Analyst, are the primary advisors. John Glen, Research Analyst,
Oregon Employment Department, annually provides an extract of employment and wage data so that DCBS may
construct performance measurements.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Mike Maier
Department of Consumer and Business Services / Central Services Division
P.O. Box 14480
Salem, OR 97309-0405
Work Phone: 503-947-7352
Fax: 503-947-7085
E-mail: Mike.g.maier@state.or.us
Web: http://www.oregon.gov/DCBS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2013

mailto:Mike.g.maier@state.or.us
http://www.oregon.gov/DCBS

	2013 Table of Contents

