
1

Paper 493-2013

Writing a Useful Groovy Program When All You Know about Groovy
Is How to Spell It

Jack Hamilton, Division of Research, Kaiser Permanente, Oakland, California

ABSTRACT

SAS® is a powerful programming system, but it can't do everything. Sometimes you have to go beyond what SAS
provides. There are several built-in mechanisms for doing this, and one of the newest is PROC GROOVY. It sounds
like a product of San Francisco's Haight-Ashbury, but it's actually a programming language based on another product
with San Francisco Bay area roots, Java. You can think of it as a simplified, easier to use version of Java -- simplified
enough that you can put together a useful PROC GROOVY program from Internet examples without knowing
anything about the language. This presentation focuses on handling directories and ZIP files, but many other things
are possible.

INTRODUCTION

One of the items that jumps out of the New Features documentation, because of its quirky name, is PROC GROOVY.
Maybe it does something interesting. But what?

The first place to look is the online documentation, at the even more quirky URL

http://support.sas.com/documentation/cdl/en/proc/65145/HTML/default/viewer.htm#p1x8agymll9gten1ocziihptcjzj.htm

What does it say?

Groovy is a dynamic language that runs on the Java Virtual Machine (JVM). PROC GROOVY enables
SAS code to execute Groovy code on the JVM.

PROC GROOVY can run Groovy statements that are written as part of your SAS code, and it can run
statements that are in files that you specify with PROC GROOVY commands. It can parse Groovy
statements into Groovy Class objects, and run these objects or make them available to other PROC
GROOVY statements or Java DATA Step Objects. You can also use PROC GROOVY to update your
CLASSPATH environment variable with additional CLASSPATH strings or filerefs to jar files.

OK, it's some kind of language that runs within SAS, and it's related to Java In some way. Java can do lots of
interesting stuff in addition to its constant string of security holes. So maybe this is worth pursuing.

Off to the interwebs. The first place to look is Wikipedia:

Groovy is an object-oriented programming language for the Java platform. It is a dynamic language with
features similar to those of Python, Ruby, Perl, and Smalltalk. It can be used as a scripting language for
the Java Platform, is dynamically compiled to Java Virtual Machine (JVM) bytecode, and interoperates
with other Java code and libraries. Groovy uses a Java-like bracket syntax. Most Java code is also
syntactically valid Groovy.

That sounds promising. It's a scripting language, and it's similar to a couple of other scripting languages. Scripting
languages can usually do interesting things with the operating system, such as crawling through directories and
zipping files, and I'm always looking for better ways to do those things because, frankly, what SAS has built in isn't
very good.

Systems Architecture and AdministrationSAS Global Forum 2013

2

GIVING IT A TRY

I don't know anything about Groovy, and very little about Java, so let's try the example in the SAS manual:

proc groovy classpath=cp;

 submit;

 class Speaker {

 def Speaker() {

 println "----> ctor"

 }

 def main(args) {

 println "----> main"

 }

 }

 endsubmit;

quit;

Here's what we get (SAS 9.3 TS1M0 on Windows 7):

1 proc

1 ! groovy classpath=cp;

ERROR: Logical name is not available.

ERROR: Failed to get the physical path from fileref CP.

2 submit;

3 class Speaker {

4 def Speaker() {

5 println "----> ctor"

6 }

7 def main(args) {

8 println "----> main"

9 }

10 }

11 endsubmit;

----> ctor

----> main

NOTE: The SUBMIT command completed.

12 quit;

NOTE: The SAS System stopped processing this step because of errors.

This is not an encouraging start.

From here on, I will omit the "proc groovy" and "quit" lines from most log listings.

BACK TO THE WEB - READING A ZIP FILE

But there must be some working examples of Groovy code out there. I know how to write ZIP files in SAS, but not
how to read them, so that's what I'll look for. I Googled "groovy read zip file".

The first result in that search was at the very useful site StackOverflow

http://stackoverflow.com/questions/645847/unzip-archive-with-groovy

It had a simple 4 line example:

def zipFile = new java.util.zip.ZipFile(new File('some.zip'))

zipFile.entries().each {

 println zipFile.getInputStream(it).text

}

Systems Architecture and AdministrationSAS Global Forum 2013

3

As it happens, I had a small ZIP file at the ready, so I replaced 'some.zip' with ' W:\WUSS2012\WUSS2012.zip', put
the code inside PROC GROOVY using the syntax in the earlier example, took out the CLASSPATH option, and ran it:

23 submit;

24 def zipFile = new java.util.zip.ZipFile(new

File('W:\WUSS2012\WUSS2012.zip'))

25

26 zipFile.entries().each {

27 println zipFile.getInputStream(it).text

28 }

29 endsubmit;

ERROR: The SUBMIT command failed.

org.codehaus.groovy.control.MultipleCompilationErrorsException: startup failed:

Script3.groovy: 1: unexpected char: '\' @ line 1, column 57.

 .util.zip.ZipFile(new File('W:\WUSS2012\

OK, not so good, but at least there's a reasonable error message - something to do with the backslash. I know that
Java is kind of Unix based, and Unix likes forward slashes in file names, so let's try that:

257 submit;

258 def zipFile = new java.util.zip.ZipFile(new

File('W:/WUSS2012/WUSS2012.zip'))

259 zipFile.entries().each {

260 println zipFile.getInputStream(it).text

261 }

262 endsubmit;

%PDF-1.5

%µµµµ

1 0 obj

<</Type/Catalog/Pages 2 0 R/Lang(en-US) /StructTreeRoot 167 0

R/MarkInfo<</Marked true>>>>

endobj

2 0 obj

<</Type/Pages/Count 13/Kids[3 0 R 29 0 R 30 0 R 31 0 R 35 0 R 42 0 R 43 0 R 44

0 R 45 0 R 46 0

R 51 0 R 53 0 R 57 0 R] >>

[… lines omitted]

This time, there's a lot of extra stuff in the log. I recognize it as the beginning of a PDF file, and I know there's a PDF
file in that ZIP file. Success!

Well, of a sort. I want a list of the names, and if I wanted the contents I probably wouldn't want them to just print in
the log, but ar least it's a proof of concept.

At this point, I decided to look around for some consolidated documentation, something similar to the Perl and Python
cookbooks, so I wouldn't have to learn more than the bare essentials. Looking around on the web, I found a small e-
book company, The Pragmatic Bookshelf, that publishes a number of such books, including one on Groovy called

Groovy Recipes: Greasing the Wheels of Java, <http://pragprog.com/book/sdgrvr/groovy-recipes>.

The description says "Each recipe in Groovy Recipes begins with a concise code example for a quick start, followed
by in-depth explanation in plain English." The example looked like it might be understood by ordinary mortals, so I
bought the book and downloaded it in Mobi format (it's also available in epub and PDF, and can automatically load a
book to Dropbox, Kindle, or Readmill if you wish).

Systems Architecture and AdministrationSAS Global Forum 2013

4

The book starts with a long explanation of the design of Groovy, how it's different from Java, and how to use it in
various environments, but I skipped most of that and went to Chapter 6, "File Tricks". The first example was a two-
liner that does a directory listing. I changed the directory name and stuck it into SAS:

286 submit;

287 new File("W:/WUSS2012").eachFile{file ->

288 println file

289 }

290 endsubmit;

W:\WUSS2012\7zipresult.png

W:\WUSS2012\CGF_55.pdf

W:\WUSS2012\CGF_57.pdf

[… lines omitted]

NOTE: The SUBMIT command completed.

Ta Da! It works!

Looking at the difference between this and the previous example that printed contents, I noticed that the println in the
previous example included something not in the second example, ".getInputStream(it).". So what happens if we take
that out?

327 submit;

328 def zipFile = new java.util.zip.ZipFile(new

File('W:/WUSS2012/WUSS2012.zip'))

329 zipFile.entries().each {

330 println zipFile

331 }

332 endsubmit;

java.util.zip.ZipFile@5e9db7

java.util.zip.ZipFile@5e9db7

java.util.zip.ZipFile@5e9db7

java.util.zip.ZipFile@5e9db7

java.util.zip.ZipFile@5e9db7

java.util.zip.ZipFile@5e9db7

java.util.zip.ZipFile@5e9db7

NOTE: The SUBMIT command completed.

There are seven lines of output, and there are seven files in the ZIP file, so we're on the right track. Now we just
need to print the file name instead of that mysterious code.

I look through more examples, not trying to understand them but just get a feel for the syntax, and I see a few
examples that use "file.name" instead of just "file". So let's try that:

337 submit;

338 def zipFile = new java.util.zip.ZipFile(new

File('W:/WUSS2012/WUSS2012.zip'))

339 zipFile.entries().each {

340 println zipFile.name

341 }

342 endsubmit;

W:\WUSS2012\WUSS2012.zip

W:\WUSS2012\WUSS2012.zip

W:\WUSS2012\WUSS2012.zip

W:\WUSS2012\WUSS2012.zip

W:\WUSS2012\WUSS2012.zip

W:\WUSS2012\WUSS2012.zip

W:\WUSS2012\WUSS2012.zip

NOTE: The SUBMIT command completed.

OK, we're not there yet, but at least the guess that I could add ".name" to the end was correct.

Maybe we need outside help here. Let's go back to Mr. Google and search for "groovy zipFile.entries".

The first three results don't look promising, but the fourth is:

Systems Architecture and AdministrationSAS Global Forum 2013

5

Search in zipfile : Groovy Almanac
groovy-almanac.org/search-in-zipfile/
Search. def searchstr = " 1 .txt" def zipfile = new ZipFile("test.zip") zipfile.entries().each{ entry-> if
(entry.name =~ searchstr){ println "$entry.name" } }. view plain ...

That sounds good. The code has a mix of familiar and unfamiliar stuff:

 def searchstr = "1.txt"

 def zipfile = new ZipFile("test.zip")

 zipfile.entries().each{ entry->

 if (entry.name =~ searchstr){

 println "$entry.name"

 }

 }

Let's change the zipfile definition to match what we used earlier and try it:

587 submit;

588 def searchstr = "1.txt"

589 def zipfile = new java.util.zip.ZipFile(new

File('W:/WUSS2012/WUSS2012.zip'))

590 zipfile.entries().each{ entry->

591 if (entry.name =~ searchstr){

592 println "$entry.name"

593 }

594 }

595 endsubmit;

NOTE: The SUBMIT command completed.

No output, but there weren't any matching files to print. More important is the lack of error messages. Let's try again
with the search string and if statement removed:

600 submit;

601 def zipfile = new java.util.zip.ZipFile(new

File('W:/WUSS2012/WUSS2012.zip'))

602 zipfile.entries().each{ entry->

603 println "$entry.name"

604 }

605 endsubmit;

wuss2012/._WritersGuidelines2012.pdf

wuss2012/._WUSS2012_PresentersCopyrightForm.pdf

wuss2012/._WUSS2012_PresentersFAQs.pdf

wuss2012/WritersGuidelines2012.pdf

wuss2012/WUSS2012_PaperTemplate.doc

wuss2012/WUSS2012_PresentersCopyrightForm.pdf

wuss2012/WUSS2012_PresentersFAQs.pdf

NOTE: The SUBMIT command completed.

Aha! Now we have what we want. Now all we have to do is get it somewhere SAS can use it, which will come later
in the paper.

An important thing to note here is that I don't know what a lot of this code is doing, and I don't have to. All I need to
know is that it works. I can guess that the ".each" does some kind of iteration, and "entry->" is probably responsible
for setting the value of '$entry.name", but I don't know the exact syntax, and I don't know what I could use besides
".name". I could look it up, but I don't need to. That would be learning more about Java and Groovy than I need to.

Note that the title of this paper is Writing a Useful Groovy Program When All You Know about Groovy Is How to Spell
It. It's not Proc Groovy for Dummies or Proc Groovy for the Timid. You can start using Proc Groovy without knowing
anything about it, but you have to be willing to do some web searching, and draw analogies from relevant parts of
SAS, and be willing to keep going even when the first 2 or 3 or 10 things you try don't work.

And also, even that earlier attempt that ended up printing the contents of the file into the log may turn out to be useful
later, when you actually want the contents instead of the names.

Systems Architecture and AdministrationSAS Global Forum 2013

6

DOCUMENTATION

At some point, you will probably need to look at real technical documentation just to learn keywords, even if you don't
have to learn Groovy syntax. The main site for Groovy is <http://groovy.codehaus.org/>, and for documentation,
<http://groovy.codehaus.org/Documentation>.

Many Groovy programs explicitly use Java functions, as in the ZIP examples above. You can see one of many Java
documentation pages at <http://docs.oracle.com/javase/6/docs/api/>.

For example, to see what else you can do with a zip file, go to that Java page:

The section you want to go to is "All Classes" at the bottom left. Scroll down to ZipEntry and click on it. The right
side will change to a description of the ZipEntry class:

Systems Architecture and AdministrationSAS Global Forum 2013

7

Click on "Method" at the top left to get a list of methods. As in SAS, methods in Groovy and Java act on objects,
such as a ZIP file object.

Two of the methods near the top are getName() and getSize(). Let's try those. They require slightly different syntax
than the earlier example, but this syntax is actually more similar to what SAS uses for objects than the earlier
example was

656 submit;

657 def zipfile = new java.util.zip.ZipFile(new

File('W:/WUSS2012/WUSS2012.zip'))

658 zipfile.entries().each{ entry->

659 println entry.getName() + ' ' + entry.getSize()

660 }

661 endsubmit;

wuss2012/._WritersGuidelines2012.pdf 4096

wuss2012/._WUSS2012_PresentersCopyrightForm.pdf 4096

wuss2012/._WUSS2012_PresentersFAQs.pdf 4096

wuss2012/WritersGuidelines2012.pdf 764690

wuss2012/WUSS2012_PaperTemplate.doc 167936

wuss2012/WUSS2012_PresentersCopyrightForm.pdf 158222

wuss2012/WUSS2012_PresentersFAQs.pdf 199185

NOTE: The SUBMIT command completed.

It's not a pretty format, but now you can get the name and the size.

READING A DIRECTORY STRUCTURE

Reading a directory structure is something I need to do fairly often. I have a SAS-based method for doing it (see
<http://www.sascommunity.org/wiki/Obtaining_A_List_of_Files_In_A_Directory_Using_SAS_Functions>), but it's
always good to have options.

First, let's read the files in a single directory. Searching for "groovy read file directory" finds this page with a nice two
line function, <http://groovy-almanac.org/list-directory-contents/>, and it's easy to get a Proc Groovy program out of
that:

694 submit;

695 new File('W:/WUSS2012/').eachFile() { file->

696 println file.getName()

697 }

698 endsubmit;

7zipresult.png

CGF_55.pdf

CGF_57.pdf

Corrected-Filenames-Recurse.sas

Corrected-Filenames.sas

filenames.sas

[… lines omitted]

NOTE: The SUBMIT command completed.

That was easy.

Systems Architecture and AdministrationSAS Global Forum 2013

8

And that web site, groovy-almanac.org, has lots of examples. At the bottom of screen where I found the code above,
there's a link to a way to do another good file-ish thing, a recursive file listing,
< http://groovy-almanac.org/list-all-files-recursively/>:

714 submit;

715 new File('W:/WUSS2012/recurse').eachFileRecurse() { file ->

716 println file.getPath()

717 }

718 endsubmit;

W:\WUSS2012\recurse\file1.txt

W:\WUSS2012\recurse\recurse2

W:\WUSS2012\recurse\recurse2\file2.txt

W:\WUSS2012\recurse\recurse2\recurse3

W:\WUSS2012\recurse\recurse2\recurse3\file3.txt

NOTE: The SUBMIT command completed.

Another example uses something called AntBuilder. It has a different syntax,and it lets you easily filter your results.
As in SAS, it seems there is always more than one way to do a given task..< http://groovy-almanac.org/list-directory-
contents-with-antbuilder/>.

796 submit;

797 def ant = new AntBuilder()

798 def list = ant.fileScanner {

799 fileset(dir:"W:/WUSS2012")

800 }

801 println "First listing"

802 list.each() { file ->

803 println " sizeof ${file.getName()} is ${file.length()}

bytes"

804 }

805 list = ant.fileScanner {

806 fileset(dir:"W:/WUSS2012") {

807 include(name:"*.sas")

808 exclude(name:"*.pdf")

809 }

810 }

811 println "Second listing"

812 list.each { file ->

813 println " sizeof ${file.name} is ${file.length()} bytes"

814 }

815 endsubmit;

First listing

 sizeof 7zipresult.png is 45564 bytes

 sizeof CGF_55.pdf is 273610 bytes

[… lines omitted]

Second listing

 sizeof Corrected-Filenames-Recurse.sas is 4420 bytes

 sizeof Corrected-Filenames.sas is 2041 bytes

 [… lines omitted]

NOTE: The SUBMIT command completed.

You can see that the second listing includes only .sas files, as requested.

ASKING FOR HELP

The examples above have all been run under Windows. But when I ran the last example under Solaris, I saw this:

java.lang.NoClassDefFoundError: org/apache/tools/ant/BuildException

 at java.lang.Class.forName0(Native Method)

 at java.lang.Class.forName(Unknown Source)

[… lines omitted]

ERROR: The SUBMIT command failed.

Systems Architecture and AdministrationSAS Global Forum 2013

9

What happened? I didn't have a clue. It couldn't find something, but why not? This called for expert advice.

And happily, I was able to find it. There's not a lot written about Proc Groovy. But over at communities.sas.org, there
is someone who knows much more than I do. He goes by the username FriedEgg, and he was able to quickly
identify the problem, <https://communities.sas.com/message/102280#102280>:

It should be part of your standard Java install, but it is probably not included in your environment by
default.

proc groovy;

ADD SASJAR="ANT";

submit;

That solved the problem.

There are lots of sources of help for Groovy and Java. There's not much apparent use of Proc Groovy, but I suspect
that its use will grow. <http://www.sascommunity.org> and <communities.sas.com> are good places to look and ask.
With luck, a library of sample Groovy programs will build up at sascommunity.org over time.

MAKING PROC GROOVY RESULTS AVAILABLE TO SAS

There are at least three ways to make the results of a Proc Groovy program available to SAS.

Write to a file

If you are reusing an existing Groovy or Java program that already writes to a file, just let Proc Groovy write the file
unchanged, and read it in a subsequent data step.

Use the data step object-oriented interface to Java

FriedEgg has given us a simple example of this. It determines whether the site is in Daylight Savings Time,
<https://communities.sas.com/message/144937#144937>. Unfortunately, this requires the use of a classpath, and
the SAS documentation is so vague that it's virtually useless. I just kept trying different things with classpath until I
found something that worked. This example is a slightly modified version of FriedEgg's; I don't actually know what it
does, but it does run and create results.

Systems Architecture and AdministrationSAS Global Forum 2013

10

1048 filename cp 'c:\temp\test.jar';

1049

1050 proc

1050! groovy classpath=cp;

NOTE: The ADD CLASSPATH command completed.

1051 submit parseonly;

1052 class DST {

1053 static boolean isDst(String tmz) {

1054 return TimeZone.getTimeZone(tmz).inDaylightTime(new Date())

1055 }

1056 }

1057 endsubmit;

NOTE: The SUBMIT command completed.

1058 quit;

NOTE: PROCEDURE GROOVY used (Total process time):

 real time 0.05 seconds

 cpu time 0.01 seconds

1059

1060 options set=classpath "c:\temp\test.jar";

1061

1062 data _null_;

1063 declare javaobj j('DST');

1064 j.callStaticBooleanMethod('isDst', "EST", Is_DST);

1065 put Is_DST=;

1066 j.callStaticBooleanMethod('isDst', "EDT", Is_DST);

1067 put Is_DST=;

1068 run;

Is_DST=0

Is_DST=0

Pass values through macro variables

For passing small amounts of data, this works well. It's a bit of a kludge, but the use of macro variables is well and
widely understood, unlike the use of classpath. Proc Groovy supports a special Groovy variable named "exports";
there's a small sample program in the Proc Groovy documentation, and I modified it to export filenames.

1263 proc

1263! groovy;

1264 submit;

1265 filecount = 0

1266 new File('W:/WUSS2012/').eachFile() { file->

1267 filecount = filecount + 1

1268 exports.put('filename' + filecount, file.getName())

1269 }

1270 exports.put('filecount', filecount)

1271 endsubmit;

NOTE: Exporting macro variable "filecount".

NOTE: Exporting macro variable "filename20".

[… lines omitted]

Systems Architecture and AdministrationSAS Global Forum 2013

11

NOTE: Exporting macro variable "filename7".

NOTE: The SUBMIT command completed.

1272 quit;

NOTE: PROCEDURE GROOVY used (Total process time):

 real time 0.20 seconds

 cpu time 0.06 seconds

1273

1274 data _null_;

1275 length filename $60.;

1276 filecount = input(symget('filecount'), best.);

1277 putlog 'There are ' filecount 'files';

1278 do i = 1 to filecount;

1279 filename = symget(catt('filename', i));

1280 putlog i= filename=;

1281 end;

1282 run;

[… lines omitted]

There are 33 files

i=1 filename=.DS_Store

i=33 filename=~$FP_57.docx

NOTE: DATA statement used (Total process time):

 real time 0.08 seconds

 cpu time 0.06 seconds

Unfortunately, going the other way doesn't seem to work; a statement like

myvalue = exports.get('mymacvar')

compiles and runs, but myvalue isn't set to the value of the macro variable mymacvar.

FURTHER READING

A version of this paper will be available online at

http://www.sascommunity.org/wiki/Simple_Proc_Groovy

It is likely to be better and more complete than the soon-to-be-outdated version in the Proceedings.

CONTACT

Your comments and questions are encouraged. Contact the author at:

Jack Hamilton
jfh@acm.org:

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Systems Architecture and AdministrationSAS Global Forum 2013

	2013 Table of Contents

