SAS Global Forum 2013 Reporting and Information Visualization

Paper 376-2013

Horizontal Data Sorting and Insightful Reporting: A Useful SAS® Technique
Justin Jia, Canadian Imperial Bank of Commerce (CIBC), Toronto, Ontario, Canada

Amanda Lin, Bell Canada, Toronto, Ontario, Canada

ABSTRACT

Sorting and ordering of data is a fundamental skill in SAS® data analysis. Data sorting can be vertical sorting, across
rows, or horizontal sorting, across columns. Compared to vertical sort, horizontal sort is used less frequently, and it
requires the user to employ multiple sophisticated SAS skills such as Transpose, Rotate, Array, Macro, etc. It is also
an important and useful technique for advanced data analysis and reporting in customer profiling and metrics, which
can significantly enhance the format and layout of data reporting, and thus provide informative insights into data. This
paper will discuss the different approaches and methods of performing horizontal sorting and presentation of SAS
data, which can also expand our horizon on data manipulation and SAS programming skills.

INTRODUCTION

In the process of data manipulation and data analysis through the use of SAS programming, it is often required to sort
and arrange data in a specified order: either in ascending or descending sequence. This kind of data sorting or
ordering can be arranged either in a vertical direction or in a horizontal direction. Vertical sorting of data arranges the
observations of a data set according to the values of one or more variables, such that the elements are ordered
vertically across the observations. This method is very common and not difficult to execute in SAS, and we can use
PROC SORT or PROC SQL (with ORDER BY) methods to realize the new arrangement. Although horizontal sort is
not used as often as the vertical sort, we may encounter occasions that require data to be sorted across variables or
columns as well. For example, in a cross-sell marketing campaign, we have customers’ monthly purchase data as
shown below. The arrangement of products and purchase quantities is not in a defined order, which makes it very
inconvenient for us to look up or compare.

Table 1. Sample Raw Data of A Cross-Sell Campaign

Client ID Product 1 Qty Product 2 Qty Product 3 Qty Product 4 Qty
101 Printer 10 Computer 25 Games 6 TV 3
107 TV 17 Software 32 Fax Machine 11

To do a better data reporting, for each client, we need to present the purchase data either in an alphabetical order
based on the product names, or in a descending order according to the purchase quantities. This horizontal sorting
and presentation of data will make the report easy to read and provide insightful information in understanding
customer behaviors.

Under most circumstances, sorting and ordering of data in a horizontal way is much more complicated and
challenging as compared to vertical sorting. It requires the sophisticated utilization of multiple advanced SAS skills
such as TRANSPOSE, ARRAY, DO-LOOP, MACRO and other techniques. Although it is not often used, horizontal
sorting is an important and useful technique in advanced data analysis and reporting. In this paper, we will use two
sample projects to illustrate the different approaches and methods of sorting and reporting data horizontally.

PROJECT 1: STUDENT PROFILING PROJECT--- HORIZONTAL SORTING OF NUMERIC
VARIABLES.

In our previous work, our client once asked us to create a profile on the students who participated in a series of
simulation exams for psychological studies. In this project, study subjects were randomly selected from a large
student database which contained the personal and academic information of undergraduate students from various
universities in Canada. These study subjects were required to take a series of simulated psychological tests. Each
subject could choose any of the 12 available tests; however, they had to take at least 3 tests and at most 12 tests for
the purpose of statistical analysis. Below is a partial printout of the test score data, please note that some test scores
may have missing values because it was not mandatory for each student to take all of the 12 tests, therefore the ones
that a student skipped will have missing values accordingly.

SAS Global Forum 2013 Reporting and Information Visualization

Table 2. Raw Data of Students’ Test Scores in MACCA Psychological Studies.

|ID | Test_1 | Test_2 | Test_3 |Test_4 |Test_5|Test_6| Test_7 |Test_8 |Test_9| Test_10 | Test_11 |Test_12
A001 82 99 100 69 . .
A003 . 45 67 . 45 88 95 . . . 63 32
A004 52 . 35 66 . 77 79 . 68 . 58 79
A006 86 82 71 45 78 . 52 . 45 31 . 78
A008 50 67 59 63 58 . 70 . 53 94 . 61

Our client also required us to report the personal profile and the descriptive statistics of test scores of each participant
in HTML format using their template as shown below. As such, the personal and academic information of each
student was to be presented in a separate table. Please note the test scores are arranged in a descending order in
the test summary item.

Figure 1. Template and Layout of the Output HTML Report as Required by Client
Personal Profile and Test Summary Report for Students Participating in 2011 MACCA Study.

ID=A019
Item |Content
Subject ID A019
Hobby Shopping, Basketball, Hiking.
Last_Name Taylor
First_Name Janet
Gender F
Birth_Date 05/12/1987
Phone 905-602-7777
Home_Address 99 Conestoga College Blvd., Kitchener, ON, N2P 2N5
Grade 1
Department Music
University University of Manitoba
Test Summary Subject ID#: A019. Test scores are: 86, 67, 67, 48, 40, 38, 32, 30
respectively. Score statistics: 51.0 +/- 20.1 (n= 8).

Funded by Natural Sciences and Engineering Research Council of Canada (NSERC), this research is conducted by MACCA Study
Team of McMaster University on a voluntary participation basis.

We will illustrate and discuss the different approaches to generating this profiling report as follows.
Method 1A: Bubble Sort Approach.

libname P '/file path/';

data Sort A(drop= I J temp) ;

set P.test;

array S(12) test 1l-test 12;

do I=1 to 12;

do J=1 to 12-I;

if S(J) < S(J+1) then do; *Sort data in descending order.;
Temp = S(J);

S(J)= S(J+1);

S(J+1) = Temp;
end; end; end;
run ;

The Bubble Sort is one of the simplest data sorting algorithm, and it is very popular and widely used in practice. The
algorithm gets its name from the way smaller elements "bubble" to the top of the list. In brief, it works by repeatedly
stepping through the list to be sorted, comparing each pair of adjacent items and swapping them if they are in the

wrong order. The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted.

Therefore our first method is to apply the bubble sort approach to sort the data by using array and do-loop in a SAS
DATA step. As shown above, we define a numeric array S(12) of 12 elements to hold the values of 12 tests, and then
a do-loop and IF-THEN conditional processing to compare each pair of adjacent elements. For descending sort, we
do this in a way that is opposite to the ascending sort. If the larger(heavier) one of the two adjacent elements is on
the right side of its neighbor, they swap places. Thus the largest(heaviest) element bubbles to the surface and at the
end of each iteration it appears on the top. In this way, the test scores are sorted in a descending order, the
horizontally-sorted data are shown below (partial printout):

SAS Global Forum 2013 Reporting and Information Visualization

Table 3. Partial Printout of the Generated SORT_A Data Set.

ID | Test_1| Test_2 | Test 3 | Test_4 | Test 5 | Test_6 | Test_7 | Test_8 | Test_9 |Test_10| Test 11 | Test 12 |
99 o7 94 82 69 . :

A001 100 99

A003 95 88 67 63 45 45 32 .

A004 79 79 77 68 66 58 52 35 .
A006 86 82 78 78 71 52 45 45 31
A008 94 70 67 63 61 59 58 53 50

Then we use a DATA step to calculate the descriptive statistics and create summary text for reporting uses. We put
the DATA step in a SAS macro because we will utilize it repetitively in other methods as well.

$macro summary (method=) ;

data Summary &Method (drop=Test 1-Test 12 1I);
length Summary $200;

set Sort &Method;

N=N(of test 1-test 12);

Mean= Mean (of test 1l-test 12);
STD= STD(of test 1-test 12);
format Mean STD 4.1;

array Score (12) test_1l-test_12;
Summary="Subject ID#: " ||ID||". Test scores are: ",

do I=1 to 12;

if I=1 then Summary=strip(Summary) | |put(Score(I), 3.);

else if I> 1 and Score(I) “=. then Summary= strip(Summary) || ", " || put(Score(I),
3.)

else if I=12 then Summary= strip(Summary) || " respectively. Score statistics: "
|| put(mean, 4.1)||" +/- " ||put(STD, 4.1)||' (n= '||put(N, 2.0)|]")." ;

end;

run;

$mend;

$summary (method=3) ;

In the above DATA step, a new numeric array SCORE(12) of 12 elements is defined to contain the test scores which
have been previously sorted in descending order. Three new variables N, MEAN, STD are created to calculate the
sample size (the number of tests taken), average and standard deviation of test scores for each participating student.
The long character variable SUMMARY (length= $200 as specified by LENGTH statement) is used to contain all
these descriptive statistical information. We then use a do-loop to concatenate the values of ID, test scores and their
statistics into a summary text. For this purpose, we need use PUT function to convert the numeric values into
character values using the specified formats, and STRIP function to remove unnecessary leading and trailing blanks.
After dropping unwanted variables (DROP = TEST_1-TEST_12 1), we eventually obtain a data set as shown below
(partial printout):

Table 4. Partial Printout of the Generated SUMMARY_A Data Set.

ID | N | Mean | STD | Summary
A001 10 75.8 27.0 Subject ID#: A001. Test scores are:100, 99, 99, 97, 94, 82, 69, 42, 42, 34
respectively. Score statistics: 75.8 +/- 27.0 (n= 10).
A003 7 62.1 23.3 Subject ID#: A003. Test scores are: 95, 88, 67, 63, 45, 45, 32 respectively.
Score statistics: 62.1 +/- 23.3 (n=7).
A004 8 64.3 15.4 Subject ID#: A004. Test scores are: 79, 79, 77, 68, 66, 58, 52, 35 respectively.
Score statistics: 64.3 +/- 15.4 (n= 8).

Then we need merge or join this test summary data set with the student information data set for creating the final
profiling report. We achieved this by using PROC SQL to join the two tables together.

kkkkkkxk*x* Join above Summary dataset with student info datasetx**kkkkx**;
proc sgl;

create table P.profile as

select b.*, a.summary

SAS Global Forum 2013 Reporting and Information Visualization

from Summary A(keep=ID Summary) a inner join P.students Db
on a.ID=b.ID

where b.ID is not null

order by b.ID;

quit;

In order to follow client’s report template, we need transform the joined data set. We can do it by using PROC
TRANSPOSE procedure, or using array in a DATA step.

PR R R E R R R EEEEEEEEEEEEEE S SR Transform By Proc Transpose *********************;
proc sort data=P.profile; by ID; run;

proc transpose data=P.profile out=Report (rename=(coll=Content)) ;
by ID;

var _ALL ;

run;

As shown above, using the special SAS name list _ALL_ in the PROC TRANSPOSE will transpose all
variables(including the ID variable) in the input data set, the output REPORT data set is shown in the following
table(partial printout). Please note that numeric values are automatically converted into character values by using the
BEST12 format during this process.

Table 5. Partial Printout of the Generated REPORT Data Set.

ID |CoLName Content

A003 ID A003

A003 Hobby Sewing, Beatboxing, Socializing.

A003 Last_Name Thompson

A003 First_Name Judy

A003 Gender F

A003 Birth_Date 08/06/1987

A003 Phone 647-235-0987

A003 Home_Address 16 Isabella, Saint Jacobs, ON, NOB 2NO

A003 Grade 3

A003 Department Psychology, Neuroscience & Behaviour

A003 University Colombia College

A003 Summary Subject ID#: A003. Test scores are: 95, 88, 67, 63, 45, 45, 32 respectively.
Score statistics: 62.1 +/- 23.3 (n=7).

Alternatively, using DATA step array is also an important method in transforming a data set. Compared with PROC
TRANSPOSE, array method is much more flexible and versatile; therefore it is widely used in SAS data manipulation.
Especially when we have special needs and PROC TRANSPOSE fails to work, array is often the solution due to its
flexibility. Below is the coding used in the DATA step array approach, which produces a data set identical to the one
obtained by using the PROC TRANSPOSE method.

Fhkkkxkkkkkkkkkxkxkkxkx* Transform By Data Step Array **x*xkkkkxkkkkxkdkkkkkrkkhdxr,;
proc sort data=P.profile; by ID; run;

data Report (keep=ID Col Name Content) ;

set P.profile;

by ID;

array Col(12) $200 ID Hobby Last Name First Name Gender Birth Date Phone
Home Address Grade Department University Summary;

do I=1 to 12;

Col Name= Vname (Col(I)) ;

Content =Col (I);

output;

end;

run;

The final step is to use SAS ODS and PROC PRINT to create the final profiling report, a separate table for each
student, below is the SAS coding and SAS output.

[rrRRRRaaaRassa sk ODS Output to create HTML Report, *****# s kel

SAS Global Forum 2013 Reporting and Information Visualization

filename Report '/file path/Report.html';
proc format;
value $Col
'ID'="'Subject ID' 'hobby'="Hobby' 'Summary'="'Test Summary';
run;

ODS listing close; ODS HTML file=Report style= sasweb;

Title "Personal Profile and Test Summary Report for Students Participating in 2011
MACCA Study."

Footnote "Funded by Natural Sciences and Engineering Research Council of Canada
(NSERC), this research is conducted by MACCA Study Team of McMaster University on a
voluntary participation basis."

proc print data= Report noobs label;

by ID;

label Col Name="Item"; format Col Name $Col.;
run;

ODS HTML close; ODS listing;

Method 1B: Rotate and Transpose Approach.

In addition to Bubble Sort approach presented in Method 1A, we can use rotate and transpose approach to achieve
the same goal.

kkkkkkkkkkkkkxkkk*k*x Method 1B: Rotate and Transpose Approach. ***xkkxkkkkkkkx
proc sort data=P.test; by ID; run;

data B _rotate(drop= I test l-test 12);

set P.test;

by ID;

array S(12) test 1-test 12;

if first.ID then do I=1 to 12;

Score=S(I);

if not missing(score) then output;

end;

run;

proc sort data= B_rotate; by ID descending score; run;
proc transpose data= B _rotate out=Sort B(drop= name) prefix=test ;
by ID ;

var score;

run;

$summary (method=B) ;

By using array again, the above program will rotate the original TEST data set into vertical form: the test scores of
each ID will transform from values of 12 columns into values of 12 observations of a single numeric variable SCORE.
Please note that we only keep the observations with non-missing values.

Following data set rotation, we first use PROC SORT to sort data set observations in descending order based on the
value of SCORE, and then employ PROC TRANSPOSE to transpose the sorted dataset back to the original
horizontal form. The generated data set SORT_B is identical to data set SORT_A obtained in Method 1A. We then
use the same MACRO %SUMMARY to calculate the required descriptive statistics of test scores and create the
standardized summary text. Next, by following the same Join/Rotate/ODS steps as shown in Method 1A, we can
create the same profiling report as produced in Method 1A.

This method is relatively easier in comparison to Method 1A, and it is applicable to the sorting of both numeric and
character variables. However, it requires a good understanding and utilization of rotate and transpose techniques.

Method 1C: Make Use of new LARGEST function.

The third method illustrated here is to use the new LARGEST function introduced into SAS 9.0 and later versions. It
may be not well known and widely used in SAS programming, but it is very useful to meet some special needs.

We know that the MAX and MIN functions allow us to easily identify the maximum and minimum values from a
selection of variables, however, sometimes we also need to find the second highest value (or lowest) or the k"
highest(or lowest) value of a list of variables. In these cases, we can make use of the new SAS 9 LARGEST function
to do it easily.

SAS Global Forum 2013 Reporting and Information Visualization

As stated in SAS Support website, the basic syntax1 is:

“Syntax: LARGEST (k, value-1<, value-2 ...>)

Arguments: k is a numeric constant, variable, or expression that specifies which value to return.
Value specifies the value of a numeric constant, variable, or expression to be processed.

This function returns the k™ largest non-missing value. If k is missing, less than zero, or greater than the number of
values, the result is a missing value and _ERROR_is set to 1. Otherwise, if k is greater than the number of non-
missing values, the result is a missing value but _ERROR _is not setto 1.”

Below is the SAS coding to do the required sort by using the LARGEST function, which will sort and produce the
same data set as in Methods 1A and 1B.

khkkkhkkkhkhkkkkkkhkkkhkxk*x Method 1C: Sort by Use of Largest function. ******************;
data Sort C(drop= T1-T12 J);
set P.test (rename=(Test 1=T1 Test 2=T2 Test 3=T3 Test 4=T4
Test_ 5=T5 Test 6=T6 Test_ 7=T7 Test 8=T8
Test 9=T9 Test 10=T10 Test 11=T11 Test 12=T12)) ;
array Test (12) Test_1 - Test_12;
do J=1 to 12;
Test (J) =largest (J, of T1-T12);
end;
run;
$summary (method=C) ;

As indicated above, using array and the LARGEST function provides a better solution to our needs: the SAS coding
is much more concise and straightforward than that in Method 1A and Method 1B.

Similarly, the SMALLEST function is used to return the k" smallest non-missing value. Actually, we can also employ
SMALLEST function to perform the descending sort, as long as we apply it in the reverse way:

data Sort C(drop= T1-T12 J);
set P.test (rename=(Test 1=T1 Test 2=T2 Test 3=T3 Test 4=T4
Test 5=T5 Test 6=T6 Test 7=T7 Test 8=T8
Test 9=T9 Test 10=T10 Test 11=T11 Test 12=T12)) ;
array Test (12) Test 1 - Test 12;
do J=1 to 12;
Test (J)= smallest (13-J, of T1-T12);
end;
run;

Thus, we can see that these two new SAS functions provide more alternative solutions to our needs and can be very
useful in SAS data analysis.

Method 1D: Make Use of the new SAS feature --- CALL SORTN routine .

Starting from SAS9.2, two very useful new call routines come into use: CALL SORTC and CALL SORTN. They are
useful in sorting a small number of values within a running DATA step. The basic syntax2 is:

CALL SORTC (variable-1<, ..., variable-n>) ;
CALL SORTN (variable-1<, ..., variable-n>) ;

They can be used to sort the values of a list of variables passed to it, for example, the variables specified in the
arguments, or the elements of a defined array3. CALL SORTN is applied for sorting numeric values, while CALL
SORTC for character values (all character variables must be of the same length when using CALL SORTC). Please
note that “the sorts by these two new routines are always done in ascending sequence, however, sorts in descending
sequence can be effectively achieved by specifying the variables in a reverse order®. Thisis a very helpful trick in
using them.

khkkhkkhkkkhkkhkhkkhkhkkhhkkhkhhkkhkkkx*% Method lD: Use Call SortN routine. *********************;
data Sort _D; set P.test;

call sortN(Test 12, Test 11, Test 10, Test 9, Test 8, Test 7, Test 6, Test_ 5,
Test 4, Test 3, Test 2, Test 1);

run;

SAS Global Forum 2013 Reporting and Information Visualization

$summary (method=D) ;

data Sort E;

set P.test;

array Test (12) Test 12- Test 1;
call sortN(of Test(*));

run;

$summary (method=E) ;

As shown above, CALL SORTN routine is applied to sort the scores of 12 tests in a running DATA step. By default,
CALL SORTN will sort the values of the 12 tests into an ascending sequence, therefore the required descending sort
is realized by arranging the 12 variables in a reverse order, from TEST_12 to TEST_1.

The above DATA step produced an identical data set as those in Methods 1A-1C, however, this ingenious approach
by using the new CALL SORT routines provides the simplest method to achieve our goal with the most concise SAS
coding: only one DATA step is needed to do the horizontal sorting, even eliminating the use of array and do-loop.
However, combining using an array with CALL SORTN can produce the same result with much less typing.

PROJECT 2: MONTHLY PURCHASE DATA REPORTING--- HORIZONTAL SORTING OF
BOTH NUMERIC AND CHARACTER VARIABLES.

In this project, the raw cross-sell purchase data as shown below is received in no order and therefore it is very difficult
to read and look up. To produce a better report, we can: 1) arrange the purchase data of each client in the
alphabetical sequence of product names, which will make the information easier to read through or look up for a
specific product; 2) or, present data in the descending sequence of purchased quantities, which will provide insightful
information into customers’ purchase tendency and preferences. This is definitely a much better data presentation
strategy for creating useful customer profiling and customer marketing pictures.

Table 6. Sample Raw Data of A Cross-Sell Campaign

Client ID | Product 1 Qty Product 2 Qty Product 3 Qty Product4 | Qty [Product5 Qty [Product 6 Qty
101 Printer 10 Computer 25 Games 6 TV 3 Software 8
107 TV 17 Software 32 Fax Machine 11
216 Books 53 Clothes 16 Glass Ware 24 Phones 9 vV 2 DVD 38

This kind of horizontal sort and presentation of data is much more challenging than those discussed in Project 1,
because they involve two different kinds of variables. The product name is character in nature, while the purchase
quantity is numeric, and even more important, they are relevant to each other rather than independent of each other:
since each purchase quantity corresponds to a specific product, we can NOT sort and arrange them only on the basis
of one variable, otherwise the purchase data will be messed up totally. Therefore, it is a remaining challenge.

We hereby present and illustrate three different creative methods to achieve this goal by using Bubble Bust, Rotate
and Transpose, and Call Sort routines. Although we use only two kinds of variables (product names and purchase
quantities) to demonstrate for simplicity, however, all the methods are generalizible and applicable to multiple variable
cases.

Method 2A: Bubble Bust Approach.

Similar to the discussion in Method 1A, we can apply the classic Bubble Bust algorithm to horizontally sort the
purchase data again.

*k*kkkkkkkk*kkx* Horizontal Sort in the Ascending Order of Product Namek**kx*kkkkkx*;
data report By product (drop=I J temp P temp Q) ;

set P.purchase;

array P(6) $30 Product 1- Product 6;

array Q(6) OQty 1-Qty 6;

do I=1 to 6;

do J=1 to 6-I;

if not missing(P(J+1)) and P(J) > P(J+1) then do;
*sort product name in ascending order.;

Temp P = P(J);

P(J)= P(J+1);

P(J+1) = Temp_P;

SAS Global Forum 2013 Reporting and Information Visualization

Temp_Q=Q(J) ;
Q(J)= Q(J+1);
Q(J+1) = Temp Q;
end; end; end;
run;

*xkkkxkkkx*Horizontal Sort in the Descending Order of Purchase Quantity**x**;
data report By quantity(drop=I J temp P temp Q) ;

set P.purchase;

array P(6) $30 Product 1- Product 6;

array Q(6) OQty 1-Qty 6;

do I=1 to 6;

do J=1 to 6-I;

if not missing(P(J+1l)) and Q(J) < Q(J+1) then do;

*sort purchase quantity in descending order;

Temp_Q=Q(J) ;
Q(J)= Q(J+1);
Q(J+1) = Temp Q;
Temp P = P(J);
P(J)= P(J+1);
P(J+1) = Temp_ P;
end; end; end;
run;

ER R R R R R R EEEEEEEEEEEE RS S ODS Output to create MS Excel report‘ ********************;
filename Purchase '/file path/P2 Report.xls';

ODS listing close; ODS MSOFFICE2K file=Purchase style= journal;

Title "Overview of Monthly Customer Purchases." ;

proc print data= report by product noobs label;
var Client ID product 1 gty 1 product 2 gty 2 product 3 gty 3
product 4 gty 4 product 5 gty 5 product 6 gty 6 ;

label Product 1 ='Product 1' Qty 1 = 'Purchase Qty'
Product 2 = 'Product 2' Qty 2 = 'Purchase Qty'
Product 3 = 'Product 3' Qty 3 = 'Purchase Qty'
Product 4 = 'Product 4' Qty 4 = 'Purchase Qty'
Product 5 = 'Product 5' Qty 5 = 'Purchase Qty'
Product 6 = 'Product 6' Qty 6 = 'Purchase Qty';

run;

proc print data= report by quantity mnoobs label;
var Client ID product 1 gty 1 product 2 gty 2 product 3 gty 3
product 4 gty 4 product 5 gty 5 product 6 gty 6 ;

label Product 1 ='Product 1' Qty 1 = 'Purchase Qty'
Product 2 = 'Product 2' Qty 2 = 'Purchase Qty'
Product 3 = 'Product 3' Qty 3 = 'Purchase Qty'
Product 4 = 'Product 4' Qty 4 = 'Purchase Qty'

Product 5 = 'Product 5' Qty 5
Product 6 = 'Product 6' Qty 6

'Purchase Qty'
'Purchase Qty';

run;
ODS MSOFFICE2K close;
ODS listing;

As illustrated above, a character array P(6) of 6 elements(length=$30) is defined to hold the values of product names,
and a numeric array Q(6) of 6 elements to hold the values of purchase quantities. Then a do-loop is performed to sort
the data in an ascending sequence of product names by using Bubble Bust approach. Please note the IF-THEN
conditional processing is based on the comparison of product names(character) of each pair of adjacent elements. If
the smaller one is at the right side of the pair, and the right one is not null, then they exchange values with each
other, at the mean time, the values of purchase quantities swap places accordingly. With the execution of all the do-
loop iterations, the data set will eventually get sorted in the ascending order of product names.

SAS Global Forum 2013 Reporting and Information Visualization

Similarly, if we want to sort the data in a descending order of purchase quantities, we apply the Bubble Bust approach
in an opposite way. We perform the IF-THEN conditional processing according to the comparison of purchase
quantities(numeric) of each pair of adjacent elements. If the larger one is at the right side of the pair, and the right one
is not null, then they exchange values with each other, at the mean time, the values of product names swap places
accordingly. Consequently, the data set will be sorted in the descending order of purchase quantities.

Then we use SAS ODS facility and PROC PRINT to output the sorted data to generate the Microsoft Excel report.
The ordering of columns in the Excel report is achieved by arranging them in the desired order in the VAR statement
in PROC PRINT procedure. Also, application of meaningful labels can enhance the Excel report greatly. Below is the
printout of the generated Excel report.

Table 7. Overview of Monthly Customer Purchases: Order By Ascending Product Name.

Client_ID Product 1 | Purchase | Product2 | Purchase Product 3 | Purchase | Product4 | Purchase | Product5 | Purchase | Product6 | Purchase
Qty Qty Qty Qty Qty Qty

101 Computer 25 Games 6 Printer 10 Software 8 TV 3 .

107 Fax Machine 11 Software 32 TV 17 . . .

216 Books 53 Clothes 16 DVD 38 Glass Ware 24 Phones 9 TV 2

Table 8. Overview of Monthly Customer Purchases: Order By Descending Purchase Quantity.

Client_ID Product 1 | Purchase | Product2 | Purchase Product 3 | Purchase | Product4 | Purchase | Product5 | Purchase | Product6 | Purchase
Qty Qty Qty Qty Qty Qty

101 Computer 25 Printer 10 Software 8 Games 6 TV 3 .

107 Software 32 TV 17 Fax Machine 11 . . .

216 Books 53 DVD 38 Glass Ware 24 Clothes 16 Phones 9 TV 2

Method 2B: Rotate and Transpose Approach.

In this method, the original data set is rotated into vertical form by using the character array P(6) for product names
and the numeric array Q(6) for purchase quantities. The rotated values of product names and purchase quantities are
assigned to two new variables PRODUCT and QUANTITY respectively.

Following data set rotation, we first use PROC SORT to sort the transformed data across observations by CLIENT_ID
and PRODUCT, then apply array in DATA step to transpose the sorted data set back to horizontal form. RETAIN
statement is necessary to retain the values across data step iterations, and a counter variable CNT is created by
SUM statement to ensure the correct assignments of variable values into corresponding elements in arrays. These
data manipulations will produce a final data set sorted in the ascending order of product names. In a similar way, we
can also sort it horizontally by descending purchase quantity. Below presents the SAS codes for achieving the goals.

kkkkkkkkkxkkkx**Horizontal Sort in the Ascending Order of Product Name***xx*kxx* k%,
data Rotate (keep=client ID product quantity);
set P.purchase;

array P(6) $30 product 1 - product 6;

array Q(6) Oty 1 - Qty 6;

do I=1 to 6;

product=P (I) ;

quantity=0Q(I) ;

if not missing(product) then output;

end;

run;

proc sort data= Rotate; by Client ID product; run;

data report by product (drop=I CNT product quantity);
set Rotate;

by Client ID product;

array P(6) $30 product 1 - product 6;

array Q(6) Qty 1 - Qty 6;

retain product 1 - product 6 Qty 1 - Qty 6 ;

if first.Client ID then do I=1 to 6;
CNT=0;

call missing(P(I), Q(I));

end;

SAS Global Forum 2013 Reporting and Information Visualization

CNT+1;
P (CNT) =product;
Q(CNT) =quantity;

if last.Client ID then output;
run;

k*kk*k*k*x*k*x*Horizontal Sort in the Descending Order of Purchase Quantity*x*x*kx*%;
proc sort data= Rotate; by Client ID descending quantity; run;

data report by quantity(drop=I CNT product quantity);
set Rotate;

by Client ID descending quantity;

array P(6) $30 product_ 1 - product 6;

array Q(6) OQty 1 - Qty 6;

retain product 1 - product 6 Qty 1 - Qty 6 ;

if first.Client ID then do I=1 to 6;
CNT=0;

call missing(P(I), Q(I));

end;

CNT+1;
P (CNT) =product ;
Q(CNT) =quantity;

if last.Client ID then output;
run;

Please note that, for this transpose requirement, the PROC TRANSPOSE procedure will NOT work due to its
limitations. For this reason, we must use flexible data step array to realize it. The two final data sets
(REPORT_BY_PRODUCT and REPORT_BY_QUANTITY) obtained by above rotate and transpose approaches are
identical to those gained in Method 2A. The next step is to use the same ODS program to create the identical Excel
report, which we will not repeat here.

Method 2C: Make Use of Call SortN/SortC routines.

In addition to approaches discussed in Methods 2A and 2B, we can also utilize the new SAS features CALL
SORTN/SORTC call routines to perform our task. Although this method is much trickier and more complicated
compared to the straightforward Methods 2A and 2B, it can remarkably expand our horizon and skills in SAS
programming, therefore we illustrate and discuss it in details as well.

kkkkkkkkkxk**kx* Method 2C: Make Use of Call SortC/SortN Routines. ***x*kkxkkkkk**,
proc sort data=P.purchase; by Client ID; run;

data concatenation(drop=I Product 1- Product 6 Qty 1-Qty 6);
set P.purchase;

by Client ID;

array P (6) $30 Product 1- Product 6;

array Q(6) Qty 1-Qty 6;

array sort By prod(6) $60 P1l-P6;

array sort By Qty(6) $60 Q1-Q6;

do I=1 to 6;

if not missing(P(I)) then do;

sort By prod(I)= strip(P(I))||"/"]||put(Q(I), 24.);
sort By Qty(I) = put(Q(I), 2z4.)||"/"|| strip(P(I));
end; end;

call sortC(of P1-P6); *sort by product name in ascending order;
call sortC(of Q6-Q1); *sort by purchase quantity in descending order;
run;

10

SAS Global Forum 2013 Reporting and Information Visualization

In this method, we can NOT use CALL SORTC or CALL SORTN routine directly because it can only sort a variable
independently each time when we recall it. However, each purchase quantity is relevantly corresponding to a specific
product, it does not exist independently. After sorting the data by product name with CALL SORTC, the sequence
and position of array elements will change and differ from the original ones. However, as obvious as it is, we must
match the purchase quantity to the specific product that it belongs to, otherwise the purchased data will be messed
up and become useless. This is a big challenge indeed.

One way to accomplish this is to use the text concatenation approach. The creative idea is to concatenate the
product name together with the purchase quantity (Note: purchase quantity must be converted from numeric into
character values in advance).

If we want to sort the data by product name, as shown below, we need to concatenate product name in ahead of the
converted purchase quantity. Then we sort the concatenated text in ascending order by using CALL SORTC routine,
which is equivalent to sort data by product name. After that we can then use SCAN function to retrieve the product
name from purchase quantity, and INPUT function to convert the purchase quantity back to numeric values. In this
way, the purchase quantity always moves together with the product name. Thus the product name and purchase
quantity will match correspondingly to each other in the output data set.

Table 9. Sort Data By Product Name: Concatenating Product Name In Ahead of Purchase Quantity.

Product Qty Concatenated Text Product Qty Concatenated Text Product Qty Concatenated Text

Games 6 Games/0006 Printer 10 Printer/0010 Computer 25 Computer/0025

Similarly, if we want to sort the data by purchase quantity in descending order, we must concatenate the converted
purchase quantity text in ahead of product name, then use CALL SORTC to sort the concatenated text in descending
order, followed by SCAN, INPUT functions to separate purchase quantity from product name, and convert the
quantity into numeric values. Consequently, it leads to the desired sort result.

Table 10. Sort Data By Purchase Quantity: Concatenating Purchase Quantity In Ahead of Product Name.

Product Qty Concatenated Text Product Qty Concatenated Text Product Qty Concatenated Text

Games 6 0006/Games Printer 10 0010/Printer Computer 25 0025/Computer

As shown in the above SAS codes, the first step is to concatenate the corresponding product name and purchase
quantity together. Four arrays P(6) Q(6) SORT_BY_PROD(6) SORT_BY_QTY(6) are therefore defined to hold the
original values and concatenated texts respectively. Then a do-loop is used to do the concatenation, STRIP function
is to remove leading and trailing blanks, and PUT function for numeric-character conversion with Z4. format. Please
note that Zn. format is a new feature in SAS 9, which will pad character text converted from numeric values with
leading zeros. Using this format is better than other ones because the padded leading zeros are more straightforward
than invisible leading blanks. After concatenation, the CALL SORTC routine is recalled to sort the text either by
ascending product name, or by descending purchase quantity. Below is the printout of the generated
CONCATENATION data set.

Table 11. Partial Printout of the Generated CONCATENATION Data Set.

Client_ID P1 P2 P3 P4 P5 P6 Q1 Q2 Q3 Q4 Q5 Q6
101 Computer/0025 [Games/0006 Printer/0010 Software/0008 TV/0003 0025/Computer 0010/Printer 0008/Software 0006/Games 0003/TV
107 Fax Machine/0011 | Software/0032 TV/0017 0032/Software 0017/TV 0011/Fax Machine
216 Books/0053 Clothes/0016 DVD/0038 Glass Ware/0024 Phones/0009 TV/0002 0053/Books 0038/DVD 0024/Glass Ware 0016/Clothes | 0009/Phones 0002/TV

The next step is to use SCAN and INPUT function to separate product name from purchase quantity and convert
purchase quantity into numeric values. Below codes show how to sort data in the descending order of purchase
quantity. Please note slash “/" is defined as a delimiter in the SCAN function.

/******************Sort by Purchase Quantity: descending order_*******************/
data report By quantity(drop=I P1-P6 Q1-Q6);

set concatenation;

array P(6) $30 Product 1- Product 6;

array Q(6) OQty 1-Qty 6;

array sort By prod(6) $60 P1l-P6;

array sort By Qty(6) $60 Q1-Q6;

do I=1 to 6;

P(I)=scan(sort By qty(I), 2, "/");
Q(I)=input(scan(sort By qty(I), 1, "/"), 4.);
end;
run;

1"

SAS Global Forum 2013 Reporting and Information Visualization

However, if we want to sort the data in an ascending order of product name, it requires additional work due to the
missing values of some products. Because missing values are always regarded as the smallest values, thus the
columns with missing values will appear in ahead of columns with non-missing values in the defined array
SORT_BY_PROD(6). The ordering of columns actually appears like:

Table 12. Structure of Data Before Left Alignment.

Client_ID P1 P2 P3 P4 P5 P6 Q1 Q2 Q3 Q4 Q5 Q6
107 Fax Machine Software TV . . . 11 32 17

Therefore, we need move the non-blank values of P4, P5, P6 forward into P1, P2, P3 respectively for left alignment,
and same thing for Q4-Q6 into Q1-Q3 respectively.

[rhFkkkkkkkkkkkkkkkkkk*kGort by Product Name: ascending order.*kkkkkkkkkkkkkkkkkkk** /
data report By product (drop=I J M P1-P6 Q1-Q6 T1-T6);

set concatenation;

array P(6) $30 Product 1- Product 6;

array Q(6) Qty 1-Qty 6;

array sort By prod(6) $60 P1-P6;

array sort By Qty(6) $60 Q1-Q6;

array Temp_ Prod(6) $30 T1-T6;

array Temp Qty(6) _temporary ;

do I=1 to 6;

Temp_ Prod(I)=scan(sort By prod(I), 1, "/");
Temp Qty (I)=input (scan(sort By prod(I), 2, "/"), 4.);
end;

M= Cmiss (of T1-T6);
do J=1 to 6-M;
P(J)=Temp prod (J+M) ;
Q(J) =Temp_Qty (J+M) ;
end;

run;

As illustrated above, to beat this challenge, the great idea is to define two more temporary arrays TEMP_PROD(6)
$30 and TEMP_QTY(6) to hold the sorted and separated values of product names and purchase quantities
respectively, which have been accomplished by the previous Concatenation DATA step. Then we use CMISS
function and one more do-loop to realize it. The CMISS function can count how many missing values present in each
observation, and we already know that the columns with missing values always appear ahead of columns with non-
missing values because the dataset is already horizontally sorted in the ascending sequence of product name.
Therefore we can use the last part of codes(the bolded part) to “move” the columns with non-missing values to the
left, the final result is shown as follows, which is exactly what we pursue toward.

Table 13. Structure of Data After Left Alignment.

Client_ID P1 P2 P3 P4 P5 P6 Q1 Q2 Q3 Q4 Q5 Q6
107 Fax Machine | Software ™V 1 32 17

Therefore, through above approaches, we can sort the purchase data either by product name or by purchase
quantity. This method generates the same datasets(REPORT_BY_PRODUCT and REPORT_BY_QUANTITY) as
those produced by Method 2A and 2B, then we can use the ODS program to create the identical Excel report.

BUSINESS APPLICATION EXAMPLE: RFM ANALYSIS OF RETAIL SALES DATA.

The methods and approaches illustrated above can have important application and uses in business analytics and
business intelligence fields. It can greatly help and improve our work in data analysis, data reporting, customer
profiling and database marketing and so on.

For example, it is very useful for creating insightful report for RFM analysis. RFM represents Recency (How recently
did the customer purchase?), Frequency (How often do they purchase?), and Monetary Value (How much do they
spend?) respectively. RFM analysis can give in-depth insights into customers’ business behavior and attitudes, and
thus provide valuable information for designing strategies for customer marketing. Below example reveals its vital
application. As shown in Appendix, the RFM data set contains the online purchase data of a retail business for each
client at a given time period: Category_1-Category 5, Freq_1-Freq_5, Sales_1-Sales5, Last_Date_1-Last_Date_5
are the product category, frequency, monetary value and last order date of customers’ online purchases, respectively.

12

SAS Global Forum 2013 Reporting and Information Visualization

Unfortunately, these raw data are in no order at all and thus is of little use for business intelligence and customer
marketing. Therefore we need rearrange and present them in the descending sequence of either frequency or
recency or monetary value, which will then provide valuable insights into customer purchase behaviors and
preferences.

To meet this request, we can use any one of the 3 approaches illustrated above to perform the horizontal sort and
reporting. Here we just show Bubble Bust Method as an example to accomplish it.

data RFM_Report;

set P.RFM;

array C(5) $30 Category 1- Category 5;
array R(5) Last Date 1- Last Date_ 5;
array F(5) Freq 1-Freq 5;

array M(5) Sales_1-Sales 5;

do I=1 to 5;

do J=1 to 5-I;

if not missing(C(J+1)) and F(J) < F(J+1l) then do; *sort data in the descending
order of purchase frequency.;

/*1if not missing(C(J+1)) and M(J) < M(J+1) then do;*sort order frequency in
descending order;*/

Temp C=C(J) ;
C(J)= C(J+1);
C(J+1) = Temp_ C;

Temp R=R (J) ;
R(J)= R(J+1);

R(J+1) = R_R;
Temp F = F(J);
F(J)= F(J+1);
F(J+1) = Temp F;
Temp M = M(J) ;
M(J)= M(J+1) ;
M(J+1) = Temp M;
end; end; end;
run;

proc print data=RFM _Report (keep=Client ID category l-category 3 Freq 1l-Freq_ 3)
noobs label;

label Category 1 = "Most Frequent Purchase Category"

Category 2 = "2nd Most Frequent Purchase Category"

Category 3 = "3rd Most Frequent Purchase Category"

Freq l="Purchase Freq." Freq 2 ="Purchase Freq." Freq_ 3="Purchase Freq."
run;

The above program will sort the data in the descending order of purchase frequency, below is the PROC PRINT
output, please note that we only keep the top 3 most frequent purchases. Similarly, we can sort the data in the
descending order of purchase value or last purchase date just by changing the IF---THEN conditional processing(the
commented part) and PROC PRINT labels accordingly, and then we can create insightful customer purchase reports
on the basis of Monetary Value or Recency. Below tables showcase the RFM reports based on the Frequency and
Monetary Value of online purchases.

As we can obviously see from the above tables, these horizontally-sorted RFM analysis reports are very informative
and helpful in understanding customer behaviors. Therefore, it is very useful in business analytics, reporting and
profiling of customer data.

13

SAS Global Forum 2013 Reporting and Information Visualization

Table 14. RFM Analysis of Online Purchases: Purchase Frequency (in descending order).

Client Most Frequent Purchase 2" Most Frequent Purchase 3" Most Frequent Purchase
ID Purchase Category Freq. Purchase Category Freq. Purchase Category Freq.
101 Patio & Garden 25 Auto Accessories 19 Software 17
105 Clothes 26 Office Equipments 22 Jewelry 10
117 Sports 49 Computers 14 Office Equipments 11
126 Clothes 16 Jewelry 9 Computers 7

139 Exercise & Fitness 23 Patio & Garden 20 Appliances 18
203 Household Essentials 35 Exercise & Fitness 22 Jewelry 15

Table 15. RFM Analysis of Online Purchases: Purchase Value (in descending order).

Client Most Monetary Purchase 2" Most Monetary Purchase 3™ Most Monetary Purchase
ID Purchase Category Value($) Purchase Category Value($) Purchase Category Value($)
101 Patio & Garden $2,752 Auto Accessories $2,483 Household Essentials $2,387
105 Clothes $1,884 Jewelry $1,464 Office Equipments $1,276
117 Sports $3,568 Auto Accessories $1,297 Office Equipments $932
126 Computers $2,524 Clothes $2,404 Jewelry $1,938
139 Appliances $2,838 Exercise & Fitness $2,726 Sports $2,360
203 Household Essentials $2,774 Clothes $2,377 Exercise & Fitness $1,550
CONCLUSION

As discussed in this paper, horizontal data sorting and insightful reporting is an important and challenging technique

in advanced data analysis and manipulation through SAS programming. Utilization of this technique can significantly
improve our work in customer and business data analytics and reporting, customer profiling and database marketing,
and help to present valuable information and provide competitive insights into customers and businesses. Therefore,
it can have important applications in a wide variety of business analytics and business intelligence fields.

REFERENCES:

' SAS Support Website,
http://support.sas.com/documentation/cdl/en/Irdict/64316/HTML/default/viewer.htm#a002154862.htm

2 SAS Support Website,
http://support.sas.com/documentation/cdl/en/Irdict/64316/HTML/default/viewer.htm#a003106052.htm

3 Phil Mason, “The Most Useful New Parts of SAS® 9”, SAS Forum Conference Proceedings, NESUG 2006.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Justin Jia Amanda Lin

CISR, Customer Marketing Credit Risk Management

CIBC Canada Bell Canada

Email: justin.jia@cibc.com Email: amanda_shan_shan.lin@bell.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

14

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002154862.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a003106052.htm
mailto:justin.jia@cibc.com
mailto:amanda_shan_shan.lin@bell.ca

	2013 Table of Contents

