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ABSTRACT

Although researchers in many fields have long theorized about how the contributions of antecedents to outcomes
might change across time, only recently have statistical tools necessary to examine such relationships become
commonplace. In these situations the flexibility to simultaneously model ever smaller groups of observations both
cross-sectionally (i.e., how the relative contribution of the antecedents differs among individuals) and longitudinally
(i.e., how the relative contribution of the antecedents differs through time) is desirable (Singer, 1998). The SAS®
MIXED proceedure is a relatively new tool which provides this requisite flexibility. In this paper we will present an
extensible, hybrid statistical approach comprised of spline modeling and growth modeling which allows for an
examination of how the relative antecedent contributions to an outcome change through time while simultaneously
controlling for past effects.

INTRODUCTION

Interest in the influence of individual differences when investigating the progression of a quantity over time is
ubiquitous across many research disciplines. For instance, the effects of consumer differences are commonly
investigated in marketing as they relate to product trial, adoption, and use; and patient factors are examined in clinical
studies as they relate to dose response curves. The goal in such situations goes beyond examining influences on the
overall, average response pattern because differences among increasingly minute groups of patterns can provide
additional insight while examining the relationship between antecedent and outcome (Cudeck & Harring, 2007). To
complicate matters, it is often desirable to model change at specific time points (e.g., time varying treatments) under
a non-linear response curve. This makes finding an appropriate polynomial model difficult, and as a result, model
misspecification is common (Jo, Gossett, & Simpson, 2007). However, growth models allow us to circumvent
problems associated with correlated observations when shifting focus to increasingly individual level analyses by
directly modeling the correlations, and spline models allow a more appropriate fit to the data in addition to allowing
change to be modeled at points specified by the researcher (Hurley, Hussey, McKeown, & Addy, 2006; Luke, 2004;
Marsh & Cormier, 2001; Preacher, Wichman, MacCallum, & Briggs, 2008; Smith, 1979). In this paper, we present an
extensible, hybrid statistical approach comprised of spline modeling and growth modeling which allows an
examination of dynamic antecedent-outcome relationships while properly controlling for past effects.

AN EXTENSIBLE EXAMPLE OF GROWTH SPLINE MODELING
DATA REQUIREMENTS

The purpose of the present family of analyses is to examine deviations from established response patterns while
simultaneously controlling for those preceding patterns. Because the focus of this family of analyses is on patterns,
and the simplest pattern is a line between two points, the elemental child of this family consists of two linear trends
and requires three longitudinal observations per subject. The initial, base trend begins with the first observation, and
the other trend begins with the adjacent, second observation. Both trends continue through the remaining
observations from their relative starting points.

Of course, additional longitudinal observations are always desirable because an increased number of observations
allows for the fitting of more complex models. Supplementary observations may also add variance to each trend in
overidentified models and thus avoid fitting issues such as those that prevent full solution estimation (e.g., non-
positive definite hessian matrices). Therefore, this family of analyses is better suited for data sets containing an
increased number of longitudinal observations, one or more covariates, and a response pattern at least nominally
composed of segments (e.g., phases, stages, or steps).

Although data sets which possess the minimally-required attributes for this family of analyses are abundant in private
circles, publically available data sets on which to showcase these techniques are relatively scarce. Therefore, data
from the first author’s dissertation is presently utilized, and a brief background is necessary for an understanding of
the application example.

EXAMPLE DATA SET BACKGROUND

Extant skill acquisition theory posits that both the relative and absolute contributions of abilities to skill acquisition
change through time (Ackerman, 2007), but previous tests of theory inadequately controlled for past acquisition
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(Schuelke, 2010). In order to better test existing theory, participants were trained on a complex and dynamic
computer-based task. In this paper, performance observations from the dissertation are used to model skill
acquisition using three additive, linear acquisition trends. Furthermore, the influence on each trend of a time-invariant,
individual-level ability covariate (i.e., general mental ability) is modeled. The dissertation copy available on ProQuest
contains additional information which is not essential for understanding the current example.

The example in this paper is applied to a person-period data set in which each subject has one record for every
observation period. The data set contains ten observations from each of 131 participants for a total of 1,310 records.

Although there are many ways to code for time when fitting longitudinal models, time is coded as 0, 1, 2, 3. . . in this

paper. Therefore, the intercept estimates the value of the outcome variable, in this case performance score (i.e., skill
attainment), at occasion O (i.e., initial status or origin) while the slopes estimate rate of change in the outcome across
occasions, in this case skill acquisition.

UNCONDITIONAL LINEAR GROWTH MODEL

In order to illustrate our melded method, we begin with a simple two-level model, in which the level-1 model is a linear
individual growth model, and the level-2 model expresses variation in parameters from the growth model as random
effects unrelated to any person-level covariates. By convention, we represent the parameters in the level-1 (i.e.,
within person) model using 1 and the parameters in the level-2 (i.e., between-person) model using . Thus, we may
write the level-1 and level-2 models as:

Yij = moj + my(TIME); + 1
where rj ~ N(0, 0°)
and
TMoj = 300 + U
Tyj = B10t Uy

where
() M) G o)
Which can be written in combined form as:

Yij = [Boo + B1o(TIME)j] + [Ugj + Ugj(TIME); + ri]

This multilevel model is expressed as the sum of two parts: a fixed part, which contains two fixed effects (for the
intercept Bgp and for the slope 31 of TIME) and a random part, which contains three random effects (for the intercept
Uogj, the slope ug; of TIME, and the within person residual rj). The choice of this formulation treats both the intercept
and slope 35 as random effects, and there are no level-2 covariates. This model can be fit with PROC MIXED via the
following code:

proc mixed noclprint covtest;

class id;

model y = time/solution ddfm=bw notest;
random intercept time/subject=id type=un;

In this code the CLASS variable on the RANDOM statement indicates that when the random effects are specified, we
want to allow both intercepts (i.e., Bo0) and slopes (i.e., R1g) to vary across individuals. By using the SUBJECT=ID and
TYPE=UN commands, we are requesting estimates of the inter-individual variance in intercepts (i.e., 7yy) as well as
slopes (i.e., 711) in addition to the covariance between intercepts and slopes (i.e., 749, which equals 7y; because of
symmetry).

The MODEL statement indicates what type of growth model is to be fit. In the current model we use unconditional
linear growth, but in the next model we will attempt to predict inter-individual differences in this growth. In our third
model we build upon these two progressive models by breaking the linear growth into additive splines across time not
only to find a better fitting model, but more so because such parameterization allows us to examine changes in the
contributions of an antecedent to an outcome across time while properly controlling for past contributions.

Iteration History

Iteration Evaluations —2 Res Log Like Criterion
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0 1 23449 .26971685
1 3 22176.47983628 0.00000019
2 1 22176.47791494 0.00000000
Convergence criteria met.
Covariance Parameter Estimates
Standard z
Cov Parm Subject Estimate Error Value Pr z
UN(1,1) id 1516408 229708 6.60 <.0001
UN(2,1) id 99599 16566 6.01 <.0001
UN(2,2) id 6085.53 2257.03 2.70 0.0035
Residual 960634 41965 22.89 <.0001
Fit Statistics
—2 Res Log Likelihood 22176.5
AIC (smaller is better) 22184.5
AICC (smaller is better) 22184.5
BIC (smaller is better) 22196.0
Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
3 1272.79 <.0001
Solution for Fixed Effects
Standard
Effect Estimate Error DF t Value Pr > |t]
Intercept —-208.05 118.78 130 -1.75 0.0822
time 472.80 11.6336 1178 40.64 <.0001

Output 1. Output from an Unconditional Linear Growth Model

The first section of output contains information about the iteration history. PROC MIXED converged quickly because
three iterations is only one more than the minimum necessary for an evaluation of convergence. Such rapid
convergence is less likely under more sophisticated models and with data containing missing values or high degrees
of collinearity.

The second section of output contains the covariance parameter estimates (i.e., random effects), which may be
written in matrix form as follows:

(foo fm): (1516408 99599)
99599 6086

SAS also reports o” as being 960,634, and produces accompanying standard errors, and hypothesis tests of the null
hypotheses that these population variances and covariances are 0. All of the tests reject in this case, but we are most
interested in the findings for 7, and 7,;. These results indicate there is variance among individual intercepts, 7,y =
1,516,408, z = 6.60, p <.001, and slopes, 7;; = 6,085.53, z = 2.70, p < .01, which could potentially be explained by
the addition of one or more person-level (i.e., level 2) covariates.

Ti0 T11

Next, the output contains some common goodness of fit statistics. These statistics are helpful for evaluating and
comparing model fit with other nested models. Please consult that SAS manual for details on these statistics.

Finally, the output contains estimates and test information for the fixed effects. Because this is an individual growth
model with no level-2 covariates, the effects can be interpreted in the typical manner. The average person began with
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a score of Bgp = —208.05, t(130) = -1.75, p < .10, and gained R;0= 472.80 points per testing occasion, t(1,178) =
40.64, p < .01.

LINEAR GROWTH MODEL WITH A PERSON-LEVEL COVARIATE

In our second example, we build upon the previous model by adding a standardized person-level covariate in order to
explore whether variation in intercepts or slopes is related to the covariate (i.e., general mental ability).

Yi = moj+ my(TIME); + 1
where rj ~ N(O, 02)
and
1To; = Roo + Bo1(Zcovar) + Ug;
T = B1o + B11(Zcovar) + Uy
where
() ~M[©)- (e o)
Which can be written in combined form as:
Yij = [Boo + Ro1(Zcovar) + B1o(TIME)j + B11(zcovar)(TIME);j] + [ugj + uy(TIME); + rj]

We standardize the covariate by subtracting its mean and dividing by its standard deviation in order to aide in
interpretation of the model. The interpretations of the fixed effects for Boo and 1o are therefore the overall average
intercept and average slope as opposed to the intercept and slope of a case when COVAR is equal to 0.
Standardizing the covariate also allows any effect to be more easily discussed in terms of standard deviations.

This model can be fit with PROC MIXED via the following code.

proc mixed noclprint covtest;

class id;

model y = time scovar time*scovar/solution ddfm=bw notest;
random intercept time/subject=id type=un;

Iteration History

Iteration Evaluations —2 Res Log Like Criterion
0 1 23230.47392614
1 3 22131.31246104 0.00000022
2 1 22131.31029556 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Standard VA
Cov Parm Subject Estimate Error Value Pr z
UN(1,1) id 1237669 195966 6.32 <.0001
UN(2,1) id 79986 14558 5.49 <.0001
UN(2,2) id 4860.83 2116.98 2.30 0.0108
Residual 960634 41966 22.89 <.0001

Fit Statistics

—2 Res Log Likelihood 22131.3
AIC (smaller is better) 22139.3
AICC (smaller is better) 22139.3
BIC (smaller is better) 22150.8

Null Model Likelihood Ratio Test
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DF Chi—Square Pr > ChiSq
3 1099.16 <.0001

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |Jt]
Intercept —-208.05 109.46 129 -1.90 0.0596
time 472 .80 11.2246 1177 42.12 <.0001
scovar 539.27 109.88 129 4.91 <.0001
time*scovar 36.7636 11.2677 1177 3.26 0.0011

Output 2. Output from a Linear Growth Model with a Person-Level Covariate

Although the output of this model is identical in layout to that of the previous model, there are a few similarities and
differences of note within some sections:

First, because we standardized the level-2 covariate, the estimates for the intercept and for time (i.e., Bgo and 340) are
identical to what they were in the unconditional model of the previous section. The interpretation is also similar except
that one must now append “controlling for the covariate”.

Second, this model adds estimates and tests for the covariate and its interaction with time. The estimate of 3o, =
539.27, t(129) = 4.91, p < .001, indicates that individuals who differ by a standard deviation with respect to the
covariate have performance scores which differ by 539.27 points on average. The estimate of 3;1 = 36.76, t(1177) =
3.26, p < .01, indicates that individuals who differ by a standard deviation with respect to the covariate have growth
(i.e., acquisition) rates which differ by 36.76 points.

Third, the estimate for o has remained unchanged at 960,634, z = 22.89, p < .001. But the estimates in the variance-
covariance matrix of the intercepts and slopes have changed to:

(foo f01)=(1237669 79986)
79986 4861

When comparing these new estimates to those from the unconditional model of the previous section, we see that
inclusion of the covariate helped predict both initial status and growth rates because the intercept and slope variance
estimates (i.e., 7o and 7,4, respectively) have decreased. Specifically, inclusion of the covariate reduced intercept
variance by [(1,516,408 — 1,237,669) / 1,516,408 = 0.1838] 18% and the growth rate variance by [(6085.53 —
4860.83) / 6085.53 = 0.2012] 20%. In other words, the covariate accounts for 18% of the explainable variance in
initial status and 20% of the explainable variance in growth rates.

LINEAR GROWTH SPLINE MODEL WITH A PERSON-LEVEL COVARIATE

In our final example, we build upon the previous two examples and break the linear growth parameter (17y) into
additive splines.

Ti0 T11

Yij = moj + my(TIME); + m2D1i(TIME — TIMEy); + m3iD2i(TIME — TIMEy); + rjj
where rj ~ N(0, 0°)
and
1Mo = Boo + Bo1(Zcovar) + U
Tyj = B1o + B11(Zcovar) + Ug;
T2 = 20 + B21(Zcovar) + Uy

173 = B30 + B31(Zcovar) + Us;

where
Upj 0 Too To1 Toz To3
Uy N 0 Tio T11 Tiz T13
Uzj 0/)'\T20 T21 T2z T23
Uzj 0 T30 T31 T32 133
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Which can be written in combined form as:

Yij = [Boo + Boi(zcovar) + Bio(TIME)jj + B11(Zcovar) (TIME); + BooD1i(TIME — TIMEy)jj + 321(Zcovar) D1i( TIME — TIME,);; +
BsoDZi(T”\AE — T|ME2)ij + Bgl(ZCOVAR)Dzi(T|ME — T||V|E2)ij] + [Uoj + Ulj(T||V|E)ij + Uszli(T”\AE — T|ME1)ij + U3jD2i(T|ME —
T|ME2)ij + rij]

In this model Y;j; is the response of an individual at a given time point while mg; is an intercept coded as response at
the origin. The parameter 1Ty represents the initial spline and the underlying linear trend, conditional on the other
splines, throughout the response period. The TIME; and TIME; variables are set times since the origin denoting
spline starting points (e.g., knots). The D variables (i.e., D1 and Dyj) are dummy variables equal to O when the amount
of time from the origin, is less than TIME; and TIME; respectively, and equal to 1 when TIME is greater than i; and i,
respectively. The remaining parameters (17, and 173)) become summative deviations to the underlying trend when
enough time passes according to the D dummy variables.

Individually the splines represent response in a particular segment of time while controlling for past effects, but
collectively they can capture the nature of the overall response trend. When applied to data with a decelerating
logarithmic response pattern as in the current example, the resulting model is akin to that represented in Figure 1.
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Figure 1. A Basic Hypothetical Example of Additive Splines

In the first time period of Figure 1, only the first spline is present, but this effect continues throughout the remaining
time periods. In the second time period, the second spline begins—as per the time-based dummy-coding—in addition
to the continuation of the first spline. This model parameterization method allows for the estimation of antecedent
contributions to outcome at the second time period while controlling for previous contributions from the first time
period. Additionally, the total antecedent contribution during the second time period can be estimated via summation
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of the first two spline parameter values (i.e., calculating overall model slope in the second time period). In the third
time period, the third spline begins in addition to the continuation of the first and second splines. Similar to the second
time period, the antecedent contributions to outcome at the third time period can be estimated while controlling for
previous antecedent contributions from the previous two time periods, or the total antecedent contribution during the
third time period can be estimated via summation of all currently present spline parameter values.

Table 1 presents the coding for the time-based spline variables in the hypothetical example.

Measurement Occasion

Variable 1 2 3 4 Interpretation
Spline 1 0 1 2 3 Underlying linear change (e.g., base acquisition rate)
Spline 2 0 0 1 2 Linear deviation to the underlying linear change (e.g., change from

base acquisition starting in second time period)

Spline 3 0 0 0 1 Deviation to the linear deviation to the underlying linear change
(e.g., change in acquisition rate starting in the third time period)

Table 1. Coding and Interpretation of Hypothetical Spline Variables

Once values for a time variable have been established, values for the spline variables can be arrived at in a DATA
step with code similar to the following:

splinel = time;
spline2 = (time > 1)*(time — 1);
spline3 = (time > 2)*(time — 2);

Returning to our discussion of the linear growth spline model with a person-level covariate, the model can be fit with
PROC MIXED via the following code.

proc mixed noclprint covtest;
class id;
model y = scovar splinel spline2 spline3
scovar*splinel scovar*spline2 scovar*spline3/solution ddfm=bw notest;
random intercept splinel spline2 spline3/subject=id type=un;

Iteration History

Iteration Evaluations —2 Res Log Like Criterion
0 1 22988.96993683
1 1 21016.85219819 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Standard VA
Cov Parm Subject Estimate Error Value Pr z
UN(1,1) id 588779 105807 5.56 <.0001
UN(2,1) id 228106 54421 4.19 <.0001
UN(2,2) id 297471 54852 5.42 <.0001
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UN(3,1) id —264216 69585 -3.80 0.0001
UN(3,2) id —289927 67092 —-4.32 <.0001
UN(3,3) id 331785 91639 3.62 0.0001
UN(4,1) id 34109 37747 0.90 0.3662
UN(4,2) id —44341 27565 -1.61 0.1077
UN(4,3) id 2410.34 40355 0.06 0.9524
UN(4,4) id 51734 28354 1.82 0.0340
Residual 307539 15513 19.82 <.0001
Fit Statistics
—2 Res Log Likelihood 21016.9
AIC (smaller is better) 21038.9
AICC (smaller is better) 21039.1
BIC (smaller is better) 21070.5
Null Model Likelihood Ratio Test
DF Chi—Square Pr > ChiSq
10 1972.12 <.0001
Solution for Fixed Effects
Standard
Effect Estimate Error DF t Value Pr > |t]
Intercept —1598.83 80.2414 129 —-19.93 <.0001
ccovar 402.17 80.5494 129 4.99 <.0001
splinel 1606.33 57.7497 1173 27.82 <.0001
spline2 -1284.13 74.0876 1173 -17.33 <.0001
spline3 —76.3486 40.7541 1173 -1.87 0.0613
scovar*splinel 146 .06 57.9714 1173 2.52 0.0119
scovar*spline2 -118.73 74.3720 1173 -1.60 0.1107
scovar*spline3 —14.8630 40.9105 1173 —-0.36 0.7164

Output 3. Output from a Linear Growth Spline Model with a Person-Level Covariate

Similar to the two preceding models, this model converged quickly. However, there are now many more interesting
random and fixed effects.

As with the estimated random effects of the previous models, we are interested in the covariance parameter
estimates, which can be written in matrix form as follows:

Too o1 Toz To3 588779 228106 —264216 34109
1o T Tz T3 228106 297471 —289927 —44341
fa0 Ta1 Tap T23 | | —264216 —289927 331785 2410.34
fa0 T34 f3p fa3 34109  —44341 2410.34 51734

SAS reports 0% as being 307,539, which is a substantial decrease when compared to the previous models (c.f.,
960,634). However, we must remember that this reduction in variance has mostly been divvied up among the new
linear trends. There appears to be significant variance between people in their initial skill attainment, t,, = 588,779, z
=5.56, p <.001, base skill acquisition, t,,; = 297,471, z=5.42, p < .001, linear deviation from base acquisition, 7,, =
331,785, z = 3.62, p < .001, and final deviation from previously established acquisition, t3; = 51,734, z=19.82, p <
.001, which might all be predicted with additional person-level covariates.

Finally, we are also interested in the fixed effects estimates. The average individual has an initial skill attainment
score of Rgp = —-1598.83, t(129) = -19.93, p < .001, and starts acquiring skill at a rate of 310 = 1606.33, t(1173) =
27.82, p < .001, per testing occasion. The average individual then experiences an acquisition deceleration of B0 = —
1284.13, t(1173) = -17.33, p < .001, per testing occasion and then another possible deceleration of B3 = —76.35,
t(1173) = -1.87, p < .10. With respect to the covariate, individuals who differ by a standard deviation in general
mental ability have performance scores which differ by 3o = 402.17, t(129) = 4.99, p < .001, points on average and
have initial skill acquisition rates which differ by 3;; = 146.06, t(1173) = 2.52, p < .05, points on average. However,
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general mental ability appears to have little effect on later acquisition decelerations, R, = -118.73, t(1173) = -1.60, p
=.11, and R33; = —14.86, t(1173) = -0.36, p < .72. Note, although not done so here, the covariate-spline estimates can
be statistically compared via CONTRAST statements, and an acquisition rate (i.e., model tangent) can be estimated
for any desired time point by adding all previous acquisiton rates (i.e., splines) together in an ESTIMATE statement.

CONCLUSION

As we have demonstrated, the combination of growth modeling and spline modeling is a powerful statistical technique
for the investigation of dynamic antecedent-outcome relationships which is easily implemented in PROC MIXED. This
parameterization method allows for the comparison of correctly specified and controlled for antecedent contributions
to outcome both within and across time periods and is easily extensible in that can be extended to many other, more
complicated situations including additional time periods with many antecedents. Furthermore, the splines themselves
can be specified to be more sophisticated than simple linear trends, and other overall trends are easily
accommodated. In short, the possibilities are endless.
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