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ABSTRACT 
Although researchers in many fields have long theorized about how the contributions of antecedents to outcomes 
might change across time, only recently have statistical tools necessary to examine such relationships become 
commonplace. In these situations the flexibility to simultaneously model ever smaller groups of observations both 
cross-sectionally (i.e., how the relative contribution of the antecedents differs among individuals) and longitudinally 
(i.e., how the relative contribution of the antecedents differs through time) is desirable (Singer, 1998). The SAS® 
MIXED proceedure is a relatively new tool which provides this requisite flexibility. In this paper we will present an 
extensible, hybrid statistical approach comprised of spline modeling and growth modeling which allows for an 
examination of how the relative antecedent contributions to an outcome change through time while simultaneously 
controlling for past effects. 

INTRODUCTION 
Interest in the influence of individual differences when investigating the progression of a quantity over time is 
ubiquitous across many research disciplines. For instance, the effects of consumer differences are commonly 
investigated in marketing as they relate to product trial, adoption, and use; and patient factors are examined in clinical 
studies as they relate to dose response curves. The goal in such situations goes beyond examining influences on the 
overall, average response pattern because differences among increasingly minute groups of patterns can provide 
additional insight while examining the relationship between antecedent and outcome (Cudeck & Harring, 2007). To 
complicate matters, it is often desirable to model change at specific time points (e.g., time varying treatments) under 
a non-linear response curve. This makes finding an appropriate polynomial model difficult, and as a result, model 
misspecification is common (Jo, Gossett, & Simpson, 2007). However, growth models allow us to circumvent 
problems associated with correlated observations when shifting focus to increasingly individual level analyses by 
directly modeling the correlations, and spline models allow a more appropriate fit to the data in addition to allowing 
change to be modeled at points specified by the researcher (Hurley, Hussey, McKeown, & Addy, 2006; Luke, 2004; 
Marsh & Cormier, 2001; Preacher, Wichman, MacCallum, & Briggs, 2008; Smith, 1979). In this paper, we present an 
extensible, hybrid statistical approach comprised of spline modeling and growth modeling which allows an 
examination of dynamic antecedent-outcome relationships while properly controlling for past effects. 

AN EXTENSIBLE EXAMPLE OF GROWTH SPLINE MODELING 
DATA REQUIREMENTS 
The purpose of the present family of analyses is to examine deviations from established response patterns while 
simultaneously controlling for those preceding patterns. Because the focus of this family of analyses is on patterns, 
and the simplest pattern is a line between two points, the elemental child of this family consists of two linear trends 
and requires three longitudinal observations per subject. The initial, base trend begins with the first observation, and 
the other trend begins with the adjacent, second observation. Both trends continue through the remaining 
observations from their relative starting points. 

Of course, additional longitudinal observations are always desirable because an increased number of observations 
allows for the fitting of more complex models. Supplementary observations may also add variance to each trend in 
overidentified models and thus avoid fitting issues such as those that prevent full solution estimation (e.g., non-
positive definite hessian matrices). Therefore, this family of analyses is better suited for data sets containing an 
increased number of longitudinal observations, one or more covariates, and a response pattern at least nominally 
composed of segments (e.g., phases, stages, or steps). 

Although data sets which possess the minimally-required attributes for this family of analyses are abundant in private 
circles, publically available data sets on which to showcase these techniques are relatively scarce. Therefore, data 
from the first author’s dissertation is presently utilized, and a brief background is necessary for an understanding of 
the application example. 

EXAMPLE DATA SET BACKGROUND 
Extant skill acquisition theory posits that both the relative and absolute contributions of abilities to skill acquisition 
change through time (Ackerman, 2007), but previous tests of theory inadequately controlled for past acquisition 
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(Schuelke, 2010). In order to better test existing theory, participants were trained on a complex and dynamic 
computer-based task. In this paper, performance observations from the dissertation are used to model skill 
acquisition using three additive, linear acquisition trends. Furthermore, the influence on each trend of a time-invariant, 
individual-level ability covariate (i.e., general mental ability) is modeled. The dissertation copy available on ProQuest 
contains additional information which is not essential for understanding the current example. 

The example in this paper is applied to a person-period data set in which each subject has one record for every 
observation period. The data set contains ten observations from each of 131 participants for a total of 1,310 records. 

Although there are many ways to code for time when fitting longitudinal models, time is coded as 0, 1, 2, 3. . . in this 
paper. Therefore, the intercept estimates the value of the outcome variable, in this case performance score (i.e., skill 
attainment), at occasion 0 (i.e., initial status or origin) while the slopes estimate rate of change in the outcome across 
occasions, in this case skill acquisition. 

UNCONDITIONAL LINEAR GROWTH MODEL 
In order to illustrate our melded method, we begin with a simple two-level model, in which the level-1 model is a linear 
individual growth model, and the level-2 model expresses variation in parameters from the growth model as random 
effects unrelated to any person-level covariates. By convention, we represent the parameters in the level-1 (i.e., 
within person) model using π and the parameters in the level-2 (i.e., between-person) model using ß. Thus, we may 
write the level-1 and level-2 models as: 

Yij = π0j + π1j(TIME)ij + rij 

where rij ~ N(0, σ2) 

and 

π0j = ß00 + u0j 

π1j = ß10+ u1j 

where 

ቀ
଴௝ݑ
ܰ~ଵ௝ቁݑ ቂቀ

0
0
ቁ , ቀ

߬଴଴ ߬଴ଵ
߬ଵ଴ ߬ଵଵ

ቁቃ 

Which can be written in combined form as: 

Yij = [ß00 + ß10(TIME)ij] + [u0j + u1j(TIME)ij + rij] 

This multilevel model is expressed as the sum of two parts: a fixed part, which contains two fixed effects (for the 
intercept ß00 and for the slope ß10 of TIME) and a random part, which contains three random effects (for the intercept 
u0j, the slope u1j of TIME, and the within person residual rij). The choice of this formulation treats both the intercept π0j 
and slope π1j as random effects, and there are no level-2 covariates. This model can be fit with PROC MIXED via the 
following code: 

proc mixed noclprint covtest; 
class id; 
model y = time/solution ddfm=bw notest; 
random intercept time/subject=id type=un; 

 
In this code the CLASS variable on the RANDOM statement indicates that when the random effects are specified, we 
want to allow both intercepts (i.e., ß00) and slopes (i.e., ß10) to vary across individuals. By using the SUBJECT=ID and 
TYPE=UN commands, we are requesting estimates of the inter-individual variance in intercepts (i.e., ߬଴଴ሻ as well as 
slopes (i. e. , ߬ଵଵሻ in addition to the covariance between intercepts and slopes (i.e., ߬ଵ଴, which equals ߬଴ଵ because of 
symmetry). 

The MODEL statement indicates what type of growth model is to be fit. In the current model we use unconditional 
linear growth, but in the next model we will attempt to predict inter-individual differences in this growth. In our third 
model we build upon these two progressive models by breaking the linear growth into additive splines across time not 
only to find a better fitting model, but more so because such parameterization allows us to examine changes in the 
contributions of an antecedent to an outcome across time while properly controlling for past contributions. 

 

 
                                Iteration History 
 
           Iteration    Evaluations    –2 Res Log Like       Criterion 
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                   0              1     23449.26971685 
                   1              3     22176.47983628      0.00000019 
                   2              1     22176.47791494      0.00000000 
 
 
                            Convergence criteria met. 
 
                          Covariance Parameter Estimates 
 
                                            Standard         Z 
        Cov Parm     Subject    Estimate       Error     Value        Pr Z 
 
        UN(1,1)      id          1516408      229708      6.60      <.0001 
        UN(2,1)      id            99599       16566      6.01      <.0001 
        UN(2,2)      id          6085.53     2257.03      2.70      0.0035 
        Residual                  960634       41965     22.89      <.0001 
 
                                 Fit Statistics 
  
                      –2 Res Log Likelihood         22176.5 
                      AIC (smaller is better)       22184.5 
                      AICC (smaller is better)      22184.5 
                      BIC (smaller is better)       22196.0 
 
                         Null Model Likelihood Ratio Test 
 
                           DF    Chi–Square      Pr > ChiSq 
 
                            3       1272.79          <.0001 
 
                            Solution for Fixed Effects 
 
                                  Standard 
         Effect       Estimate       Error      DF    t Value    Pr > |t| 
 
         Intercept     –208.05      118.78     130      –1.75      0.0822 
         time           472.80     11.6336    1178      40.64      <.0001 
 

 

Output 1. Output from an Unconditional Linear Growth Model 

The first section of output contains information about the iteration history. PROC MIXED converged quickly because 
three iterations is only one more than the minimum necessary for an evaluation of convergence. Such rapid 
convergence is less likely under more sophisticated models and with data containing missing values or high degrees 
of collinearity. 

The second section of output contains the covariance parameter estimates (i.e., random effects), which may be 
written in matrix form as follows: 

൬
߬̂଴଴ ߬̂଴ଵ
߬̂ଵ଴ ߬̂ଵଵ

൰ ൌ ቀ1516408 99599
99599 6086

ቁ 

SAS also reports σ2 as being 960,634, and produces accompanying standard errors, and hypothesis tests of the null 
hypotheses that these population variances and covariances are 0. All of the tests reject in this case, but we are most 
interested in the findings for ߬଴଴ and ߬ଵଵ. These results indicate there is variance among individual intercepts, ߬଴଴ = 
1,516,408, z = 6.60, p < .001, and slopes, ߬ଵଵ = 6,085.53, z = 2.70, p < .01, which could potentially be explained by 
the addition of one or more person-level (i.e., level 2) covariates. 

Next, the output contains some common goodness of fit statistics. These statistics are helpful for evaluating and 
comparing model fit with other nested models. Please consult that SAS manual for details on these statistics. 

Finally, the output contains estimates and test information for the fixed effects. Because this is an individual growth 
model with no level-2 covariates, the effects can be interpreted in the typical manner. The average person began with 

Poster and Video PresentationsSAS Global Forum 2013

 
 



 

4 

a score of ß00 = –208.05, t(130) = –1.75, p < .10, and gained ß10 = 472.80 points per testing occasion, t(1,178) = 
40.64, p < .01. 

LINEAR GROWTH MODEL WITH A PERSON-LEVEL COVARIATE 
In our second example, we build upon the previous model by adding a standardized person-level covariate in order to 
explore whether variation in intercepts or slopes is related to the covariate (i.e., general mental ability). 

Yij = π0j + π1j(TIME)ij + rij 

where rij ~ N(0, σ2) 

and 

π0j = ß00 + ß01(zCOVAR) + u0j 

π1j = ß10 + ß11(zCOVAR) + u1j 

where 

ቀ
଴௝ݑ
ܰ~ଵ௝ቁݑ ቂቀ

0
0
ቁ , ቀ

߬଴଴ ߬଴ଵ
߬ଵ଴ ߬ଵଵ

ቁቃ 

Which can be written in combined form as: 

Yij = [ß00 + ß01(zCOVAR) + ß10(TIME)ij + ß11(zCOVAR)(TIME)ij] + [u0j + u1j(TIME)ij + rij] 

We standardize the covariate by subtracting its mean and dividing by its standard deviation in order to aide in 
interpretation of the model. The interpretations of the fixed effects for ß00 and ß10 are therefore the overall average 
intercept and average slope as opposed to the intercept and slope of a case when COVAR is equal to 0. 
Standardizing the covariate also allows any effect to be more easily discussed in terms of standard deviations. 

This model can be fit with PROC MIXED via the following code. 

proc mixed noclprint covtest; 
class id; 
model y = time scovar time*scovar/solution ddfm=bw notest; 
random intercept time/subject=id type=un; 
 
 
                                Iteration History 
 
           Iteration    Evaluations    –2 Res Log Like       Criterion 
 
                   0              1     23230.47392614 
                   1              3     22131.31246104      0.00000022 
                   2              1     22131.31029556      0.00000000 
 
                            Convergence criteria met. 
 
                          Covariance Parameter Estimates 
 
                                            Standard         Z 
        Cov Parm     Subject    Estimate       Error     Value        Pr Z 
 
        UN(1,1)      id          1237669      195966      6.32      <.0001 
        UN(2,1)      id            79986       14558      5.49      <.0001 
        UN(2,2)      id          4860.83     2116.98      2.30      0.0108 
        Residual                  960634       41966     22.89      <.0001 
 
                                  Fit Statistics 
 
                      –2 Res Log Likelihood         22131.3 
                      AIC (smaller is better)       22139.3 
                      AICC (smaller is better)      22139.3 
                      BIC (smaller is better)       22150.8 
 
                         Null Model Likelihood Ratio Test 
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                           DF    Chi–Square      Pr > ChiSq 
 
                            3       1099.16          <.0001 
 
                            Solution for Fixed Effects 
 
                                   Standard 
        Effect         Estimate       Error      DF    t Value    Pr > |t| 
 
        Intercept       –208.05      109.46     129      –1.90      0.0596 
        time             472.80     11.2246    1177      42.12      <.0001 
        scovar           539.27      109.88     129       4.91      <.0001 
        time*scovar     36.7636     11.2677    1177       3.26      0.0011 
 

 

Output 2. Output from a Linear Growth Model with a Person-Level Covariate 

Although the output of this model is identical in layout to that of the previous model, there are a few similarities and 
differences of note within some sections: 

First, because we standardized the level-2 covariate, the estimates for the intercept and for time (i.e., ß00 and ß10) are 
identical to what they were in the unconditional model of the previous section. The interpretation is also similar except 
that one must now append “controlling for the covariate”. 

Second, this model adds estimates and tests for the covariate and its interaction with time. The estimate of ß01 = 
539.27, t(129) = 4.91, p < .001, indicates that individuals who differ by a standard deviation with respect to the 
covariate have performance scores which differ by 539.27 points on average. The estimate of ß11 = 36.76, t(1177) = 
3.26, p < .01, indicates that individuals who differ by a standard deviation with respect to the covariate have growth 
(i.e., acquisition) rates which differ by 36.76 points. 

Third, the estimate for σ2 has remained unchanged at 960,634, z = 22.89, p < .001. But the estimates in the variance-
covariance matrix of the intercepts and slopes have changed to: 

൬
߬̂଴଴ ߬̂଴ଵ
߬̂ଵ଴ ߬̂ଵଵ

൰ ൌ ቀ1237669 79986
79986 4861

ቁ 

When comparing these new estimates to those from the unconditional model of the previous section, we see that 
inclusion of the covariate helped predict both initial status and growth rates because the intercept and slope variance 
estimates (i.e., ߬଴଴	and	߬ଵଵ, respectively) have decreased. Specifically, inclusion of the covariate reduced intercept 
variance by [(1,516,408 – 1,237,669) / 1,516,408 = 0.1838] 18% and the growth rate variance by [(6085.53 – 
4860.83) / 6085.53 = 0.2012] 20%. In other words, the covariate accounts for 18% of the explainable variance in 
initial status and 20% of the explainable variance in growth rates. 

LINEAR GROWTH SPLINE MODEL WITH A PERSON-LEVEL COVARIATE 
In our final example, we build upon the previous two examples and break the linear growth parameter (π1j) into 
additive splines. 

Yij = π0j + π1j(TIME)ij + π2jD1i(TIME – TIME1)ij + π3jD2i(TIME – TIME2)ij +  rij 

where rij ~ N(0, σ2) 

and 

π0j = ß00 + ß01(zCOVAR) + u0j 

π1j = ß10 + ß11(zCOVARሻ + u1j 

π2j = ß20 + ß21(zCOVAR) + u2j 

π3j = ß30 + ß31(zCOVAR) + u3j 

where 

൮

଴௝ݑ
ଵ௝ݑ
ଶ௝ݑ
ଷ௝ݑ

൲~ܰ ൦൮

0
0
0
0

൲ ,൮

߬଴଴ ߬଴ଵ ߬଴ଶ ߬଴ଷ
߬ଵ଴ ߬ଵଵ ߬ଵଶ ߬ଵଷ
߬ଶ଴ ߬ଶଵ ߬ଶଶ ߬ଶଷ
߬ଷ଴ ߬ଷଵ ߬ଷଶ ߬ଷଷ

൲൪ 
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Which can be written in combined form as: 

Yij = [ß00 + ß01(zCOVAR) + ß10(TIME)ij + ß11(zCOVARሻ(TIME)ij + ß20D1i(TIME – TIME1)ij + ß21(zCOVAR)D1i(TIME – TIME1)ij + 
ß30D2i(TIME – TIME2)ij + ß31(zCOVAR)D2i(TIME – TIME2)ij] +  [u0j + u1j(TIME)ij + u2jD1i(TIME – TIME1)ij + u3jD2i(TIME – 

TIME2)ij + rij] 

In this model Yij is the response of an individual at a given time point while π0j is an intercept coded as response at 
the origin. The parameter π1j represents the initial spline and the underlying linear trend, conditional on the other 
splines, throughout the response period. The TIME1 and TIME2 variables are set times since the origin denoting 
spline starting points (e.g., knots). The D variables (i.e., D1i and D2i) are dummy variables equal to 0 when the amount 
of time from the origin, is less than TIME1 and TIME2 respectively, and equal to 1 when TIME is greater than i1 and i2 
respectively. The remaining parameters (π2j and π3j) become summative deviations to the underlying trend when 
enough time passes according to the D dummy variables. 

Individually the splines represent response in a particular segment of time while controlling for past effects, but 
collectively they can capture the nature of the overall response trend. When applied to data with a decelerating 
logarithmic response pattern as in the current example, the resulting model is akin to that represented in Figure 1. 

 

 
Figure 1. A Basic Hypothetical Example of Additive Splines 

In the first time period of Figure 1, only the first spline is present, but this effect continues throughout the remaining 
time periods. In the second time period, the second spline begins—as per the time-based dummy-coding—in addition 
to the continuation of the first spline. This model parameterization method allows for the estimation of antecedent 
contributions to outcome at the second time period while controlling for previous contributions from the first time 
period. Additionally, the total antecedent contribution during the second time period can be estimated via summation 
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of the first two spline parameter values (i.e., calculating overall model slope in the second time period). In the third 
time period, the third spline begins in addition to the continuation of the first and second splines. Similar to the second 
time period, the antecedent contributions to outcome at the third time period can be estimated while controlling for 
previous antecedent contributions from the previous two time periods, or the total antecedent contribution during the 
third time period can be estimated via summation of all currently present spline parameter values. 

Table 1 presents the coding for the time-based spline variables in the hypothetical example. 

 

    

  Measurement Occasion  

Variable  1 2 3 4  Interpretation

       

Spline 1  0 1 2 3  Underlying linear change (e.g., base acquisition rate)  

         

Spline 2  0 0 1 2  Linear deviation to the underlying linear change (e.g., change from 
base acquisition starting in second time period) 

 

         

Spline 3  0 0 0 1  Deviation to the linear deviation to the underlying linear change 
(e.g., change in acquisition rate starting in the third time period) 

 

 

Table 1. Coding and Interpretation of Hypothetical Spline Variables 

Once values for a time variable have been established, values for the spline variables can be arrived at in a DATA 
step with code similar to the following: 

spline1 = time; 
spline2 = (time > 1)*(time – 1); 
spline3 = (time > 2)*(time – 2); 
 

Returning to our discussion of the linear growth spline model with a person-level covariate, the model can be fit with 
PROC MIXED via the following code. 

proc mixed noclprint covtest; 
class id; 
model y = scovar spline1 spline2 spline3 
          scovar*spline1 scovar*spline2 scovar*spline3/solution ddfm=bw notest; 
random intercept spline1 spline2 spline3/subject=id type=un; 
 

 
                                Iteration History 
 
           Iteration    Evaluations    –2 Res Log Like       Criterion 
 
                   0              1     22988.96993683 
                   1              1     21016.85219819      0.00000000 
 
                            Convergence criteria met. 
 
                          Covariance Parameter Estimates 
 
                                            Standard         Z 
        Cov Parm     Subject    Estimate       Error     Value        Pr Z 
 
        UN(1,1)      id           588779      105807      5.56      <.0001 
        UN(2,1)      id           228106       54421      4.19      <.0001 
        UN(2,2)      id           297471       54852      5.42      <.0001 
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        UN(3,1)      id          –264216       69585     –3.80      0.0001 
        UN(3,2)      id          –289927       67092     –4.32      <.0001 
        UN(3,3)      id           331785       91639      3.62      0.0001 
        UN(4,1)      id            34109       37747      0.90      0.3662 
        UN(4,2)      id           –44341       27565     –1.61      0.1077 
        UN(4,3)      id          2410.34       40355      0.06      0.9524 
        UN(4,4)      id            51734       28354      1.82      0.0340 
        Residual                  307539       15513     19.82      <.0001 
 
                                 Fit Statistics 
 
                      –2 Res Log Likelihood         21016.9 
                      AIC (smaller is better)       21038.9 
                      AICC (smaller is better)      21039.1 
                      BIC (smaller is better)       21070.5 
 
                         Null Model Likelihood Ratio Test 
 
                           DF    Chi–Square      Pr > ChiSq 
 
                           10       1972.12          <.0001 
 
                           Solution for Fixed Effects 
 
                                    Standard 
      Effect            Estimate       Error      DF    t Value    Pr > |t| 
 
      Intercept         –1598.83     80.2414     129     –19.93      <.0001 
      ccovar              402.17     80.5494     129       4.99      <.0001 
      spline1            1606.33     57.7497    1173      27.82      <.0001 
      spline2           –1284.13     74.0876    1173     –17.33      <.0001 
      spline3           –76.3486     40.7541    1173      –1.87      0.0613 
      scovar*spline1      146.06     57.9714    1173       2.52      0.0119 
      scovar*spline2     –118.73     74.3720    1173      –1.60      0.1107 
      scovar*spline3    –14.8630     40.9105    1173      –0.36      0.7164 
 

 

Output 3. Output from a Linear Growth Spline Model with a Person-Level Covariate 

Similar to the two preceding models, this model converged quickly. However, there are now many more interesting 
random and fixed effects. 

As with the estimated random effects of the previous models, we are interested in the covariance parameter 
estimates, which can be written in matrix form as follows: 

൮

߬̂଴଴ ߬̂଴ଵ ߬̂଴ଶ ߬̂଴ଷ
߬̂ଵ଴ ߬̂ଵଵ ߬̂ଵଶ ߬̂ଵଷ
߬̂ଶ଴ ߬̂ଶଵ ߬̂ଶଶ ߬̂ଶଷ
߬̂ଷ଴ ߬̂ଷଵ ߬̂ଷଶ ߬̂ଷଷ

൲ ൌ ൮

588779 228106 െ264216 34109
228106 297471 െ289927 െ44341
െ264216 െ289927 331785 2410.34
34109 െ44341 2410.34 51734

൲ 

SAS reports σ2 as being 307,539, which is a substantial decrease when compared to the previous models (c.f., 
960,634). However, we must remember that this reduction in variance has mostly been divvied up among the new 
linear trends. There appears to be significant variance between people in their initial skill attainment, ߬଴଴ = 588,779, z 
= 5.56, p < .001, base skill acquisition, ߬ଵଵ = 297,471, z = 5.42, p < .001, linear deviation from base acquisition, ߬ଶଶ = 
331,785, z = 3.62, p < .001, and final deviation from previously established acquisition, ߬ଷଷ = 51,734, z = 19.82, p < 
.001, which might all be predicted with additional person-level covariates. 

Finally, we are also interested in the fixed effects estimates. The average individual has an initial skill attainment 
score of ß00 = –1598.83, t(129) = –19.93, p < .001, and starts acquiring skill at a rate of ß10 = 1606.33, t(1173) = 
27.82, p < .001, per testing occasion. The average individual then experiences an acquisition deceleration of ß20 = –
1284.13, t(1173) = –17.33, p < .001, per testing occasion and then another possible deceleration of ß30 = –76.35, 
t(1173) = –1.87, p < .10. With respect to the covariate, individuals who differ by a standard deviation in general 
mental ability have performance scores which differ by ß01 = 402.17, t(129) = 4.99, p < .001, points on average and 
have initial skill acquisition rates which differ by ß11 = 146.06, t(1173) = 2.52, p < .05, points on average. However, 
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general mental ability appears to have little effect on later acquisition decelerations, ß21 = –118.73, t(1173) = –1.60, p 
= .11, and ß31 = –14.86, t(1173) = –0.36, p < .72. Note, although not done so here, the covariate-spline estimates can 
be statistically compared via CONTRAST statements, and an acquisition rate (i.e., model tangent) can be estimated 
for any desired time point by adding all previous acquisiton rates (i.e., splines) together in an ESTIMATE statement. 

CONCLUSION 
As we have demonstrated, the combination of growth modeling and spline modeling is a powerful statistical technique 
for the investigation of dynamic antecedent-outcome relationships which is easily implemented in PROC MIXED. This 
parameterization method allows for the comparison of correctly specified and controlled for antecedent contributions 
to outcome both within and across time periods and is easily extensible in that can be extended to many other, more 
complicated situations including additional time periods with many antecedents. Furthermore, the splines themselves 
can be specified to be more sophisticated than simple linear trends, and other overall trends are easily 
accommodated. In short, the possibilities are endless. 
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