
2^n PARTIALLY CONFOUNDED FACTORIAL DESIGN IN 

CONJOINT CHOICE EXPERIMENT 

In this study, 2^n partial confounded factorial designs for CCE will be 

developed to 

1. avoid confounding main effects and lower order interactions with blocks if 

possible 

 

2. to identify choice sets for which no two alternatives in a choice set have 

the same levels of a factor. 

 

The solutions are: 

1. p independent effects must be higher order interaction (higher order > 3) 

 

2. p independent effects must be even order interaction.  

 

Since some of the effects will be confounded with the blocks in confounded 

factorial design, the conjoint choice designs were extended to the use of 

partially confounded factorial designs, which are called as Partially 

Confounded Factorial Conjoint Choice Experiment (PCFCCE) designs. In 

this method, there will be at least two replicates and each replicate does not 

share the same confounded effects. 

 

2^n CONFOUNDED FACTORIAL  

Confounded factorial  is a design technique for arranging a complete factorial 

experiment in block, Where the block size is smaller than the number of 

treatment combinations in a full factorial design.  

•To construct 2^n factorial design confounded in 2^p blocks 

 

•Select p independent effects to be confound with block. 

 

•There will be 2^p – p – 1 other effects that called generalized interactions 

also confounded with blocks. 

Example  

1. To construct 2^8 factorial design confounded 

in 2^3 blocks. 

2. Need to select 3 independent effects to 

confound with block. 

3. There will be 2^3 – 3 – 1 = 4 generalized 

interactions also confounded with block. 

 

Work 

1. 2^8 design (256 treatment combinations) with 

8factors (A, B, C, D, E, F, G & H). 

2. Select effects ABCDEF, DEFG & CDEH to be 

confound with blocks. 

3. 3 effects that selected to be confound with the 

block, can be represented by a linear 

combination. The linear combinations for the 

ABCDEF(L1), DEFG(L2) & CDEH(L3).  

 L1 = x1 + x2 + x3 + x4 + x5 + x6  

 L2 = x4 + x5 + x6 + x7 

 L3 = x3 + x4 + x5 + x8 

 ri = Li (mod 2) 

4. There are 8combinations of possible residues      

(r1, r2, r3): (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), 

(1,0,1), (0,1,1), (1,1,1).  

x1 x2 x3 x4 x5 x6 x7 x8 L1 L2 L3 (r1, r2, r3) 

1 11111111 1 1 1 1 1 1 1 1 6 6 4 (0, 0, 0) 

2 11111110 1 1 1 1 1 1 1 0 6 5 3 (0, 1, 1) 

3 11111101 1 1 1 1 1 1 0 1 6 5 4 (0, 1, 0) 

4 11111100 1 1 1 1 1 1 0 0 6 4 3 (0, 0, 1) 

5 11111011 1 1 1 1 1 0 1 1 5 5 4 (1, 1, 0) 

6 11111010 1 1 1 1 1 0 1 0 5 4 3 (1, 0, 1) 

7 11111001 1 1 1 1 1 0 0 1 5 4 4 (1, 0, 0) 

8 11111000 1 1 1 1 1 0 0 0 5 3 3 (1, 1, 1) 

9 11110111 1 1 1 1 0 1 1 1 5 5 3 (1, 1, 1) 

10 11110110 1 1 1 1 0 1 1 0 5 4 2 (1, 0, 0) 

11 11110101 1 1 1 1 0 1 0 1 5 4 3 (1, 0, 1) 

12 11110100 1 1 1 1 0 1 0 0 5 3 2 (1, 1, 0) 

13 11110011 1 1 1 1 0 0 1 1 4 4 3 (0, 0, 1) 

14 11110010 1 1 1 1 0 0 1 0 4 3 2 (0, 1, 0) 

15 11110001 1 1 1 1 0 0 0 1 4 3 3 (0, 1, 1) 

16 11110000 1 1 1 1 0 0 0 0 4 2 2 (0, 0, 0) 

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

240 1111 0 0 0 0 1 1 1 1 2 4 2 (0, 0, 0) 

241 1110 0 0 0 0 1 1 1 0 2 3 1 (0, 1, 1) 

243 1101 0 0 0 0 1 1 0 1 2 3 2 (0, 1, 0) 

244 1100 0 0 0 0 1 1 0 0 2 2 1 (0, 0, 1) 

245 1011 0 0 0 0 1 0 1 1 1 3 2 (1, 1, 0) 

246 1010 0 0 0 0 1 0 1 0 1 2 1 (1, 0, 1) 

247 1001 0 0 0 0 1 0 0 1 1 2 2 (1, 0, 0) 

248 1000 0 0 0 0 1 0 0 0 1 1 1 (1, 1, 1) 

249 111 0 0 0 0 0 1 1 1 1 3 1 (1, 1, 1) 

250 110 0 0 0 0 0 1 1 0 1 2 0 (1, 0, 0) 

251 101 0 0 0 0 0 1 0 1 1 2 1 (1, 0, 1) 

252 100 0 0 0 0 0 1 0 0 1 1 0 (1, 1, 0) 

253 11 0 0 0 0 0 0 1 1 0 2 1 (0, 0, 1) 

254 10 0 0 0 0 0 0 1 0 0 1 0 (0, 1, 0) 

255 1 0 0 0 0 0 0 0 1 0 1 1 (0, 1, 1) 

256 0 0 0 0 0 0 0 0 0 0 0 0 (0, 0, 0) 

(0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1) 

11111111 11111001 11111101 11111011 11111100 11111010 11111110 11111000 

11110000 11110110 11110010 11110100 11110011 11110101 11110001 11110111 

11101000 11101110 11101010 11101100 11101011 11101101 11101001 11101111 

11100111 11100001 11100101 11100011 11100100 11100010 11100110 11100000 

11011011 11011101 11011001 11011111 11011000 11011110 11011010 11011100 

11010100 11010010 11010110 11010000 11010111 11010001 11010101 11010011 

11001100 11001010 11001110 11001000 11001111 11001001 11001101 11001011 

11000011 11000101 11000001 11000111 11000000 11000110 11000010 11000100 

10111001 10111111 10111011 10111101 10111010 10111100 10111000 10111110 

10110110 10110000 10110100 10110010 10110101 10110011 10110111 10110001 

10101110 10101000 10101100 10101010 10101101 10101011 10101111 10101001 

10100001 10100111 10100011 10100101 10100010 10100100 10100000 10100110 

10011101 10011011 10011111 10011001 10011110 10011000 10011100 10011010 

10010010 10010100 10010000 10010110 10010001 10010111 10010011 10010101 

10001010 10001100 10001000 10001110 10001001 10001111 10001011 10001101 

10000101 10000011 10000111 10000001 10000110 10000000 10000100 10000010 

1111010 1111100 1111000 1111110 1111001 1111111 1111011 1111101 

1110101 1110011 1110111 1110001 1110110 1110000 1110100 1110010 

1101101 1101011 1101111 1101001 1101110 1101000 1101100 1101010 

1100010 1100100 1100000 1100110 1100001 1100111 1100011 1100101 

1011110 1011000 1011100 1011010 1011101 1011011 1011111 1011001 

1010001 1010111 1010011 1010101 1010010 1010100 1010000 1010110 

1001001 1001111 1001011 1001101 1001010 1001100 1001000 1001110 

1000110 1000000 1000100 1000010 1000101 1000011 1000111 1000001 

111100 111010 111110 111000 111111 111001 111101 111011 

110011 110101 110001 110111 110000 110110 110010 110100 

101011 101101 101001 101111 101000 101110 101010 101100 

100100 100010 100110 100000 100111 100001 100101 100011 

11000 11110 11010 11100 11011 11101 11001 11111 

10111 10001 10101 10011 10100 10010 10110 10000 

1111 1001 1101 1011 1100 1010 1110 1000 

0 110 10 100 11 101 1 111 

(0, 0, 0) 
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Application of using 2^n partial confounded  

factorial design used in the conjoint choice  

experiment was constructed to study consumer’s 

preferences about Tablet for University Students. 

 

In this study, eight attributes of tablet with two level 

each were used to evaluate consumer’s purchasing 

decisions toward tablet by using PCFCCE. The 

associated attributes were price (factor A), 3G 

(factor B), warranty (factor C), internal memory 

(factor D), flexibility (factor E), life of battery (factor 

F), quality of camera (factor G) and Ram (factor  

H). 
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Survey form 

16 Option A Option B Option C 

Price  1800-2500 1500-2200   

3G N Y Neither 

Warrantee 1year 2year Option A 

Memory 32GB 64GB or  

Flexible N Y Option B 

Battery 10hour 8hour   

Camera 3-Megapixel 5-Megapixel   

RAM 1GB 500MB   

Choice       

Become one set of 

questionnaire .  

8 blocks, there will be 8 sets 

of questionnaire. In PCFCCE, 

there will be replicates and 

each replicate does not share 

the same confounded effects. 

Which will have 16 sets of 

questionnaire. 

Independent  effect vs  

generalized interaction 

 

 
Selected effects 

ABCDEF [1] 

CDEFGH [2] 

ADFH [3] 

Generalized interaction 

ABGH(CDEF)^2=ABGH [1]*[2]=[4] 

BCEH(AD)^2=BCEH [1]*[3]=[5] 

ACEG(DF)^2=ACEG [2]*[3]=[6] 

BDFG(ADEFH)^2=BDFG [1]*[2]*[3]=[7] 

Selected effects 

ABCDEF 

CDEFGH 

ADFH 

Generalized interaction 

ABGH 

BCEH 

ACEG 

BDFG 

ANALYSIS FOR PARTIALLY CONFOUNDED FACTORIAL  

CONJOINT CHOICE EXPERIMENTS 

 
Conjoint choice experiment start with the assumption that an individual has 

utility ui  for a choice alternative i which is divided into two component, a 

deterministic component (vi) and random component (εi)  

 

 

 

The random component are assumed to be independent with a Gumbel 

distribution, the multinomial logit model follows. It can be shown that for an 

alternative i from a set of J alternative, the probability that alternative i is chosen 

is: 

  

 

 

 

 

 

The form of the PCFCCE models is 

 

 

 

 

 

The density function can be modified 

 

The log likelihood is nonlinear and hence the Newton-Raphson method is needed to estimate the 

parameters. 

 

 

 

 

To illustrate the iterative procedure of Newton-Raphson as it applies to the multinomial logistic 

regression model, we need an expression for the first and second derivative of β. 

Example 

Survey form Survey form Survey form 

3 Option A Option B Option C 19 Option A Option B Option C 35 Option A Option B Option C 

Price  1800-2500 1500-2200   Price  1800-2500 1500-2200   Price  1800-2500 1500-2200   

3G Y N Neither 3G Y N Neither 3G Y N Neither 

Warrantee 2year 1year Option A Warrantee 2year 1year Option A Warrantee 2year 1year Option A 

Memory 32GB 64GB or  Memory 32GB 64GB or  Memory 32GB 64GB or  

Flexible Y N Option B Flexible Y N Option B Flexible Y N Option B 

Battery 8hour 10hour   Battery 10hour 8hour   Battery 8hour 10hour   

Camera 3-Megapixel 5-Megapixel   Camera 5-Megapixel 3-Megapixel   Camera 5-Megapixel 3-Megapixel   

RAM 500MB 1GB   RAM 500MB 1GB   RAM 500MB 1GB   

Choice √     Choice   √   Choice     √ 

The PCFCCE Newton-Raphson was develop by PROC IML. The estimates of 

the elements of β, tratio and p-value can obtain in PCFCCE Newton-

Raphson.The SAS code for the PROC IML is provided as the following. 

Input data 

data_x as design matrix for all the Option B  

data_y as number of responds follow by option A, option B and 

option C follow by the choice set. 

number_of_responde_in_each_block as number of responder in 

each block 

r as number of replicate (partially confounded factorial) 

p as number of confounded factorial 

========================================================

=========================== 

proc iml; 

data_x={ 

 1 1 1 1 -1 -1 1 -1, 

 1 1 1 1 1 1 1 1, 

 ..... 

 1 -1 -1 1 1 1 -1 1}; 

data_y={ 

1 25 0 10 14 2 7 16 3 13 11 2 9 16 1 11 11 4 17 8 1 20 4 2 

10 9 7 5 19 2 8 15 3 5 17 4 10 13 3 12 12 2 3 22 1 13 9 4 

..... 

22 2 3 9 8 10 6 7 14 2 18 7 26 1 0 8 8 11 10 11 6 7 17 3}; 

number_of_responde_in_each_block= {26 27 24 25 25 22 25 26 26 27 

27 21 28 25 25 27}; 

r=2; 

p=3; 

number_of_fix_effects=ncol(data_x); 

number_of_choice_set=2**(ncol(data_x)-p-1); 

number_of_option=ncol(data_y)/nrow(data_x); 

 

Design Matrix 

/* Design X matrix: Given all the Option B design matrix associated 

with the main effects and first order interaction effects*/ 

data_x=data_x@{-1, 1}; 

 

/* Include first order Interaction effects (x12,x13,...x18,..x21..x78)*/ 

do i=1 to number_of_fix_effects; 

    do j=i+1 to number_of_fix_effects; 

        i_x=data_x[,i]#data_x[,j]; 

        if j=2 then 

            IX=i_x; 

        Else 

            IX=IX||i_x; 

    end; 

end; 

data_x=j(nrow(data_x),1,1)||data_x||IX; 

 

/* Follow the "number_of_responde_in_each_block" design the X 

matrix*/ 

do i=0 to number_of_choice_set-1; 

    do j=0 to number_of_choice_set-1; 

        xi=j(number_of_responde_in_each_block[i+1],1,1)@ 

             data_x[(number_of_choice_set)*(number_of_option-1)*i+ 

             (number_of_option-1)*j+1:(number_of_choice_set)* 

             (number_of_option-1)*i+(number_of_option-1)*j+2,]; 

        if i=0 && j=0 then 

            X=xi; 

        else 

            X=t(t(X)||t(xi)); 

    end; 

end; 

 

/* Assume Beta = 0*/ 

beta=j(ncol(data_x),1,0); 

wc=0||number_of_responde_in_each_block; 

/* Design Y matrix, responded in multinomial ((1,0), (0,1) or (0,0))*/ 

do i=0 to nrow(data_x)/(number_of_option-1)-1; 

    do j=0 to number_of_option-2; 

        if data_y[number_of_option*i+j+1]^=0 then 

            do; 

                a=j(number_of_option-1,1,0); 

                a[j+1]=1; 

                yi=j(data_y[number_of_option*i+j+1],1,1)@a; 

                if i=0 & j=0 then 

                    Y=yi; 

                else 

                    Y=t(t(Y)||t(yi)); 

             end; 

    end; 

    if data_y[number_of_option*i+3]^=0 then 

        do; 

            a=j(number_of_option-1,1,0); 

            yi=j(data_y[number_of_option*i+3],1,1)@a; 

            Y=t(t(Y)||t(yi)); 

        end; 

end; 

 

PCFCCE Newton-Raphson 

/* Use Newton-Raphson to estimate the fixed effect coefficients*/ 

do con =1 to 5; * when test < 10E-8 then converged; 

 

/* Compute mean of the multinomial (mu) by using logit link*/ 

    eta=exp(X*beta); 

    mu1mu2=shape(eta,nrow(eta)/(number_of_option-

1),number_of_option-1); 

    pi3=1+mu1mu2[,1]+mu1mu2[,2]; 

    pi1=mu1mu2[,1]/pi3; 

    pi2=mu1mu2[,2]/pi3; 

    mu=pi1@{1,0}+pi2@{0,1}; 

 

/* Compute and design block diagonal matrix for information matrix*/ 

    do i=1 to ncol(number_of_responde_in_each_block); 

        wa=mu[(sum(wc[1:i])* 

               (number_of_option-1)*number_of_choice_set+1): 

               (sum(wc[1:i+1])*(number_of_option-1)*number_of_choice_set)]; 

        wb=shape(wa,nrow(wa)/(number_of_option-1),number_of_option-1); 

        ww=sparse(diag(wa#(1-wa))-diag(wb[,1]#wb[,2])@{0 1,1 0}); 

        if i=1 then 

            W=ww; 

        else 

            do; 

                ww[,2]=ww[,2]+(sum(wc[1:i])* 

                            (number_of_option-1)*number_of_choice_set); 

                ww[,3]=ww[,3]+(sum(wc[1:i])*   

                            (number_of_option-1)*number_of_choice_set); 

                W=W//ww; 

            end; 

    end; 

    n_beta=beta+(inv(t(X)*full(W)*X)*t(X)*(Y-mu)); 

    test=t(n_beta-beta)*(n_beta-beta); 

    if test<0.0000001 then 

        do; 

            con=7; 

            beta=n_beta; 

            COV=sparse(diag(inv(t(X)*full(W)*X))); 

            COV=COV[,1]; 

            T_value=abs(beta/sqrt(COV)); 

            p_value=(1-probt(T_value,sum(data_y)-ncol(X)-1))*2; 

            print "done estimation"; 

            print beta T_value P_value; 

        end; 

    else 

        do; 

            con=1; 

            beta=n_beta; 

        end; 

end; 

run; 

ABCDEF, DEFG and CDEH for replicate I 

1 2 3 4 5 6 7 8 

11111111 11111001 11111101 11111011 11111100 11111010 11111110 11111000 

0 110 10 100 11 101 1 111 

11110000 11110110 11110010 11110100 11110011 11110101 11110001 11110111 

1111 1001 1101 1011 1100 1010 1110 1000 

11101000 11101110 11101010 11101100 11101011 11101101 11101001 11101111 

10111 10001 10101 10011 10100 10010 10110 10000 

11100111 11100001 11100101 11100011 11100100 11100010 11100110 11100000 

11000 11110 11010 11100 11011 11101 11001 11111 

11011011 11011101 11011001 11011111 11011000 11011110 11011010 11011100 

100100 100010 100110 100000 100111 100001 100101 100011 

11010100 11010010 11010110 11010000 11010111 11010001 11010101 11010011 

101011 101101 101001 101111 101000 101110 101010 101100 

11001100 11001010 11001110 11001000 11001111 11001001 11001101 11001011 

110011 110101 110001 110111 110000 110110 110010 110100 

11000011 11000101 11000001 11000111 11000000 11000110 11000010 11000100 

111100 111010 111110 111000 111111 111001 111101 111011 

10111001 10111111 10111011 10111101 10111010 10111100 10111000 10111110 

1000110 1000000 1000100 1000010 1000101 1000011 1000111 1000001 

10110110 10110000 10110100 10110010 10110101 10110011 10110111 10110001 

1001001 1001111 1001011 1001101 1001010 1001100 1001000 1001110 

10101110 10101000 10101100 10101010 10101101 10101011 10101111 10101001 

1010001 1010111 1010011 1010101 1010010 1010100 1010000 1010110 

10100001 10100111 10100011 10100101 10100010 10100100 10100000 10100110 

1011110 1011000 1011100 1011010 1011101 1011011 1011111 1011001 

10011101 10011011 10011111 10011001 10011110 10011000 10011100 10011010 

1100010 1100100 1100000 1100110 1100001 1100111 1100011 1100101 

10010010 10010100 10010000 10010110 10010001 10010111 10010011 10010101 

1101101 1101011 1101111 1101001 1101110 1101000 1101100 1101010 

10001010 10001100 10001000 10001110 10001001 10001111 10001011 10001101 

1110101 1110011 1110111 1110001 1110110 1110000 1110100 1110010 

10000101 10000011 10000111 10000001 10000110 10000000 10000100 10000010 

1111010 1111100 1111000 1111110 1111001 1111111 1111011 1111101 

ABCD, ABEF and ABCDEFGH for replicate II 

1 2 3 4 5 6 7 8 

11111111 11101110 11111010 11101011 11111110 11101111 11111011 11101010 

0 10001 101 10100 1 10000 100 10101 

11111100 11101101 11111001 11101000 11111101 11101100 11111000 11101001 

11 10010 110 10111 10 10011 111 10110 

11110011 11100010 11110110 11100111 11110010 11100011 11110111 11100110 

1100 11101 1001 11000 1101 11100 1000 11001 

11110000 11100001 11110101 11100100 11110001 11100000 11110100 11100101 

1111 11110 1010 11011 1110 11111 1011 11010 

11001111 11011110 11001010 11011011 11001110 11011111 11001011 11011010 

110000 100001 110101 100100 110001 100000 110100 100101 

11001100 11011101 11001001 11011000 11001101 11011100 11001000 11011001 

110011 100010 110110 100111 110010 100011 110111 100110 

11000011 11010010 11000110 11010111 11000010 11010011 11000111 11010110 

111100 101101 111001 101000 111101 101100 111000 101001 

11000000 11010001 11000101 11010100 11000001 11010000 11000100 11010101 

111111 101110 111010 101011 111110 101111 111011 101010 

10101010 10111011 10101111 10111110 10101011 10111010 10101110 10111111 

1010101 1000100 1010000 1000001 1010100 1000101 1010001 1000000 

10101001 10111000 10101100 10111101 10101000 10111001 10101101 10111100 

1010110 1000111 1010011 1000010 1010111 1000110 1010010 1000011 

10100110 10110111 10100011 10110010 10100111 10110110 10100010 10110011 

1011001 1001000 1011100 1001101 1011000 1001001 1011101 1001100 

10100101 10110100 10100000 10110001 10100100 10110101 10100001 10110000 

1011010 1001011 1011111 1001110 1011011 1001010 1011110 1001111 

10011010 10001011 10011111 10001110 10011011 10001010 10011110 10001111 

1100101 1110100 1100000 1110001 1100100 1110101 1100001 1110000 

10011001 10001000 10011100 10001101 10011000 10001001 10011101 10001100 

1100110 1110111 1100011 1110010 1100111 1110110 1100010 1110011 

10010110 10000111 10010011 10000010 10010111 10000110 10010010 10000011 

1101001 1111000 1101100 1111101 1101000 1111001 1101101 1111100 

10010101 10000100 10010000 10000001 10010100 10000101 10010001 10000000 

1101010 1111011 1101111 1111110 1101011 1111010 1101110 1111111 
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OVERVIEW 

•To remain competitive, companies must create 

new products that satisfy consumer needs in order 

to maximize acceptance. In addition, desirable new 

products will usually lead to sales growth and 

stability. Thus, companies need information about 

consumer preferences to develop new products 

that consumers want to buy. 

 

•Conjoint analysis is an efficient, cost-effective, 

and most widely used quantitative method in 

marketing research to understand consumer 

preferences and value trade-off. Value can be 

interpreted by consumer as the received of 

multiple benefits from a price that is paid. In 

reality, a consumer wants the most preferable 

attributes or features at the lowest possible price 

while an organization wants maximize profits by 

minimizing cost of providing those features and to 

ahead of its competitors. 

 

•In conjoint choice experiments, respondents 

choose from a set of product alternatives in choice 

set. A base alternative which is normally a “none” 

option is added to the set of product alternatives 

to make the choice more realistic. 

 

 

 

 

 

 

•Completely Confounded Factorial Conjoint Choice 

Experiment (CCFCCE) design allows estimation of 

main effects and interaction effects. Since some of 

the effects will be confounded with the blocks in 

completely confounded factorial design, the 

conjoint choice design was extended to use of 

partially confounded factorial design, which is call 

Partially Confounded Factorial Conjoint Choice 

Experiment(PCFCCE). 

 

•The use of PCFCCE is consistent with random 

utility theory. For each choice set a consumer 

must choose between two products each with a 

different set of product attributes or neither. In this 

study, all the responses were assume to be 

independent and hence the multinomial logit 

model follows. The log likelihood is nonlinear and 

hence the newton-raphson method is needed to 

estimate the parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBJECTIVE 

•To introduce 2^n PARTIALLY CONFOUNDED 

FACTORIAL DESIGN IN CONJOINT CHOICE 

EXPERIMENT 

 

•Eight attributes of tablet with two level each were 

used to evaluate consumer’s purchasing decisions 

toward tablet by using PCFCCE. 

 

•Provide PCFCCE Newton-Raphson to estimate the 

parameters by SAS/IML® 
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