

1

Paper 209-2013

Working with a Large Pharmacy Database: Hash and Conquer.

David Izrael, Abt Associates Inc .

ABSTRACT

Working with a large pharmacy database means having to process - merge, sort, and summarize - hundreds of
millions of observations. By themselves, traditional methods of processing can lead to prohibitive data processing
times that endanger deadlines. The hash object is the fastest and most versatile method in the SAS® system of
substantially accelerating the processing. In our paper, we apply hash methods to a routine lookup function where
one needs to merge the kernel pharmacy database with its satellites. We also present comparatively new non-
traditional features of the hash object, such as handling duplicate keys and finding frequency counters. At the same
time, we underscore the necessity of traditional sort-and-merge methods, but suggest that they be used carefully.

WHAT IS THE GOAL?

The database we are dealing with consists of three large prescription data sets, one for each group of medications.

Let’s call them Prescriptions_A, Prescriptions_B, and Prescriptions_C. They contain the following information: RX

Type, Payment Type, RX Date, Payer ID, Product-Pack Number, Product Name, RX Quantity, Days’ Supply, RX

Dose, Prescriber ID, Pharmacy ID, Patient ID, and others. Each of the three data sets contains around 100 million

prescriptions and occupies roughly 25 GB of disk space.

Each of the three data sets is accompanied by four satellite data sets: a pharmacy reference containing

characteristics like channel, Metropolitan Statistical Area (MSA), pharmacy state, pharmacy zip3, and others; a

medication reference containing form, strength, and other medication characteristics; a provider reference containing

the provider’s specialty, zip code, and other characteristics; and a schedule reference containing the main category of

the product and its schedule.

One starts, of course, by combining the master prescription data sets with their satellites. The routine practice of

sorting and merging will not work in this situation. Those manipulations, when performed over such large master data

sets, lead to unacceptable processing times and/or system crashes, especially in multi-user environments. Instead,

we apply the method recognized by the SAS user community as most optimal when working with large databases:

hash tables. For detailed descriptions of this method we direct the reader to [1], [2], [3] and to other articles which can

be found online or on the SAS support site.

So, to join a master file (for instance, Prescriptions_A) with its lookup tables, we use the following code:

data analyt;

 set this.prescriptions_A; /*** MASTER PRESCRIPTION DATA SETS ***/

 length form $ 12 /*** ALLOCATE VARIABLES FROM LOOKUP TABLES ***/

 product $ 18

 strength $ 12

 usc $ 5

 usc_desc $ 30

 specialty $ 3

 zip $ 5

 specdesc $ 34

 specnpa $ 4

 low_chanl $ 1

Poster and Video PresentationsSAS Global Forum 2013

2

 high_chanl $ 1

 msa $ 45

 pharm_state $ 2

 pharm_zip3 $ 3

 main_cat $ 30

 schedule $ 4 ;

if _n_ =1 then do;

 declare hash outl(dataset : 'this.pharmacy_ref'); /*** HASH TABLE: PHARMACY

REFERENCE

***/

 outl.definekey ('pharmacy_id');

 outl.definedata ('low_chanl', 'high_chanl', 'msa', 'pharm_state',

 'pharm_zip3');

 outl.definedone ();

 declare hash cmf(dataset : 'this.product_ref'); /*** HASH TABLE: PRODUCT

REFERENCE***/

 cmf.definekey ('cmf10');

 cmf.definedata ('form','product','strength', 'usc', 'usc_desc');

 cmf.definedone ();

 declare hash rxer(dataset : 'this.docs_ref'); /*** HASH TABLE: PROVIDER

REFERENCE***/

 rxer.definekey ('rxerid');

 rxer.definedata ('specialty','zip','specdesc', 'specnpa');

 rxer.definedone ();

 declare hash categ(dataset : 'this.schedule’); /*** HASH TABLE: SCHEDULE REFERENCE

***/

 categ.definekey ('product');

 categ.definedata ('main_cat','schedule');

 categ.definedone ();

call missing(form,

product,

strength,

usc ,

usc_desc ,

specialty,

zip ,

specdesc ,

specnpa,

low_chanl,

high_chanl,

msa,

pharm_state,

pharm_zip3,

main_cat,

schedule

); /*** INITIALIZE VARIABLES IN CASE KEYS NOT FOUND ***/

 end;

Poster and Video PresentationsSAS Global Forum 2013

3

 drop rc;

 rc1 = outl.find ();

 rc2 = cmf.find ();

 rc3 = rxer.find ();

 rc4 = categ.find ();

/*** IF RESPECIVE KEY FOUND OUTPUT OBSERVATION POPULATED WITH VARIABLES SPECIFIED IN

 .definedata METHOD ***/

run;

All hash object syntax and methods used here should be clear for experienced readers. For inexperienced ones,

there is a myriad of materials on this topic.

By using hash tables, we avoid the bottleneck effect of sorting the large data sets. As we did with Prescriptions_A, we

merge Prescriptions_B and Prescriptions_C with their respective satellites. In our case, all merges are left joins

because the satellite tables only have the keys that are present in the master prescription data set.

After the merge, the sizes of the three data sets climb sharply to around 70 GB of disk space. The rule of thumb in

processing those data sets remains the same: avoid sorting whenever possible, leave in only necessary variables,

and use hash tables.

DIGGING IN DEEPER…

Whether we compute a consumption rate for geographic variability, prevalence of providers prescribing a certain

medication, or distribution of the periods between prescriptions, we are dealing with summarization. While PROC

SUMMARY works just fine when there are multiple CPUs in your possession, hash methods are noticeably faster

with one CPU. The following example demonstrates summation of the variable weight (each script is weighted in our

database) by a pharmacy’s state, county, and main category of medication (product):

 data hash_suminc_sum(keep = pharm_state county main_cat sum_weights);

 if 0 then set yourbigdataset;

 dcl hash h(suminc: 'weight', hashexp:20, ordered: 'a');

 h.defineKey('pharm_state', 'county', ‘main_cat’);

 h.defineDone();

 do while (^ eof);

 set yourbigdataset end = eof;

 h.ref();

 end;

 dcl hiter hi ('h');

 rc = hi.first();

 do while (rc=0);

 h.sum (sum: sum_weights);

 output;

 rc = hi.next ();

 end;

 stop;

 run;

Poster and Video PresentationsSAS Global Forum 2013

4

To sum values of “weight” we use the operator suminc: ‘weight’ during the creation of the hash object. The ref

method, new in version 9.2, is used to check for already-existing keys with certain values for pharm_state, county,

and main_cat. If there are no keys with such values, they are added to the hash table. Using hiter object (hi) we set

the pointer to the first record (hi.first()) of the hash table to retrieve hash table keys in an ascending order. Summation

itself is performed by the sum method and stores the accumulated sums of weights to the variable sum_weight. The

operator output writes the sum for certain values of pharm_state, county, and main_cat to the output data set

hash_suminc_sum after which the hi.next operator moves to the next hash table record until it reaches the end.

Finally, the operator ordered: ‘a’ enables hash h to be sorted in the ascending order of pharm_state, county, and

main_cat.

The reader should not develop the impression that the hash method is a panacea against the tribulations inherent to

processing very large databases. Users will still need sorted data sets and the attributes first. and last. for tasks that

are not as trivial as summation or left join. We will show how to use traditional methods in combination with hash

tables. Some analyses of the pharmacy database require the data sets to be sorted by the main category of a

medication, unique patient ID, and then by the script date. Older servers may allow us to do that with all the variables

in the data set only when there are no other intensive I/O jobs on the server.

EVEN DEEPER…

Let us suppose that for every unique patient ID from the Prescriptions_A data set we need to retrieve all the

observations for which the prescription dates for a given Patient ID are the same as the prescription dates in the

Prescriptions_B data set.

First, we need to retrieve Patient _ID and all RX dates for a given medication from Prescriptions_B. This could look

traditional:

proc sort data = Prescriptions_B(keep = patient_ID rxdate main_cat where =

(main_cat= 'certaindrug')) out=B (drop = main_cat rename = (rxdate = B_date));

by patient_ID rxdate;

run;

Since we sort a small subset of the large data set, this sort does not present any problems.

Now let us see how we could use the Prescriptions_A data set and the hash table created from the Prescriptions_B

data set above to make our final retrieval.

data result;

drop rc;

 if _n_ = 1 then do;

dcl hash B_hash(dataset: 'work.B', multidata: ‘yes’);

B_hash.defineKey ('patient_id');

B_hash.defineData(‘patient_id’ 'B_date’);

B_hash.defineDone();

end;

set Prescriptions_A (keep = patent_id rxdate);

rc = B_hash.find();

 do while (rc=0);

 if B_date= rxdate then output;

 rc = B_hash.find_next();

end;

run;

Poster and Video PresentationsSAS Global Forum 2013

5

Since the Prescriptions_B data set contains duplicate Patient IDs, the hash table B_hash is created with the option

multidata: ‘yes’ which allows the hash table to store the duplicate keys. After the hash table is loaded, the first find

operator locates patient_id in the hash table from the Prescriptions_A data set.

In a DO WHILE loop, B_date of every following record in the hash table is compared with rxdate of found patient_id

and if it is the same as B_date the output observation is created. The find_next method finds the next record in the

hash table with the same Patient ID, and dates are compared again until a new Patient ID is encountered in the hash

table.

However, if we are know that the subset of the Prescriptions_B data set consisting of patient_id and rxdate can be

incorporated into a hash table, the same goal could be achieved much faster. Let us first estimate how much memory

such a hash table would take up. patient_id (8 digits) and rxdate (5 digits) might take up 4+4= 8 bytes. Thus, for 100

million pairs of Patient ID - RX Date, the hash table requires less than 1 GB, which is quite realistic nowadays. Our

code above would turn into the following:

data result;

 set this.prescriptions_A; /*** MASTER PRESCRIPTION DATA SETS ***/

if _n_ =1 then do;

 declare hash large_to_small(dataset : 'this.Prescriptions_B', hashexp: 20); /***

hash

 table: pharmacy

reference ***/

 large_to_small.definekey ('Patient_ID', ‘RXdate’);

 large_to_small.definedata ('Patient_ID', ‘RXdate’);

 large_to_small.definedone ();

 end;

 drop rc;

 rc = large_to_small.find ();

run;

By using the operator hashexp: 20 we request the maximum amount of memory for our hash table. Also, there is no

need to specify multidata: ‘yes’ since the Patient ID - RX Date pair is a unique composite key.

YET, DEEPER…

In the following example we will demonstrate how to use the Prescriptions_A data set and the two hash tables loaded

from the Prescriptions_B and Prescriptions_C data sets to output patient_id and rxdate of the Prescriptions_A data

set (those that overlap with RX dates from the Prescriptions_B and Prescriptions_C data sets for a given Patient ID).

In other words, we are interested in the Prescriptions_A patients who also take the other two types of medications

within the same time span.

data patient_id_rxdate_mixture;

drop rc;

 if _n_ = 1 then do;

dcl hash B_hash(dataset: 'Prescriptions_B', multidata: ‘yes’); /* LOAD HASH TABLE FROM

 PRESCRIPTION_B

 DATABASE */

Poster and Video PresentationsSAS Global Forum 2013

6

B_hash.defineKey ('patient_id');

B_hash.defineData(‘patient_id’ 'B_date’);

B_hash.defineDone();

dcl hash C_hash(dataset: 'Prescriptions_C', multidata: ‘yes’); /* LOAD HASH TABLE FROM

 PRESCRIPTION_C

DATABASE */

C_hash.defineKey ('patient_id');

C_hash.defineData(‘patient_id’ 'C_date’);

C_hash.defineDone();

end;

set Prescriptions_A (keep = patent_id rxdate);

Earlier_than_B=.; Later_than_B=.; Earlier_than_C=.; Later_than_C=.; /* INITIALIZE

FLAGS FOR

 DATE

 COMPARISON */

rc_B = b_hash.find (); /* FIND PATIENT ID IN B_HASH TABLE */

do while (rc_B=0);

 if rxdate >= B_date then Later_than_B=1; /** COMPARE RXDATE WITH B DATES IN HASH

B **/

 if rxdate <= B_date then Earlier_than_B=1;

 rc_B = B_hash.find_next(); /** MOVE TO NEXT DATE IN HASH B **/

end;

rc_C = c_hash.find (); /* FIND PATIENT ID IN C_HASH TABLE */

do while (rc_C=0);

 if rxdate >= C_date then Later_than_C=1; /** COMPARE RXDATE WITH C DATES IN HASH

C **/

 if rxdate <= C_date then Earlier_than_C=1;

 rc_C = C_hash.find_next(); /** MOVE TO NEXT DATE IN HASH C **/

end;

/* OUTPUT IF CURRENT RXDATE WITHIN TIME SPAN OF B AND C DATES IN HASHES B AND C */

if later_than_B=1 and earlier_than_B=1 and later_than_C=1 and earlier_than_C=1 then

output;

run;

SAS provides a vast number of ways of processing data from very large databases. Secosky and Bloom (2007)

present a comprehensive table of pros and cons for the most popular methods. By following this table, users will gain

immensely from analyzing their possibilities for each particular case.

REFERENCES

[1] Secosky, Jason, and Janice Bloom. 2007. "Getting Started with the DATA Step Hash Object." Proceedings of the
First SAS Global Forum. Cary, NC: SAS Institute Inc. Available at www2.sas.com/proceedings/forum2007/271-
2007.pdf

[2] Dorfman, Paul and Vyverman, Koen. 2005. “Data Step Hash Objects as Programming Tools.” Proceedings of the
Thirtieth Annual SAS Users Group International Conference. Available

Poster and Video PresentationsSAS Global Forum 2013

7

http://www2.sas.com/proceedings/sugi30/236-30.pdf

[3] Ray, Robert and Jason Secosky (2008). “Better Hashing in SAS® 9.2,” Proceedings of the Second Annual SAS

Global Forum (SGF) Conference, SAS Institute Inc., Cary, NC, USA.

support.sas.com/resources/papers/sgf2008/hashing92.pdf

DISCLAIMER

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are

registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION

David Izrael,
Abt Associates,
55 Wheeler Street,
Cambridge, MA 02138
Ph. (O): 617.349.2434
E-mail: david_izrael@abtassoc.com

Poster and Video PresentationsSAS Global Forum 2013

	2013 Table of Contents

