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ABSTRACT

Bayesian hierarchical models are advantageous for the analysis of adverse events in clinical trials. First, the models
can borrow strength across related events within the MedDRA hierarchy. Second, the models can naturally temper
findings likely due to chance. We describe the implementation of two Bayesian hierarchical models (Berry & Berry,
2004; Xia et al., 2010) used for the analysis of adverse events using PROC MCMC. Once models are fit, it is
necessary to review convergence diagnostics to ensure that the posterior samples of parameters sufficiently
approximate the target distribution. Numerous diagnostics are available within PROC MCMC, and we also present a
freely available JMP® add-in for MCMC (Markov Chain Monte Carlo) dynamically interactive diagnostics, summary
statistics and graphics.

INTRODUCTION

The analysis of adverse events is an important part of the safety assessment of any experimental drug or vaccine.
Disease severity, trial duration and the number of patients under investigation contribute to the sheer number and
variety of events that occur, all of which complicate the statistical analysis of comparing the safety profile of the new
treatment to a suitable control. In a Frequentist paradigm, when confronted with numerous tests for adverse events, it
is natural and appropriate to apply some form of multiplicity adjustment to reduce the likelihood of committing type |
errors. In a superiority trial, type | errors would have us conclude that there is a non-zero difference in adverse event
rates between the two treatments when in actuality, there is no difference. However, when it comes to the analysis of
safety endpoints, committing type Il errors due to low power is as important a consideration as committing type |
errors (Berry & Berry, 2004; Crowe et al., 2009). Here, type Il errors would have us conclude there is no difference in
adverse event rates between the two treatments when a difference truly exists. When faced with a large number of
comparisons, the False Discovery Rate (FDR) multiplicity adjustment of Benjamini and Hochberg (1995) and the
Double FDR method (Mehrotra & Heyse, 2004; Mehrotra & Adewale, 2012) provide a more balanced approach
between type | error and power, making them appropriate choices for the analysis of adverse events, and safety
endpoints in general.

As an alternative to Frequentist approaches, Berry & Berry (2004) suggest a Bayesian three-level hierarchical mixture
model for the analysis of adverse events as a way of coping with multiplicity. To determine whether treatment affects
the incidence of a given event compared to control, their logistic model considers and incorporates how treatment
affects all events being analyzed, particularly those from the same body system. Fitting such a model using ordinary
logistic regression may not be possible since, as DuMouchel (2012) points out, the sparsity of many reported adverse
events will likely cause estimation to fail. As a further benefit, the model naturally tempers extreme results that may
occur due to the rarity of many events. Xia, Ma & Carlin (2010) study alternate specifications of this model, including
a log-linear version that adjusts for the total subject-time at risk.

As Xia et al. (2010) point out, one reason the Berry & Berry model has not been more widely adopted is due to a lack
of available software. To remedy this issue, they include code to fit these models using WinBugs software in the
appendix of their manuscript. Gemperli (2010) shows how these models can be fit using PROC MCMC of SAS,
although his code was written using an experimental version of the software included in SAS 9.2.

In this manuscript, we provide updated code for PROC MCMC to fit the Berry & Berry (2004) logistic regression
model and the Xia et al. (2010) log-linear model using SAS 9.3 and SAS/STAT 12.1. Further, we introduce a freely
available JMP® 10 add-in to assess MCMC diagnostics, generate forest plots of equal-tailed and highest posterior
density (HPD) credible intervals, and calculate univariate and multivariate posterior probabilities (Zink, 2012).

We illustrate the use of these models using data from a vaccine trial described in Mehrotra & Heyse (2004). This
clinical trial had 148 and 132 subjects in the treatment and control groups, respectively. There were 40 different
adverse events reported across eight different body systems. Data are reproduced in the code in the Appendix.
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BAYESIAN HIERARCHICAL MIXTURE MODELS

Suppose there are s =1, 2, ... S classifications of adverse events, which are often grouped by MedDRA system
organ class (SOC). Within each SOC, there are numerous events e = 1, 2, ... Es often coded by MedDRA preferred
terms. Let Yse and Xse be the number of subjects with event e in system organ class s for the Treatment group of N;
subjects and the Control group of N subjects, respectively.

For the Berry & Berry (2004) hierarchical logistic regression model, assume Yge ~ Bin(Ny, tse) and Xse ~ Bin(Nc, Cse)
and define logit(cse) = yse and logit(tse) = yse+ Bse. The parameter B¢ is the log-odds ratio for the treatment effect of
event e in system organ class s.

Assume the following priors:

Stage 1 Priors:  yse ~ N(lys, 0%s) Bse ~ Ts 8(0) + (1- Ts) N(Hes, O%6s)
Stage 2 Priors:  pys ~ N(Hyo, Ty0) 0%ys ~ 1G(cy, By)

Hes ~ N(Heo, T60) 0%s ~ 1G (<o, Be)
Stage 3 Priors:  pyo~ N(Hyo0, T°y00) 0 ~ 1G(y00, Byoo)

Hao ~ N(Heoo, T°600) 60 ~ 1G(<e00, Booo)

Further assume that 11s ~ Beta(oty, Br), %m ~ EXp(Aq) I[o¢r > 1] and Br ~Exp(Ag) I[B+> 1], and set pyoo = Peoo = 0, T2v00 =
%600 = 10, o¢; = o¢g = o,00 = Xgoo = 3, By = Bo = Byoo = Beoo = 1 and Aq = Ag = 0.1. The value 5(0) is a distribution having
unit point mass at 0, and I[.] is an indicator function with value 1 if the condition inside the brackets is true, 0
otherwise.

For the Xia et al. (2010) model, let Tse and Cse be the total time at risk for event e in system organ class s for the
treatment and control arms, respectively. For N; treated subjects, define Tse as the summation of e fori=1, 2... N..
Similarly, for N control subjects, define Cse as the summation of (s for i = 1, 2... Nc. The values &sej and e
represent the time from first drug exposure until a subject experiences event e in system organ class s for the first
time, or the total time on study if they did not experience the event. In lieu of the binomial assumptions above,
assume Yse ~ Pois(tse Tse) and Xse ~ Pois(CseCse) and define log(cse) = yse and log(tse) = yset Bse. Here, the parameter
Bse is the log relative risk for the treatment effect of event e in system organ class s.

Rationale for assumed priors and constants are provided in Berry & Berry (2004) and Xia et al. (2010), though
sensitivity analyses should examine the robustness of findings to alternate assumptions. Model fit can be assessed
using the deviance information criterion (obtained through the DIC option in the PROC MCMC statement).

SPECIFICATION OF PROC MCMC

The PROC MCMC specification for the Berry & Berry (2004) hierarchical logistic regression model is contained in the
Appendix. The code requests 20,000 samples from the posterior distribution after discarding a burn-in of 2,000
samples. Three separate Markov chains are requested to evaluate the convergence of the chains to the target
distributions of the parameters. Unlike the data structures assumed in Gemperli (2010) and Xia et al. (2010), the
PROC MCMC specification here assumes each treatment-event combination is a separate row, which is more in line
with the vertical structure of many CDISC data standards (CDISC Submission Data Standards Team, 2012). When
summarizing data from the AE domain, it is important that rows exist for treatment-event combinations that do not
occur so that 0 events are explicitly specified in these cases.

Of particular note when comparing our specification to that of Gemperli (2010) is the use of RANDOM statements that
simplify the specification of random-effects. While the RANDOM statement was available in earlier releases of PROC
MCMC, this particular code requires SAS/STAT 12.1. Prior to SAS/STAT 12.1, random effects could not be specified

as hyperparameters to other random effects. For example,

random mu Ga ~ normal (mu GO, prec = tau2 GO) subject = s monitor = (mu Ga);
random G ~ normal (mu_Ga, prec = tau Ga) subject = e monitor = (G);

would not have been previously permitted.
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Time at risk was not available for the data described in Mehrotra & Heyse (2004). However, assuming time at risk is
available in order to fit the Xia et al (2010) model, make the following modifications to incorporate Tse and Cse. We
assume that the times at risk for each event, similar to the number of subjects experiencing the event, were
previously summarized.

data ae;
format term $28.;
input e s term $ Y X T C;
datalines;

run;

data ae(drop =Y X T C);
set ae;
count = Y; trt = 1; ntc = 148; risktime = T; output;
count = X; trt = 0; ntc = 132; risktime C; output;
run;

Further, in the PROC MCMC call change
ptc = logistic(lp);
model count ~ binomial (n = ntc, p = ptc);

to

ptc = log(lp):;
model count ~ poisson(mean = ptc*risktime);

For either model, several instances of the following WARNING may appear in the log file after the PROC MCMC
code compiles:

WARNING: There is still significant autocorrelation after 500 lags, and the effective sample
size for the parameter XXXX might not be estimated accurately.

These warnings can typically be eliminated using the THIN=k option in the PROC MCMC statement to keep every kth
posterior sample. However, this is particularly wasteful. High autocorrelation is an indicator of poor sampling
efficiency, so unless storage of posterior samples is of concern, the recommendation is to keep all posterior samples.

As a note, parameters whose priors are defined using a PRIOR statement need to be included in one or more
PARMS statements. From the PROC MCMC documentation: “Each PARMS statement defines a block of
parameters, and the blocked Metropolis algorithm updates the parameters in each block simultaneously.” The code in
the Appendix assumes one PARMS statement for each parameter, though these statements could have easily been
specified differently. The user can examine the section “Blocking of Parameters” in the PROC MCMC documentation
for details and recommendations.

As specified, the MCMC macro passes seeds 500, 203 and 140 to PROC MCMC to generate multiple chains. Users
are encouraged to choose specific seeds in order to reproduce results. Alternatively, users can initialize parameters
within the PARMS statement to evaluate whether parameters converge to the target distribution from extreme starting
values. The example “Gelman-Rubin Diagnostics” in the PROC MCMC documentation provides further explanation.

To generate odds ratios or risk ratios within the PROC MCMC call, add the following lines:

array OR_[40] OR_l - OR_40;

and

OR_[e] = exp(T_I[el);.

Similarly, indicators variables used to count whether treatment effects meet certain thresholds can be generated:
array IND [40] IND 1 - IND 40;

and

IND [e] = (OR _[e] > 1);.

Here, we have generated indicators based on whether there is an increase in risk for the treatment based on the
odds or risk ratio. Remember to add these terms to the MONITOR option in the PROC MCMC statement.

Pharma and Health Care
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Though PROC MCMC can calculate numerous summary statistics and diagnostics for the posterior samples, we did
not include these specifications in our code in order to demonstrate the JMP10 MCMC Diagnostics add-in (Zink,
2012). Only posterior samples from the log odds ratios of the treatment effect (T_1 — T_40) are kept in the output
data set for illustrative purposes, though in general, diagnostics for all parameters should be evaluated.

REVIEWING SUMMARY STATISTICS AND DIAGNOSTICS FOR POSTERIOR SAMPLES
USING JMP®

Here we describe a freely available IMP 10 add-in for reviewing summary statistics and diagnostics for posterior
samples from one or more Markov chains (Zink, 2012). The user must have a free SAS profile in order to download
the MCMC Diagnostics add-in. The input data can be from any source (e.g., SAS, WinBugs, BRugs), but it is
assumed that the data set of posterior samples is sorted by Markov chain number and iteration (whether provided in
the dialog or not), and that each chain has the same number of posterior samples. An example data set is shown in
Figure 1, which summarizes the treatment parameters from the MCMC model using data from Mehrotra & Heyse
(2004). All credible intervals and diagnostic calculations are performed on samples from the Markov chain that
appears first in the data set (here, number 1). Samples from any additional Markov chains are used only to compute
Gelman-Rubin diagnostics. Most variables within the data set will represent parameters from the specified model.
The dialog can accommodate many parameters at once for analysis, though sets of similar parameters should be
submitted so that forest plots of credible intervals are most meaningful.
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Figure 1. Posterior Samples from PROC MCMC Using Data from Mehrotra & Heyse (2004)
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The MCMC Diagnostics dialog (Figure 2) displays all of the variables (COLUMNS) of the input data set. The only
requirement to run the add-in is that at least one PARAMETER should be specified. In these instances, it is assumed
that all samples are from a single Markov chain, and samples will be numbered in trace plots from 1 to the total
number of rows in the data set. If ITERATION is provided, trace plots will reflect appropriate sample numbers (say, if
burn-in samples were removed). CHAIN specifies a numeric value if multiple Markov chains are generated to assess
parameter convergence to the target distribution. COLOR PREFERENCE specifies the color (default Blue/Red) of
any credible intervals that exclude the NULL VALUE (default 0). Under the defaults, intervals entirely to the right or
left of the null value will be blue or red, respectively. Color can be particularly useful for the Bayesian hierarchical
models discussed in this paper. The mixture distribution including a point mass at zero could mean the endpoints of
many credible intervals will be extremely close to O (meaning no treatment effect), making visual interpretation
without color difficult. ALPHA (default 0.05) calculates (1-a)*100% credible intervals for the forest plots.

The add-in generates the MCMC Viewer Window in Figure 3. The Diagnostics Tab provides histograms, density
function curves and summary statistics of the posterior samples from Chain 1 for all parameters. Trace plots
summarize the behavior of the Chain 1 samples over the iterations and can be used to assess convergence of the
chain to the target distribution. Histograms and summary statistics summarize the autocorrelation of Chain 1 posterior
samples up to lag 25. If the analysis includes multiple Markov chains, trace plots summarize all chains
simultaneously, and Gelman-Rubin Statistics are provided.

The interactivity of JMP is a key benefit of the add-in. The diagnostic output of all parameters except the first is
initially collapsed. This output can be opened or closed by selecting the outline boxes in the Tab. By default, a non-
parametric kernel density curve is fit to the posterior samples in the histograms. However, the user can add multiple
reference lines from the red triangle menu of the histogram (Figure 4). If needed, a partial autocorrelation or
variogram summary figure can be generated from the red triangle menu of any trace plot.

The Forest Plots of Credible Intervals Tab provides two figures of 95% credible intervals for the parameters using
samples from Chain 1. Figure 5 summarizes equal-tailed credible intervals of the posterior samples. Here, the lower
and upper endpoints for these intervals correspond to the 2.5" and 97.5™ percentiles of the samples, respectively.
Figure 6 summarizes the 95% highest posterior density (HPD) credible intervals, which are the narrowest intervals
covering 95% of all samples. For both figures, the mean and median sample values are summarized using circles
and diamonds, respectively. Only the intervals for T_17, which corresponds to the adverse event of irritability, exclude
the assumed null value of 0. As in Berry & Berry (2004), we can conclude that treatment has an important effect on
this adverse event. If needed, the underlying statistics for these figures are a button-click away (Figure 7). Note that
PROC MCMC documentation refers to forest plots as caterpillar plots.

The Univariate Posterior Probability Calculator enables the user to define probability statements for the parameters,
the results of which are summarized in a table (Figure 8). Ranges can be added manually, or the sliders can be used
to select limits which are restricted to the minimum and maximum values of the samples for all parameters from
Chain 1. The Multivariate Posterior Probability Calculator lets the user define probability statements that consider two
or more parameters simultaneously. Figure 9 illustrates this calculator using only the treatment parameters from the
first five adverse events. We calculate the posterior probability that treatment has an undesirable effect (essentially
each parameter greater than 0) on astenia/fatigue, fever, infection-fungal, infection-viral and malaise simultaneously
as 0.1756. However, since this particular model does not account for the association between different adverse
events, this probability may be misleading. The multivariate calculator makes use of the JMP Data Filter to select
data table rows meeting the criteria defined in the filter. Alternatively, the user can open the data table and select
rows manually, or apply a function to the columns of interest. Once rows are selected, the user can push the
Calculate Posterior Probability button.
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Figure 3. MCMC Diagnostics Including Histogram and Density Function of Posterior Samples, Trace Plots,

Autocorrelation Assessment and Gelman-Rubin Statistics
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Figure 7. Data Table of Parameter Means and Credible Intervals of Chain 1
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Define probability statement to apply to all parameters individually using posterior samples from Chain 1.
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Figure 8. Univariate Probability Calculator

Define prabability statement using posterior samples from Chain 1
In lieu of using data filter to select records, open the data table to select rows using Row Selection submenu under Rows menu.

A= Data Filter
Select [ Show [#] Include

Clear |

3512 matching rows

> 1e-7=T_1=1.17521

= 1e-7=T 2=1.1418

=i1e-7 =T_3=2.613046

i

> 1e-7 =T_4=2 284541

i

1187 =T_5=1.117981

AND OR

|Show Data Table| [Hide Data Table|

H

|Calculate Posterior Probability|

~Posterior Probability -
The multivariate posterior probability is 0.1756. [

Figure 9. Multivariate Probability Calculator
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CONCLUSIONS

In this paper, we summarized two Bayesian three-level hierarchical mixture models for the analysis of adverse events
and provided PROC MCMC code using SAS 9.3 and SAS/STAT 12.1 software (Berry & Berry, 2004; Xia et al., 2010).
Further, we demonstrated the flexibility of IMP for reviewing posterior samples from models fit using Markov Chain
Monte Carlo (Zink, 2012). Though the models described here only consider a single study comprising two treatment
arms, the PROC MCMC specification provided can be extended to include additional treatment arms or effects to
account for multiple studies. These hierarchical models will be included in a future release of JMP Clinical.

The models as defined utilize summary statistics at the event level and do not explicitly model the association among
adverse events. If interested, the reader can review the multivariate Bayesian logistic regression model of DuMouchel
(2012) for an example of hierarchical models that take advantage of subject-level data. However, one benefit of
relying on data summarized at the event level is that it is straightforward to model a mixture of ongoing trials and data
from trials taken from the literature.
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APPENDIX: PROC MCMC CODE

libname out "<<Your Directory Name Here>>";

data ae;
format term $28.;
input e s term $ N T N C ;
datalines;

Otitis-media 18 14
Otorrhea 2 1

1 1 Astenia/fatigue 57 40
2 1 Fever 34 26
3 1 Infection-fungal 2 0
4 1 Infection-viral 3 1
5 1 Malaise 27 20
6 2 Anorexia 7 2
7 2 Cendisiasis-oral 2 0
8 2 Constipation 2 0
9 2 Diarrhea 24 10
10 2 Gastroenteritis 3 1
11 2 Nausea 2 7
12 2 Vomiting 19 19
13 3 Lymphadenopathy 3 2
14 4 Dehydration 0 2
15 5 Crying 2 0
16 5 Insomnia 2 2
17 5 Irritability 75 43
18 6 Bronchitis 4 1
19 6 Congestion-nasal 4 2
20 6 Congestion-respiratory 1 2
21 6 Cough 13 8
22 6 Infection-upper-respiratory 28 20
23 6 Laryngotracheobronchitis 2 1
24 6 Pharyngitis 13 8
25 6 Rhinorrhea 15 14
26 6 Sinusitis 3 1
27 6 Tonsillitis 2 1
28 6 Wheezing 3 1
29 7 Bite/sting 4 0
30 7 Eczema 2 0
31 7 Pruritis 2 1
32 7 Rash 13 3
33 7 Rash-diaper 6 2
34 7 Rash-measles/rubella-like 8 1
35 7 Rash-varicella-like 4 2
36 7 Urticaria 0 2
37 7 Viral-exanthema 1 2
38 8 Conjunctivitis 0 2
8
8

run;

data ae(drop = N T N C);
set ae;
count = N_T; trt = 1; ntc = 148; output;
count = N C; trt = 0; ntc = 132; output;
run;
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$macro MCMC (suffix = , seed = );
$let mu GOO = O; $let mu TOO = 0;
$let tau2 GO0 = 10; %let tau2 TO00 = 10;
$let A G = 3; $let AT = 3;
$let A GOO = 3; $let A _TOO = 3;
slet B G = 1; slet BT = 1;
$let B _GOO = 1; $let B_T0O0 = 1;
$let L A = 0.1; $let L B = 0.1;
proc mcmc data = ae seed = &seed nmc = 20000 dic maxtune = 500
monitor = ( parms_ T 1-T 40) outpost = outposts&suffix nbi = 2000;

*** Treatment Effects for the 40 Adverse Events ***;
array T [40] T 1 - T 40;

parms mu_GO;

parms tau2 GO;

parms mu_TO;

parms tau2 TO;

parms A P;

parms B P;

*** Hyperpriors for Gammas ***;

prior mu GO ~ normal (ému_G00, prec = %sysevalf(l/&tauZ_GOO));
prior tau2 GO ~ gamma(&A G0O, iscale = &B GO00);

*** Hyperpriors for Thetas ***;

prior mu TO ~ normal (&mu TO0O, prec = %sysevalf(l/&tau2_TOO));
prior tau2 TO ~ gamma (&A T00, iscale = &B TO00);

*** Hyperpriors for Pis ***;

prior A P ~ expon(iscale = &L A, lower = 1);

prior B P ~ expon(iscale &L B, lower = 1);

random mu Ga ~ normal (mu GO, prec = tau2 GO0) subject = s monitor = (mu Ga);
random tau Ga ~ gamma (&A G, iscale = &B G) subject = s monitor = (tau Ga);
random G ~ normal (mu Ga, prec = tau Ga) subject = e monitor = (G);

random mu Ta ~ normal (mu TO, prec = tau2 TO0) subject = s monitor = (mu Ta);
random tau Ta ~ gamma (&A T, iscale = &B T) subject = s monitor = (tau Ta);
random Tl ~ normal (mu_Ta, prec = tau Ta) subject = e monitor = (T1);

random P ~ beta(A P, B P) subject = s monitor = (P);

random Bi ~ binary(P) subject = s monitor =(Bi);

T [e]l] = (1 - Bi) * T1;

lp = G + T_[e] * otrt;
ptc = logistic(lp);
model count ~ binomial(n = ntc, p = ptc);
run;
smend MCMC;

*** Generate 3 Independent Chains ***;
$MCMC (suffix = 1, seed = 500);
$MCMC (suffix = 2, seed = 203);
SMCMC (suffix = 3, seed = 140);

data out.events(keep = chain iteration T 1-T 40);

set outpostl (in = ina) outpost2(in = inb) outpost3(in = inc);
if ina then chain = 1;
else if inb then chain = 2;
else if inc then chain = 3;
run;
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