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ABSTRACT 

Bayesian hierarchical models are advantageous for the analysis of adverse events in clinical trials. First, the models 
can borrow strength across related events within the MedDRA hierarchy. Second, the models can naturally temper 
findings likely due to chance. We describe the implementation of two Bayesian hierarchical models (Berry & Berry, 
2004; Xia et al., 2010) used for the analysis of adverse events using PROC MCMC. Once models are fit, it is 
necessary to review convergence diagnostics to ensure that the posterior samples of parameters sufficiently 
approximate the target distribution. Numerous diagnostics are available within PROC MCMC, and we also present a 
freely available JMP

®
 add-in for MCMC (Markov Chain Monte Carlo) dynamically interactive diagnostics, summary 

statistics and graphics. 

 

INTRODUCTION 

The analysis of adverse events is an important part of the safety assessment of any experimental drug or vaccine. 
Disease severity, trial duration and the number of patients under investigation contribute to the sheer number and 
variety of events that occur, all of which complicate the statistical analysis of comparing the safety profile of the new 
treatment to a suitable control. In a Frequentist paradigm, when confronted with numerous tests for adverse events, it 
is natural and appropriate to apply some form of multiplicity adjustment to reduce the likelihood of committing type I 
errors. In a superiority trial, type I errors would have us conclude that there is a non-zero difference in adverse event 
rates between the two treatments when in actuality, there is no difference. However, when it comes to the analysis of 
safety endpoints, committing type II errors due to low power is as important a consideration as committing type I 
errors (Berry & Berry, 2004; Crowe et al., 2009). Here, type II errors would have us conclude there is no difference in 
adverse event rates between the two treatments when a difference truly exists. When faced with a large number of 
comparisons, the False Discovery Rate (FDR) multiplicity adjustment of Benjamini and Hochberg (1995) and the 
Double FDR method (Mehrotra & Heyse, 2004; Mehrotra & Adewale, 2012) provide a more balanced approach 
between type I error and power, making them appropriate choices for the analysis of adverse events, and safety 
endpoints in general. 

As an alternative to Frequentist approaches, Berry & Berry (2004) suggest a Bayesian three-level hierarchical mixture 
model for the analysis of adverse events as a way of coping with multiplicity. To determine whether treatment affects 
the incidence of a given event compared to control, their logistic model considers and incorporates how treatment 
affects all events being analyzed, particularly those from the same body system. Fitting such a model using ordinary 
logistic regression may not be possible since, as DuMouchel (2012) points out, the sparsity of many reported adverse 
events will likely cause estimation to fail. As a further benefit, the model naturally tempers extreme results that may 
occur due to the rarity of many events. Xia, Ma & Carlin (2010) study alternate specifications of this model, including 
a log-linear version that adjusts for the total subject-time at risk. 

As Xia et al. (2010) point out, one reason the Berry & Berry model has not been more widely adopted is due to a lack 
of available software. To remedy this issue, they include code to fit these models using WinBugs software in the 
appendix of their manuscript. Gemperli (2010) shows how these models can be fit using PROC MCMC of SAS, 
although his code was written using an experimental version of the software included in SAS 9.2.  

In this manuscript, we provide updated code for PROC MCMC to fit the Berry & Berry (2004) logistic regression 
model and the Xia et al. (2010) log-linear model using SAS 9.3 and SAS/STAT 12.1. Further, we introduce a freely 
available JMP

®
 10 add-in to assess MCMC diagnostics, generate forest plots of equal-tailed and highest posterior 

density (HPD) credible intervals, and calculate univariate and multivariate posterior probabilities (Zink, 2012). 

We illustrate the use of these models using data from a vaccine trial described in Mehrotra & Heyse (2004). This 
clinical trial had 148 and 132 subjects in the treatment and control groups, respectively. There were 40 different 
adverse events reported across eight different body systems. Data are reproduced in the code in the Appendix. 
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BAYESIAN HIERARCHICAL MIXTURE MODELS 

Suppose there are s = 1, 2, … S classifications of adverse events, which are often grouped by MedDRA system 
organ class (SOC). Within each SOC, there are numerous events e = 1, 2, … Es often coded by MedDRA preferred 
terms. Let Yse and Xse be the number of subjects with event e in system organ class s for the Treatment group of Nt 
subjects and the Control group of Nc subjects, respectively. 

For the Berry & Berry (2004) hierarchical logistic regression model, assume Yse ~ Bin(Nt, tse) and Xse ~ Bin(Nc, cse) 
and define logit(cse) = γse and logit(tse) = γse+ θse. The parameter θse is the log-odds ratio for the treatment effect of 
event e in system organ class s.  

 

Assume the following priors: 

Stage 1 Priors: γse ~ N(μγs, σ
2

γs)  θse ~ πs δ(0) + (1- πs) N(μθs, σ
2

θs) 

Stage 2 Priors:  μγs ~ N(μγ0, τ
2

γ0)  σ
2

γs ~ IG(∝γ, βγ) 

                 μθs ~ N(μθ0, τ
2

θ0)  σ
2

θs ~ IG(∝θ, βθ) 

Stage 3 Priors:  μγ0 ~ N(μγ00, τ
2

γ00)   τ
2

γ0 ~ IG(∝γ00, βγ00) 

μθ0 ~ N(μθ00, τ
2

θ00)   τ
2

θ0 ~ IG(∝θ00, βθ00) 

 

Further assume that πs ~ Beta(∝π, βπ), ∝π ~ Exp(λα) I[∝π > 1] and βπ ~Exp(λβ) I[βπ > 1], and set μγ00 = μθ00 = 0, τ
2

γ00 = 

τ
2

θ00 = 10, ∝γ = ∝θ = ∝γ00 = ∝θ00 = 3, βγ = βθ = βγ00 = βθ00 = 1 and λα = λβ = 0.1. The value δ(0) is a distribution having 

unit point mass at 0, and I[.] is an indicator function with value 1 if the condition inside the brackets is true, 0 
otherwise.  

For the Xia et al. (2010) model, let Tse and Cse be the total time at risk for event e in system organ class s for the 
treatment and control arms, respectively. For Nt treated subjects, define Tse as the summation of ξsei for i = 1, 2… Nt. 
Similarly, for Nc control subjects, define Cse as the summation of ζsei for i = 1, 2… Nc. The values ξsei and ζsei 
represent the time from first drug exposure until a subject experiences event e in system organ class s for the first 
time, or the total time on study if they did not experience the event. In lieu of the binomial assumptions above, 
assume Yse ~ Pois(tseTse) and Xse ~ Pois(cseCse) and define log(cse) = γse and log(tse) = γse+ θse. Here, the parameter 
θse is the log relative risk for the treatment effect of event e in system organ class s. 

Rationale for assumed priors and constants are provided in Berry & Berry (2004) and Xia et al. (2010), though 
sensitivity analyses should examine the robustness of findings to alternate assumptions. Model fit can be assessed 
using the deviance information criterion (obtained through the DIC option in the PROC MCMC statement). 

 

SPECIFICATION OF PROC MCMC 

The PROC MCMC specification for the Berry & Berry (2004) hierarchical logistic regression model is contained in the 
Appendix. The code requests 20,000 samples from the posterior distribution after discarding a burn-in of 2,000 
samples. Three separate Markov chains are requested to evaluate the convergence of the chains to the target 
distributions of the parameters. Unlike the data structures assumed in Gemperli (2010) and Xia et al. (2010), the 
PROC MCMC specification here assumes each treatment-event combination is a separate row, which is more in line 
with the vertical structure of many CDISC data standards (CDISC Submission Data Standards Team, 2012). When 
summarizing data from the AE domain, it is important that rows exist for treatment-event combinations that do not 
occur so that 0 events are explicitly specified in these cases. 

Of particular note when comparing our specification to that of Gemperli (2010) is the use of RANDOM statements that 
simplify the specification of random-effects. While the RANDOM statement was available in earlier releases of PROC 
MCMC, this particular code requires SAS/STAT 12.1. Prior to SAS/STAT 12.1, random effects could not be specified 
as hyperparameters to other random effects. For example, 

random mu_Ga ~ normal(mu_G0, prec = tau2_G0) subject = s monitor = (mu_Ga); 

random G ~ normal(mu_Ga, prec = tau_Ga) subject = e monitor = (G); 

 

would not have been previously permitted. 
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Time at risk was not available for the data described in Mehrotra & Heyse (2004). However, assuming time at risk is 
available in order to fit the Xia et al (2010) model, make the following modifications to incorporate Tse and Cse. We 
assume that the times at risk for each event, similar to the number of subjects experiencing the event, were 
previously summarized.  

data ae; 

 format term $28.; 

 input e s term $ Y X T C; 

 datalines; 

… 

… 

run; 

 

data ae(drop = Y X T C); 

  set ae; 

  count = Y; trt = 1; ntc = 148; risktime = T; output; 

  count = X; trt = 0; ntc = 132; risktime = C; output; 

run; 

 

Further, in the PROC MCMC call change 

ptc = logistic(lp); 

model count ~ binomial(n = ntc, p = ptc);  

to 

ptc = log(lp); 

model count ~ poisson(mean = ptc*risktime); 

For either model, several instances of the following WARNING may appear in the log file after the PROC MCMC 
code compiles: 

WARNING: There is still significant autocorrelation after 500 lags, and the effective sample 

     size for the parameter XXXX might not be estimated accurately. 

These warnings can typically be eliminated using the THIN=k option in the PROC MCMC statement to keep every kth 

posterior sample. However, this is particularly wasteful. High autocorrelation is an indicator of poor sampling 
efficiency, so unless storage of posterior samples is of concern, the recommendation is to keep all posterior samples. 

As a note, parameters whose priors are defined using a PRIOR statement need to be included in one or more 
PARMS statements. From the PROC MCMC documentation: “Each PARMS statement defines a block of 
parameters, and the blocked Metropolis algorithm updates the parameters in each block simultaneously.” The code in 
the Appendix assumes one PARMS statement for each parameter, though these statements could have easily been 
specified differently. The user can examine the section “Blocking of Parameters” in the PROC MCMC documentation 
for details and recommendations. 

As specified, the MCMC macro passes seeds 500, 203 and 140 to PROC MCMC to generate multiple chains. Users 
are encouraged to choose specific seeds in order to reproduce results. Alternatively, users can initialize parameters 
within the PARMS statement to evaluate whether parameters converge to the target distribution from extreme starting 
values. The example “Gelman-Rubin Diagnostics” in the PROC MCMC documentation provides further explanation. 

To generate odds ratios or risk ratios within the PROC MCMC call, add the following lines: 

array OR_[40] OR_1 - OR_40; 

and  

OR_[e] = exp(T_[e]);. 

Similarly, indicators variables used to count whether treatment effects meet certain thresholds can be generated: 

array IND_[40] IND_1 - IND_40; 

and  

IND_[e] = (OR_[e] > 1);.  

Here, we have generated indicators based on whether there is an increase in risk for the treatment based on the 
odds or risk ratio. Remember to add these terms to the MONITOR option in the PROC MCMC statement. 
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Though PROC MCMC can calculate numerous summary statistics and diagnostics for the posterior samples, we did 
not include these specifications in our code in order to demonstrate the JMP10 MCMC Diagnostics add-in (Zink, 
2012). Only posterior samples from the log odds ratios of the treatment effect (T_1 – T_40) are kept in the output 
data set for illustrative purposes, though in general, diagnostics for all parameters should be evaluated. 

 

REVIEWING SUMMARY STATISTICS AND DIAGNOSTICS FOR POSTERIOR SAMPLES 
USING JMP® 

Here we describe a freely available JMP 10 add-in for reviewing summary statistics and diagnostics for posterior 
samples from one or more Markov chains (Zink, 2012). The user must have a free SAS profile in order to download 
the MCMC Diagnostics add-in. The input data can be from any source (e.g., SAS, WinBugs, BRugs), but it is 
assumed that the data set of posterior samples is sorted by Markov chain number and iteration (whether provided in 
the dialog or not), and that each chain has the same number of posterior samples. An example data set is shown in 
Figure 1, which summarizes the treatment parameters from the MCMC model using data from Mehrotra & Heyse 
(2004). All credible intervals and diagnostic calculations are performed on samples from the Markov chain that 
appears first in the data set (here, number 1). Samples from any additional Markov chains are used only to compute 
Gelman-Rubin diagnostics. Most variables within the data set will represent parameters from the specified model. 
The dialog can accommodate many parameters at once for analysis, though sets of similar parameters should be 
submitted so that forest plots of credible intervals are most meaningful. 

 

 
 

Figure 1. Posterior Samples from PROC MCMC Using Data from Mehrotra & Heyse (2004) 

 

 
 

Figure 2. JMP10 MCMC Diagnostics Dialog 
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The MCMC Diagnostics dialog (Figure 2) displays all of the variables (COLUMNS) of the input data set. The only 
requirement to run the add-in is that at least one PARAMETER should be specified. In these instances, it is assumed 
that all samples are from a single Markov chain, and samples will be numbered in trace plots from 1 to the total 
number of rows in the data set. If ITERATION is provided, trace plots will reflect appropriate sample numbers (say, if 
burn-in samples were removed). CHAIN specifies a numeric value if multiple Markov chains are generated to assess 
parameter convergence to the target distribution. COLOR PREFERENCE specifies the color (default Blue/Red) of 
any credible intervals that exclude the NULL VALUE (default 0). Under the defaults, intervals entirely to the right or 
left of the null value will be blue or red, respectively. Color can be particularly useful for the Bayesian hierarchical 
models discussed in this paper. The mixture distribution including a point mass at zero could mean the endpoints of 
many credible intervals will be extremely close to 0 (meaning no treatment effect), making visual interpretation 
without color difficult. ALPHA (default 0.05) calculates (1-α)˟100% credible intervals for the forest plots. 
 
The add-in generates the MCMC Viewer Window in Figure 3. The Diagnostics Tab provides histograms, density 
function curves and summary statistics of the posterior samples from Chain 1 for all parameters. Trace plots 
summarize the behavior of the Chain 1 samples over the iterations and can be used to assess convergence of the 
chain to the target distribution. Histograms and summary statistics summarize the autocorrelation of Chain 1 posterior 
samples up to lag 25. If the analysis includes multiple Markov chains, trace plots summarize all chains 
simultaneously, and Gelman-Rubin Statistics are provided.  
 
The interactivity of JMP is a key benefit of the add-in. The diagnostic output of all parameters except the first is 
initially collapsed. This output can be opened or closed by selecting the outline boxes in the Tab. By default, a non-
parametric kernel density curve is fit to the posterior samples in the histograms. However, the user can add multiple 
reference lines from the red triangle menu of the histogram (Figure 4). If needed, a partial autocorrelation or 
variogram summary figure can be generated from the red triangle menu of any trace plot. 
 
The Forest Plots of Credible Intervals Tab provides two figures of 95% credible intervals for the parameters using 
samples from Chain 1. Figure 5 summarizes equal-tailed credible intervals of the posterior samples. Here, the lower 
and upper endpoints for these intervals correspond to the 2.5

th
 and 97.5

th
 percentiles of the samples, respectively. 

Figure 6 summarizes the 95% highest posterior density (HPD) credible intervals, which are the narrowest intervals 
covering 95% of all samples. For both figures, the mean and median sample values are summarized using circles 
and diamonds, respectively. Only the intervals for T_17, which corresponds to the adverse event of irritability, exclude 
the assumed null value of 0. As in Berry & Berry (2004), we can conclude that treatment has an important effect on 
this adverse event. If needed, the underlying statistics for these figures are a button-click away (Figure 7). Note that 
PROC MCMC documentation refers to forest plots as caterpillar plots. 
 
The Univariate Posterior Probability Calculator enables the user to define probability statements for the parameters, 
the results of which are summarized in a table (Figure 8). Ranges can be added manually, or the sliders can be used 
to select limits which are restricted to the minimum and maximum values of the samples for all parameters from 
Chain 1. The Multivariate Posterior Probability Calculator lets the user define probability statements that consider two 
or more parameters simultaneously. Figure 9 illustrates this calculator using only the treatment parameters from the 
first five adverse events. We calculate the posterior probability that treatment has an undesirable effect (essentially 
each parameter greater than 0) on astenia/fatigue, fever, infection-fungal, infection-viral and malaise simultaneously 
as 0.1756. However, since this particular model does not account for the association between different adverse 
events, this probability may be misleading. The multivariate calculator makes use of the JMP Data Filter to select 
data table rows meeting the criteria defined in the filter. Alternatively, the user can open the data table and select 
rows manually, or apply a function to the columns of interest. Once rows are selected, the user can push the 
Calculate Posterior Probability button. 
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Figure 3. MCMC Diagnostics Including Histogram and Density Function of Posterior Samples, Trace Plots, 
Autocorrelation Assessment and Gelman-Rubin Statistics 
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Figure 4. Adding Reference Curves Interactively 

 

 
 

Figure 5. 95% Equal-Tailed Credible Intervals of Posterior Samples 
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Figure 6. 95% Highest Posterior Density (HPD) Credible Intervals of Posterior Samples 

 

 
 

Figure 7. Data Table of Parameter Means and Credible Intervals of Chain 1 
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Figure 8. Univariate Probability Calculator 

 

  

Figure 9. Multivariate Probability Calculator 
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CONCLUSIONS 

In this paper, we summarized two Bayesian three-level hierarchical mixture models for the analysis of adverse events 
and provided PROC MCMC code using SAS 9.3 and SAS/STAT 12.1 software (Berry & Berry, 2004; Xia et al., 2010). 
Further, we demonstrated the flexibility of JMP for reviewing posterior samples from models fit using Markov Chain 
Monte Carlo (Zink, 2012). Though the models described here only consider a single study comprising two treatment 
arms, the PROC MCMC specification provided can be extended to include additional treatment arms or effects to 
account for multiple studies. These hierarchical models will be included in a future release of JMP Clinical. 

The models as defined utilize summary statistics at the event level and do not explicitly model the association among 
adverse events. If interested, the reader can review the multivariate Bayesian logistic regression model of DuMouchel 
(2012) for an example of hierarchical models that take advantage of subject-level data. However, one benefit of 
relying on data summarized at the event level is that it is straightforward to model a mixture of ongoing trials and data 
from trials taken from the literature. 
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APPENDIX: PROC MCMC CODE 

libname out "<<Your Directory Name Here>>"; 

 

data ae; 

 format term $28.; 

 input e s term $ N_T N_C ; 

 datalines; 

 1 1 Astenia/fatigue 57 40 

 2 1 Fever 34 26 

 3 1 Infection-fungal 2 0 

 4 1 Infection-viral 3 1 

 5 1 Malaise 27 20 

 6 2 Anorexia 7 2 

 7 2 Cendisiasis-oral 2 0 

 8 2 Constipation 2 0 

 9 2 Diarrhea 24 10 

 10 2 Gastroenteritis 3 1 

 11 2 Nausea 2 7 

 12 2 Vomiting 19 19 

 13 3 Lymphadenopathy 3 2 

 14 4 Dehydration 0 2 

 15 5 Crying 2 0 

 16 5 Insomnia 2 2 

 17 5 Irritability 75 43 

 18 6 Bronchitis 4 1 

 19 6 Congestion-nasal 4 2 

 20 6 Congestion-respiratory 1 2 

 21 6 Cough 13 8 

 22 6 Infection-upper-respiratory 28 20 

 23 6 Laryngotracheobronchitis 2 1 

 24 6 Pharyngitis 13 8 

 25 6 Rhinorrhea 15 14 

 26 6 Sinusitis 3 1 

 27 6 Tonsillitis 2 1 

 28 6 Wheezing 3 1 

 29 7 Bite/sting 4 0 

 30 7 Eczema 2 0 

 31 7 Pruritis 2 1 

 32 7 Rash 13 3 

 33 7 Rash-diaper 6 2 

 34 7 Rash-measles/rubella-like 8 1 

 35 7 Rash-varicella-like 4 2 

 36 7 Urticaria 0 2 

 37 7 Viral-exanthema 1 2 

 38 8 Conjunctivitis 0 2 

 39 8 Otitis-media 18 14 

 40 8 Otorrhea 2 1 

 ; 

run; 

 

data ae(drop = N_T N_C); 

  set ae; 

  count = N_T; trt = 1; ntc = 148; output; 

  count = N_C; trt = 0; ntc = 132; output; 

run; 
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%macro MCMC(suffix = , seed = ); 

  %let mu_G00 = 0;   %let mu_T00 = 0; 

  %let tau2_G00 = 10;  %let tau2_T00 = 10; 

  %let A_G = 3;     %let A_T = 3; 

  %let A_G00 = 3;    %let A_T00 = 3; 

  %let B_G = 1;     %let B_T = 1; 

  %let B_G00 = 1;    %let B_T00 = 1; 

  %let L_A = 0.1;    %let L_B = 0.1; 

 

  proc mcmc data = ae seed = &seed nmc = 20000 dic maxtune = 500  

monitor = (_parms_ T_1-T_40) outpost = outpost&suffix nbi = 2000; 

   *** Treatment Effects for the 40 Adverse Events ***; 

   array T_[40] T_1 - T_40;    

   parms mu_G0; 

   parms tau2_G0; 

   parms mu_T0;  

   parms tau2_T0; 

   parms A_P; 

   parms B_P; 

 

   *** Hyperpriors for Gammas ***; 

   prior mu_G0 ~ normal(&mu_G00, prec = %sysevalf(1/&tau2_G00)); 

   prior tau2_G0 ~ gamma(&A_G00, iscale = &B_G00); 

   *** Hyperpriors for Thetas ***; 

   prior mu_T0 ~ normal(&mu_T00, prec = %sysevalf(1/&tau2_T00)); 

   prior tau2_T0 ~ gamma(&A_T00, iscale = &B_T00);  

   *** Hyperpriors for Pis ***; 

   prior A_P ~ expon(iscale = &L_A, lower = 1); 

   prior B_P ~ expon(iscale = &L_B, lower = 1); 

 

   random mu_Ga ~ normal(mu_G0, prec = tau2_G0) subject = s monitor = (mu_Ga); 

   random tau_Ga ~ gamma(&A_G, iscale = &B_G) subject = s monitor = (tau_Ga); 

   random G ~ normal(mu_Ga, prec = tau_Ga) subject = e monitor = (G); 

 

   random mu_Ta ~ normal(mu_T0, prec = tau2_T0) subject = s monitor = (mu_Ta); 

   random tau_Ta ~ gamma(&A_T, iscale = &B_T) subject = s monitor = (tau_Ta);   

   random T1 ~ normal(mu_Ta, prec = tau_Ta) subject = e monitor = (T1); 

 

   random P ~ beta(A_P, B_P) subject = s monitor = (P); 

   random Bi ~ binary(P) subject = s monitor =(Bi); 

    

   T_[e] = (1 - Bi) * T1; 

 

   lp = G + T_[e] * trt; 

   ptc = logistic(lp); 

   model count ~ binomial(n = ntc, p = ptc);     

  run; 

%mend MCMC; 

 

*** Generate 3 Independent Chains ***; 

%MCMC(suffix = 1, seed = 500); 

%MCMC(suffix = 2, seed = 203); 

%MCMC(suffix = 3, seed = 140); 

 

data out.events(keep = chain iteration T_1-T_40); 

  set outpost1(in = ina) outpost2(in = inb) outpost3(in = inc); 

  if ina then chain = 1; 

  else if inb then chain = 2; 

  else if inc then chain = 3; 

run; 
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