
1

Paper 091-2013

Information Retrieval in SAS®:
The Power of Combining Perl Regular Expressions and Hash Objects

Lingxiao Qi, Kaiser Permanente Southern California, California, USA;

Fagen Xie, Kaiser Permanente Southern California, California, USA

ABSTRACT
The volume of unstructured data is rapidly growing. Effectively extracting information from these huge unstructured
data is a challenging task. With the introduction of Perl regular expressions and hash objects in SAS 9, the
combination of these two tools is very powerful in information retrieval. Perl regular expressions is useful in searching
and manipulating various complex string patterns. The hash object provides an efficient and convenient way for fast
data storage and retrieval. By leveraging both tools on the electronic medical data, we are able to demonstrate how
pattern searching on free text can be simplified while reducing coding effort and running time.

INTRODUCTION
The volume of unstructured electronic text is rapidly growing in many areas, including electronic medical records. A
simple term such as “disease” embedded in free text can be presented in many different ways. Therefore, finding an
approach to accurately and quickly retrieve information becomes an interesting yet challenging topic.

Suppose there is a huge unstructured text document that needs to be scanned through for vital information using
hundreds of complex patterns. One approach is to use a bunch of IF THEN and ELSE statements with INDEX,
SUBSTR and FIND functions, but that is time-consuming and prone to typing errors. Instead, we could rewrite these
complex patterns in concise Perl regular expressions, which can be stored into a hash object, and be searched on
using a hash object iterator. This paper will give a few examples of Perl regular expression functions, show how to
create hash objects, and finally give a complete program to demonstrate the power of combining these two tools.

PERL REGULAR EXPRESSION (PRX) FUNCTIONS
While Perl regular expressions (combinations of characters and special characters) offer a quick and simple way to
define a complex string pattern, its syntax can be a complicated concept to grasp. The focus of this section is to
illustrate a few PRX functions rather than drilling into details of Perl syntaxes. Users can find more information from
the SAS documentation or the SAS Tip Sheet [1]. This paper will briefly discuss three PRX functions and call
routines PRXPARSE, PRXFREE and PRXMATCH, which are used in the final program.

PRXPARSE
This function compiles a string or regular expression and returns a pattern identifier number that can be called later
by other PRX functions. The text string or regular expression passed into the parameter needs to be enclosed in
either single or double quotes. The following expression finds the string that contains the words “sleepy” and “bunny”.
Specifically, it searches for any string that contains “sleepy” followed by any character, followed by a space, followed
by “bunny”, followed by any characters or non-character until a word boundary is reached. The compiled expression
id is saved in variable rc.

rc = PRXPARSE('/\b(sleepy\w* bunny)\b/');

A function can also be passed into PRXPARSE. The next piece of code shows the SYMGET function that extracts
the value of a macro variable named myvar and its value is then passed into PRXPARSE.

%let myvar = /\b(sleepy\w* bunny)\b/;
rc = PRXPARSE(SYMGET('myvar'));

Data Mining and Text AnalyticsSAS Global Forum 2013

2

PRXFREE
To release the memory allocated for a regular expression id, use call routine PRXFREE. This takes in a regular
expression id, in this case the variable rc retruned by PRXPARSE. It is a good coding practice to release memory
after a task is completed, especially when memory is limited.

Call PRXFREE(rc);

PRXMATCH
This function takes in two parameters. The first parameter can either be a string, a Perl regular expression, or a
pattern id number returned by a PRXPARSE function. The second parameter is the text string to be searched
against. This function returns the first position at which the pattern is found or 0 if not.

Here is an example that searches the word “bunny” in “The bunny on the lawn” and returns position number 5.

pos = PRXMATCH('/bunny/', 'The bunny on the lawn');

In this example, variable rc contains the pattern id from PRXPARSE example, and PRXMATCH returns position 12.

pos = PRXMATCH(rc, 'There is a sleepy bunny on the lawn');

HASH OBJECTS AND HASH ITERATOR
The hash object is efficient and convenient when it comes to data storage and retrieval. In short, the hash object is
essentially a lookup table stored in computer memory with a unique key and data components. The hash object
stores and retrieves data based on lookup keys, while the hash iterator object acts as a pointer and iterates the hash
object in forward or reverse key order. Although the iterator object is not necessary, it is very useful for direct
accessing, adding and removing data entries.

Hash objects are declared in DATA steps. While a hash object can only exist within the duration of its DATA step,
multiple hash objects can be created in the same DATA step. This section will briefly introduce the key steps to
create a hash object. For more information, check the SAS online documentation or SAS Hash Object Tip Sheet [2].

There are four basic components in a hash object:

• DECLARE statement

• DEFINE method

• DEFINEDATA method

• DEFINEDONE method

DECLARE STATEMENT
The simplest declaration and instantiation of a hash object is made by calling DECLARE, which allocates memory for
the object. The following code creates a hash object called myhash.

DECLARE hash myhash ();

The parentheses following myhash can also take in parameters in the form of tags. In the following example, there
are two tags DATASET and ORDERED. The DATASET tag is followed by mydataset, a lookup table with unique
keys. The ORDERED tag followed by ‘YES’ indicates the keys are to be sorted in ascending order when the lookup
table is loaded. Other sorting options include a (ascending), d (descending) and no (keep the order as it is). The
values of the tags should be included in either single or double quotes.

DECLARE hash myhash (dataset: 'mydataset', ordered:'YES');

DEFINEKEY METHOD
The DEFINEKEY method specifies the name of the hash key for the lookup table. In object oriented programming,
invoking a hash object method is made by a dot notation. In the following code, myhash object calls DEFINEKEY
method along with the name of the hash key mykey in single quotes. This method returns zero for successful
executions, and non-zero otherwise.

rc = myhash.DEFINEKEY('mykey');

Data Mining and Text AnalyticsSAS Global Forum 2013

3

DEFINEDATA METHOD
The DEFINEDATA method specifies the data variables (the data part of the hash object) that are associated with the
hash key. For any data variables that need to be included in the DATA step, their names need to be listed in quotes,
separated by commas. In the following example, myvar from myhash object will be included as part of the output.
Since mykey is not listed it will not be included when the DATA step is finished. This method returns zero for
successful executions and non-zero otherwise.

rc = myhash.DEFINEDATA('myvar');

DEFINEDONE METHOD
To finish the declaration, DEFINEDONE method is called with no arguments. The DEFINEDONE method is called by
myhash object in the following code.

rc = myhash.DEFINEDONE();

Using hash objects, we can merge two data sets sharing the same linking key in one DATA step, which accomplishes
the same task as a MERGE statement. The advantage of using hash objects to merge two data sets is that no
sorting is needed beforehand.

The code below defines a large data set called largedata that contains linking key patient_id and several other
variables, and a small patient name lookup table called mydataset that contains a unique hash key patient_id and a
data component patient_name. We would like to match every record from largedata with mydataset to obtain the
patient_name. The LENGTH statement assigns the attributes of the variables listed in the DEFINEKEY and
DEFINEDATA methods. SAS log will print variables uninitialized if variables are not initialized, which can be avoided
by using CALL MISSING routine. The FIND method is used in searching the hash table myhash for each key that
matches largedata. When rc=0 (match found) is returned by FIND method, data is outputted. The resulting data set
outdataset will contain records both exist in largedata and mydataset.

data outdataset;
length patient_id $10 patient_name $10;
if _N_ = 1 then do;
DECLARE hash myhash (dataset: 'mydataset', ordered:'YES');
rc = myhash.DEFINEKEY('patient_id');
rc = myhash.DEFINEDATA('patient_id', 'patient_name');
rc = myhash.DEFINEDONE();
CALL MISSING (patient_id, patient_name);
end;

set largedata(keep=patient_id diagnosis visit_type);
rc = myhash.FIND();
if (rc = 0) then output;
drop rc;

run;

HASH ITERATOR
The hash iterator, or hiter, is much like a pointer that iterates through the hash object from the beginning to the end
and vice versa. To declare a hash iterator object, use DECLARE hiter followed by an assigned name, myiter in the
sample code. The name of the hash object myhash is passed in single quotes to establish a connection between the
hash object and its iterator.

DECLARE hiter myiter('myhash');

Four basic iterator methods are available:
• myiter.FIRST() – Retrieves the value of the first entry of the hash object.

• myiter.PREV() – Retrieves the value of previous entry of the hash object.

• myiter.NEXT() – Retrieves the value of the next entry of the hash object.

• myiter.LAST() – Retrieves the value of the last entry of the hash object.

Data Mining and Text AnalyticsSAS Global Forum 2013

4

APPLYING PERL REGULAR EXPRESSIONS AND HASH OBJECTS
In this section, we apply Perl regular expressions and hash objects in information retrieval for healthcare research
use. In medical fields, doctors often document discharge summaries and clinical notes on surgery progress,
radiology exams, patient history and etc. These notes are usually free text documents with substantial amount of
important data for medical researches and care management improvements. By leveraging regular expressions and
hash objects, we are able to skim through these unstructured texts and only focus on relevant information.

To illustrate, we conducted a research project to identify women with preeclampsia during pregnancy based on their
clinical notes. In order to identify this cohort, the first step is to exclude patients that did not develop this
complication, which means that we need to gather and collect English phrases that are construed as negation. The
list of phrases is gerenated from a published comprehensive negation terms [3] and phrases collected from our
research. Examples of negation terms include “no evidence of”, “denied” or “rule out”. These terms are then saved
into a text file called “negation.list”.

Here is the complete code that searches clincal notes using different combintations of negation phrases containing
preeclampsia condition:

data negation_concepts;
length key $4 concepts $200;
infile "negation.list" truncover;
input @01 key $4.
 @05 negterms $100.;
concepts="/(^|\W)"||strip(negterms)||strip("(PRE(\s|\-)?ECLAMPSIA)(\W|$)/");
run;

data cond_possible rule_out;
length key $4 concepts $200;
set clinical_note(in=a keep=phrase line patient_id);

 if _N_ = 1 then do;
 DECLARE hash myhash(dataset:"work.negation_concepts",ordered:'YES');
 rc = myhash.DEFINEKEY('key');
 rc = myhash.DEFINEDATA('key','concepts');
 rc = myhash.DEFINEDONE();
 CALL MISSING (key, concepts);
 DECLARE hiter myiter('myhash');
end;

rc = myiter.first();
do while (rc = 0);
 rc1=PRXPARSE(strip(concepts));
 if PRXMATCH(rc1, phrase)>0 then do;
 output rule_out;
 call PRXFREE(rc1);
 goto next_obs;
 end;
 call PRXFREE(rc1);
 rc = myiter.next();
end;

output cond_possible;
next_obs:;
run;

The first DATA step reads in a list of negation terms from “negation.list” and concatenate each term with the medical
condition of interest. Since preeclampsia could be written differently, it is sensible to express preeclampsia using
regular expressions. An example of resulting variable concepts is the following:

"/(^|\W)(NO EVIDENCE OF)(PRE(\s|\-)?ECLAMPSIA)(\W|$)/";

Data Mining and Text AnalyticsSAS Global Forum 2013

5

This expression can be broken down into four parts:

• The first part, (^|\W) matches either the beginning of the line or any non-word character such as a parenthesis,
bracket, space or plus sign.

• The second part is the negation term, in this case NO EVIDENCE OF followed by a space.

• The third part is the medical condition, which is presented by characters PRE followed by an optional space or a
dash, followed by ECLAMPSIA.

• The last part (\W|$) matches either the end of the line or a non-word character.

In the second DATA step, the hash object searches for concepts matches against the free text variable phrase in
the clinical_note data set.

• After the first iteration (when _N_=1), a hash object myhash with a hash key key is created along with a hash
iterator object myiter on the negation_concepts lookup table.

• Then myiter calls the iterator method FIRST, which copies the contents of the first item from myhash into the
data variable concepts. While there are items to be read (rc=0), each item of the hash table is accessed one by
one in the DO loop.

• The regular expression variable concepts is passed into PRXPARSE function in the next step.

• Next, the PRXMATCH method searches the phrase variable for matching string patterns. If a match is found
(PRXMATCH > 0) then all variables from clinical_note plus data variables from DEFINEDATA are outputted into
rule_out dataset. Then a function call to PRXFREE releases the memory space of the regular expression rc1
and exits the DO loop.

• If no match is found (PRXMATCH = 0), occupied memory is also released. Then myiter object calls NEXT
method to point to the next entry in myhash object in ascending order.

• Records with no string patterns matched are outputted to the cond_possible data set.

The accuracy of the data matching depend on the preciseness of the search criteria. The records in rule_out data
set should be comprised of women without preeclampsia, but it is plausible there are missed subjects in the
cond_possible data set due to typing mistakes in the text or missed negation terms. Furthermore, this program only
takes into consideration of pre-UMLS negation phrases (negation terms that occur before the medical concept).
Other types of negation, pseudo neagtion (terms that are not true negation phrases) and post-UMLS negation (terms
that follow the medical concept they are negating) [4] have not taken into account. As mentioned previously, the
presented code is only the first phase of our data exploration, further text analysis is required to obtain the desired
cohort.

As shown in the above program, pattern matching on unstructured text is done in one simple DO loop. If string
patterns were to be added or modified, we just simply change the negation list without touching the SAS code. In
addition, the code can be easiliy customized. With adjustments such as adding another hash object to accommodate
multiple medical conditions of interest, this program is very versatile.

CONCLUSION
Perl regular expressions and hash objects are already powerful on their own, joining them together will greatly
improve text analytics. This paper is intended to show how text searching is simplified by utilizing both tools rather
than giving an in depth discussion of each tool. In this paper, we demonstrated both perl regular expressions and
hash objects for effective information retrieval in clinical notes. This combined method can be easily applied for
information retrieval in other areas.

REFERENCES
1. SAS Perl Regular Expressions Tip Sheet

http://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf

2. SAS Hash Object Tip Sheet
http://support.sas.com/rnd/base/datastep/dot/hash-tip-sheet.pdf

Data Mining and Text AnalyticsSAS Global Forum 2013

http://support.sas.com/rnd/base/datastep/dot/hash-tip-sheet.pdf

6

3. Chapman, Wendy and others NegEX algorithm
http://code.google.com/p/negex

4. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A Simple Algorithm for Identifying Negated
Findings and Diseases in Discharge Summaries. Journal of Biomedical Informatics, 2001. 34: p. 301-310.

RECOMMENDED READING
1. Cody, Ron (2004), An Introduction to Perl Regular expression in SAS 9, Proceedings of the 2004 SAS Users

Group International Conference.

2. Eberhardt, Peter (2011). The SAS® Hash Object: It’s Time to .find() Your Way Around, Proceedings of the 2011
SAS Global Forum (SGF) Conference.

3. Dorfman, Paul, and Koen Vyverman (2006). DATA Step Hash Objects as Programming Tools, Proceedings of
the 2006 SAS Users Group International Conference.

4. Secosky, Jason and Janis Bloom (2007). Getting Started with the DATA Step Hash Object. Proceedings of the
2007 SAS Global Forum (SGF) Conference.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Lingxiao Qi
Kaiser Permanente Southern California
Department of Research and Evaluation
100 S. Los Robles Ave, 2nd Floor
Pasadena, CA 91101
Work Phone: (626) 564-5738
Email: lingxiao.qi@kp.org

Fagen Xie
Kaiser Permanente Southern California
100 S. Los Robles Ave, 2nd Floor
Pasadena, CA 91101
Work Phone: (626) 564-3294
Email: fagen.xie@kp.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Data Mining and Text AnalyticsSAS Global Forum 2013

http://code.google.com/p/negex
mailto:lingxiao.qi@kp.org
mailto:fagen.xie@kp.org

	2013 Table of Contents

