
1

Paper 072-2013

SAS-Oracle Options and Efficiency: What You Don’t Know Can Hurt You
John E. Bentley, Wells Fargo Bank

ABSTRACT

SAS/Access
®
 engines allow us to read, write, and alter almost any relational database. Using the engine right out of

the box works OK, but there are a host of options and techniques that if properly used can improve performance,
sometimes greatly. In some cases though an incorrect option value can degrade performance and you may not even
know it. This paper will review SAS/Access for Oracle engine options that can impact performance. Although the
focus is on Oracle, most of the options reviewed are cross-database. All levels of SAS

®
 programmers, Enterprise

Guide
®
 users, and Oracle and non-Oracle database users should find the paper useful.

INTRODUCTION

SAS Institute and Oracle Corporation have a cooperative relationship going back over 25 years to SAS Version 6.
The shared goal in the partnership is to insure that their shared customers fully benefit from an integrated and
optimized SAS-Oracle environment.

An on-going joint initiative is a “modernize and optimize” program in which SAS and Oracle staff team up to provide
architectural recommendations that take advantage of the latest SAS Analytical Solutions and Oracle Exastack,
Solaris, and WebLogic technologies. SAS and Oracle also partner to offer “SAS Grid-in-a-Box”, a package that
combines SAS Grid Manager with Oracle’s Exalogic System. With SAS Version 9.2, a half-dozen Base procedures
were enhanced to use Oracle in-database processing for significant performance improvement—the aggregations
and analytics are run inside the database and only the much smaller results set is returned to SAS.

Advances like in-database processing are still in the future for many if not most SAS users. Today, using SAS to
read from and write to Oracle tables is probably the most way SAS and Oracle are used together. In this paper we’ll
start with a short overview of SAS/Access for Oracle and then address specific challenges you might find when
working with relational database data. Solutions will of course be suggested.

In the SAS environment, we work with libraries, data sets, observations, and variables. Oracle calls these objects
schema, tables, rows, and columns. Observations and variables are also known as records and fields. In this paper
the names will be used interchangeably.

A QUICK OVERVIEW OF SAS AND ORACLE

One of the results of the SAS-Oracle partnership is that SAS easily works with Oracle tables via SAS/Access for
Oracle. Tools like SQL*Plus, SQL Navigator, or Toad for Oracle not are really necessary but can be useful for simple
exploratory analysis of an Oracle table. With SAS/Access, we can use the Oracle LIBNAME Engine to do probably
90% or more of work we need to do with Oracle. For the other 10% SAS’s SQL Pass-Through Facility allows queries
written with native Oracle extensions as well as Oracle DDL, DCL, and TCL statements to be passed directly to the
database so you can do things like generate statistics and grant permissions.

Using SAS/Access for Oracle you can join not only SAS data sets and Oracle tables, but an Oracle table to an Oracle
table. If you have a second SAS/Access product like Access to DB2, you can join Oracle and DB2 tables, with or
without a SAS data set.

This paper is not an introduction to SAS/Access, so we’ll just say that SAS/ACCESS for Oracle provides access to
Oracle data via three methods—

 A LIBNAME statement with the Oracle engine allows an Oracle table to be referenced using a two-level
name in a DATA Step or PROC just as you would with a SAS data set. You do not need to know Oracle
SQL syntax or extensions because the SAS code is translated into Oracle behind the scenes.

 The CONNECT TO enables the SQL Pass-Through Facility that allows native Oracle SQL to be coded and
passed directly to the database for processing. This insures that the database can optimize queries and
take advantage of indexes. Even better, SQL Pass-Through can execute all Oracle data definition, data
manipulation, data control, and transaction control statements.

 The ACCESS and DBLOAD procedures are no longer recommended but still support indirect Access for
Oracle tables.

Data ManagementSAS Global Forum 2013

2

Task How to do it

Read a table or view LIBNAME statement

 Pass-Through Facility

 View descriptors

Create a table and SELECT or
process fields in an existing
table

 LIBNAME statement

 SQL Pass-Through Facility

 PROC DBLOAD

Update, delete, or insert rows
into a table

 LIBNAME statement

 SQL Pass-Through Facility

 View descriptors

Append rows to a table LIBNAME statement with APPEND procedure

 PROC DBLOAD with the APPEND option

 SQL Pass-Through Facility

List tables in a schema LIBNAME statement and

 the SAS Explorer window

 PROC DATASETS

 PROC CONTENTS

 PROC SQL and dictionary tables

Delete tables or views LIBNAME statement, PROC SQL and the DROP Table
statement

 LIBNAME statement, PROC DATASETS and the DELETE
statement

 PROC DBLOAD with DROP TABLE statement

 SQL Pass-Through Facility’s EXECUTE statement

Grant or revoke privileges,
Create a savepoint

Rollback transactions

Call a PL/SQL program

 SQL Pass-Through Facility EXECUTE statement

Table 1. SAS/Access for Oracle, Common Tasks

CONNECTING TO ORACLE

This paper won’t go into details, but when specifying a LIBNAME for Oracle for the first time, the best approach is to
get libref code from someone who already has it working. (Does that sound familiar?) If you can’t get one, the
SAS/Access Supplement for Oracle lays it out very well and it’s actually quite straightforward. The References

section has a link to a SAS Tech Note with some examples.

You can connect SAS on a desktop directly to an Oracle database or you can work with the SAS/Windows Editor and
remote submit to SAS on a server that connects to the database. Either way, Oracle Client software must be
installed on the platform that connects to the database and Client must have a driver that matches the SAS version
that’s running.

 SAS 9.1 requires the Oracle Client 8.1.7 or higher

 SAS 9.2 and 9.3 require the Oracle Client 10.2 or higher

If SAS won’t connect to Oracle, the error messages are very obvious. For example,

libname orcDB oracle path=’orcl4’ schema=’test_hm’ user=tarzan pass=’Cheetah#1’;

ERROR: The SAS/ACCESS Interface to ORACLE cannot be loaded. The SASORA code

appendage could not be loaded.

In this case, the problem is that the SAS executable SASORA can’t be found and you should double-check to see
that SAS/ACCESS for Oracle is properly installed and available to your session. Other troubleshooting steps might
include checking that the LIBNAME PATH= option is correct—here you place the same Oracle path designation that
you use to connect using one of the other tools like SQL Navigator. Also see if you can establish an Oracle session
using a something like SQL Navigator. Always try support by friendship—find someone who can connect and see
how they do it.

Data ManagementSAS Global Forum 2013

3

CHALLENGE #1 – DIFFERENT NAMING CONVENTIONS

While SAS and Oracle work well together, there are important basic differences in naming conventions that you need
to know.

 SAS and Oracle both allow long names for tables and fields but the maximum length is different—32 versus
30 characters.

 The naming rules themselves are different. Oracle names must begin with a letter and can include
underscore (_), #, and $ unless the name is enclosed in double quotes. Then it can begin with a number
and include any special characters and blanks. This is similar to the rarely seen (for the author anyway)
SAS name literal that is a quoted string followed by the letter n, such as ‘December 2012 balance’n;

 SAS is case insensitive when it comes to names. It stores names as case-sensitive for readability but
ignores case during processing. EMPLOYEE and employee are the same variable. But in Oracle, double-
quotes make the name case sensitive—employee, “employee’, “Employee”, “EMPLOYEE”, “eMpLoYee” are
all valid field names that can be in the same table and are all valid tables in the same schema.

 Both SAS and Oracle have specific words that are reserved and cannot be used for table or field names.
Oracle’s list is quite extensive and differs greatly from SAS’s. The Reference section has a couple useful
links listing reserved words.

What happens when SAS encounters an Oracle field name that is non-standard for SAS? The default behavior is to
replace the ‘invalid’ character with an underscore (_) and then appends a number to preserve uniqueness. Oracle
fields balance$ and balance% from the same table would become balance_1 and balance_2 in SAS.

And what about Oracle? Well, it simply throws a very obvious error when you try to use an invalid name. There’s
nothing to be done about that but there are two SAS options presented in Table 1 that tell Oracle how to handle what
it sees as a non-standard name being passed from SAS.

OPTIONS THAT HELP WITH NAMING ISSUES

If you expect to be querying Oracle columns that are not valid SAS variable names then you can use either the
DQUOTE=ANSI option with PROC SQL or the VALIDVARNAME=ANY option with a LIBNAME. This will allow
queries like this to run—

libname orcDB oracle path=’orcl4’ schema=’test_hm’ user=tarzan pass=’Cheetah#1’;

proc sql dquote=ansi;

select sum (’TOTAL_Cost$’) as total_cost

from orcDB.activity;

Option Valid Values Description/Explanation

DQUOTE= ANSI | SAS A PROC SQL option, overrides the VALIDVARNAME
option if present. The value ANSI allows SAS to treat
values enclosed in double-quotes as a variable name. This
allows SAS to use non-standard Oracle column names.
The default is SAS and values in double-quotes are treated
as character strings.

VALIDVARNAME= V7 | UPCASE | ANY Specifies the naming rules for SAS names to use during
the session. The value ANY allows compatibility with
RDBMS names that contain blanks and special characters.
Names will be expressed as a name literal, enclosed in
single quotes and having a training n. ‘December 2012
balance’n

PRESERVE_NAMES= YES | NO Combines both PRESERVE_COL_NAMES= AND
PRESERVE_TAB_NAMES=.

PRESERVE_COL_NAMES= YES | NO Controls how Oracle handles non-standard column coming
in from SAS when a table is created.

 The default is NO and Oracle converts column names
using its internal naming conventions (e.g., uppercase)

 YES retains the case of the word and, if you’re using
SAS name literals, special characters.

Data ManagementSAS Global Forum 2013

4

Option Valid Values Description/Explanation

PRESERVE_TAB_NAMES= YES | NO Controls how Oracle handles non-standard table SAS-
specified table name. The impact of the valid values is the
same as with preserve_col_names.

When using a LIBREF to display a list of Oracle tables in
the SAS explorer window, PRESERVE_TAB_NAMES=
controls whether or not nonstandard Oracle table names
are displayed. To see them, specify YES.

Table 2. Options for Handing Naming Conventions

CHALLENGE #2 – READING ORACLE TABLES

Where the author works, the bulk of our Oracle activity involves using it as a data source—reading data from Oracle
tables. Our databases contain a mix of tables that are basically flat files (lots of redundant data) and first, second,
and third normal forms that can require complex joins and self- and recursive joins. Many of the tables—especially
those created and maintained by smaller departmental teams—are not partitioned or don’t have indexes. Queries
return results sets ranging from a few hundred or thousand records to 30+ million rows. Ad-hoc analytic jobs run any
time during the day but production jobs generally run at night between about 7 pm and 7 am.

The mechanics of SAS querying a database are simple. SAS statements whether in PROC SQL, a DATA Step, or a
PROC like FREQ or MEANS are converted into SQL by the SAS/Access software and passed to the database. The
database executes the SQL and produces a results set consisting of rows and columns. The results set is then
passed back to SAS for further processing or, less often, written to an Oracle table.

The very first option to be aware of and consider changing is READBUFF=. This value sets the number of records
read into the memory buffer and returned to SAS in a single fetch operation. The default is 250 and for a narrow
results set (one that has a comparatively short record length) that may be too few. On the other hand, for a wide
results set it may be correct. Adjusting the number of records held in the buffer can improve or degrade performance.
Keep in mind that increasing the size of the buffer uses more memory and you may run into constraints or diminishing
returns. For production jobs, this option is worth experimenting with to find the optimal size.

To see the current value of READBUFF or any option, use PROC OPTIONS.

proc options option=readbuff define value lognumberformat;

run;

THREADED READS

An important ‘trick’ to extracting a large volume of data efficiently from Oracle is to use threaded reads. The
operative word here is ‘large’. Threaded reads significantly increase performance only when there is a whole lot of
data being read—we’re talking hundreds of megabytes or gigabytes—and they have some potential to actually slow
things down. They’re also a double-edged sword. (Nothing is free, right?) They can greatly reduce the elapsed time
of a SAS step but increase the load on the database. They reduce the time it takes to move data across the network
but use more bandwidth during that time. This paper cannot provide comprehensive instructions for using threaded
reads, so for the details look at the SAS/Access for Relational Databases: Reference. There are also a number of
SAS Conference papers that address threaded reading.

Starting with Version 9, SAS has the ability to retrieve a database query results set using multiple simultaneous data
streams, a technique called threaded reading. Multiple database connections are spawned, used, and then closed.
For very large amounts of data, the performance improvement is amazing. All things being equal, using four threads
will return the data in one-quarter the time it takes for a single thread.

SAS’s threaded reading capability is enabled in the SAS configuration file, at invocation, or with system options. The
option THREADS= enables SAS PROCS and the DATA Step to take advantage of multiple CPUs even when
databases aren’t involved. The option CPUCOUNT= specifies the maximum number of CPUs to use. Finally, there
is also an option that controls when SAS uses threads to read databases: DBSLICEPARM=.

DBSLICEPARM= can be set at the system, libref, or procedure level and the rules of precedence apply. When the
options THREADS is specified, by default DBSLICEPARM= is set to THREADED_APPS. With this value the SQL,
MEANS, SUMMARY, REG, and SORT Procedures and some others are eligible for threaded read processing. The
value ALL extends threaded reading eligibility to steps that only read data, specifically the DATA Step and PROC
PRINT. The NONE value turns off threaded reading even when THREADS is enabled. NONE remains in effect until
THREADED_APPS or ALL is issues. There is a second argument for DBSLICEPARM= that overrides the value of
CPUCOUNT to limit the number of threads.

Data ManagementSAS Global Forum 2013

5

In this example, SAS will attempt to always perform threaded database reads using four threads.

OPTIONS THREADS CPUCOUNT=4 DBSLICEPARM=ALL;

With threading enabled, SAS tries to make the database partition the results set and if successful assigns one thread
per partition. ‘Partitioning’ here means breaking the results set into a number of separate results sets. How to
partition the data is handled behind the scenes by SAS automatically adding a WHERE clause to the SQL so that the
query itself become multi-threaded, resulting in multiple results sets. The WHERE applies the MOD function to
generate a partitioning strategy. But as the documentation points out, MOD can’t always be used and it’s not
guaranteed to produce the best approach. For details, see the “Autopartitioning Techniques” section of the
SAS/Access documentation and also read up on the MOD function.

Threaded reads will not automatically occur in certain situations:

 If all the columns eligible for the MOD function are used in WHERE criteria.

 If no MODable columns are in the table, e.g., the table is all character fields.

 When a BY statement is used.

 When the OBS= or FIRSTOBS= options are used.

 If the NOTHREADS options is set.

 If DBSLICEPARM=NONE.

But don’t worry… if SAS can’t automatically generate a partitioning WHERE clause or you don’t like what it does
there is an options that allow the user to define the partitioning strategy: DBSLICE=.

DBSLICE= is a table-level option, not library-level. It allows coding a custom WHERE clause to pass to the database
but requires that you are very familiar with the distribution of the data. Be very careful here: if you specify criteria that
omits or duplicates rows then it will return an incorrect results set if there are no syntax errors. Also, it is important
that your partitions contain approximately the same numbers of records. The largest partition determines how fast
the read finishes.

For example, if you have a field that can be aggregated into four fairly-equal sized groups, then the code might look
like this. The rule is to keep it simple.

data transact; set orcDB.transactions

 (dbslice=(“sgmt_cd in (’A’,’D’)” “sgmt_cd in (’B’,’C’)”

 “sgmt_cd in (’E’,’F’,’H’)” “sgmt_cd=’G’);

run;

TRACING DATABASE ACTIVITY

Once you’ve told SAS to use threaded reads, how do you track what it does? Well, as you might expect there’s an
option for that too. SASTRACE= writes information to the log showing where threaded reads happen along with
information about the performance impact.

SASTRACE= must be set at invocation, configuration or as a system option and it has valid values that determine
what output is captured. There are six valid values and they can be combined. Notice that the values are delimited
by single quotes and how commas are used.

Value Description

‘,,,d,’ Only SQL statements set to the database are sent to the log.

‘,,d,’
Metrics for routine database calls are sent to the log. These include function enters and exits along with
parameters and return codes. Most useful for troubleshooting database issues.

‘d,’
Captures information for all database calls including connection info, API and Client calls, column bindings,
errors, and row processing. Useful for troubleshooting. Can produce a lot of log pages.

‘,,,db’ New with Version 9.2. Returns a briefer version of the information produced by ‘d,’.

‘,,,s’
Produces a summary of timing information for the database calls. Very useful for seeing how well the
database is working.

‘,,,sa’ In addition to a summary of database timing information, detailed timings for each call is written to the log.

‘,,t,’
All threaded information is sent to the log. This includes the number of threads spawned, the number of
records returned by each thread, and the thread exit code if it fails. Useful to see how well the partitioning
strategy worked.

Data ManagementSAS Global Forum 2013

6

Value Description

OFF Turns off tracing.

Table 3. SASTRACE Valid Values

Along with SASTRACE= you should specify NOSTSUFFIX to suppress diagnostic information and make the log
easier to read. The SAS/ACCESS documentation has a good example of what the output looks like if the diagnostic
info isn’t suppressed.

By default, SAS Trace information is routed to the server-side standard output location, which is probably not what
you want. With the SASTRACELOC= system option you can direct the info to the SAS Log or a separate log file.

SASTRACELOC= stdout | SASLOG | FILE ‘path and file-name’

Along with SASTRACE= you should use the NOSTSUFFIX to suppress diagnostic information and make it easier to
read. The online documentation has a good example of what the output looks like if the diagnostic info isn’t
suppressed.

Here is an example of the Options that will turn on and control threaded database reads and the output that
SASTRACE returns. It shows that the threaded read autopartitioning strategy isn’t optimal for this particular query.

options threads cpucount=4 dbsliceparm=all

 sastrace=',,t,' sastraceloc=saslog nostsuffix;

169 data custType5a; set hemijb.cust_sum(where=(cust_type=’C5a’) and cust_cd=5);

170 run;

ORACLE: DBSLICEPARM option set and 4 threads were requested

ORACLE: No application input on number of threads.

ORACLE: Thread 1 contains 128141 obs.

ORACLE: Thread 2 contains 11586 obs.

ORACLE: Thread 3 contains 127128 obs.

ORACLE: Thread 4 contains 132832 obs.

ORACLE: Threaded read enabled. Number of threads created: 4

NULL vs. MISSING

Oracle and SAS treat missing data differently and that can cause apparent discrepancies during data validation
checks. Oracle has a special value called Null. Null means ‘absence of value’ and it doesn’t equal or not equal
anything including another Null. A Null isn’t evaluated in a comparison operation. In an operation like where x <

10, Oracle ignores records where x is Null but SAS would include missing values in the results set.

When SAS reads an Oracle Null it interprets it as a missing value. That’s fine, but to Oracle a Null (where state

is null) is not the same thing as a blank value (where state=’ ’). SAS interprets both Nulls and blanks

coming from Oracle as missing values. Applying a format is during the read doesn’t solve the problem because the
format is applied after the data is in SAS and has already been ‘converted’ to a missing value.

If telling Nulls from blanks is important, it must be solved on the Oracle side. Nulls can also impact WHERE clauses
and CASE statements. Oracle does not consider Null values in a WHERE clause or a CASE statement unless they
are specifically referenced. Consider case when x=’Y’ then 1 else 0 end as y; In SAS, the value Y for a

missing X would be 0 but Oracle will assign a 0 when X is blank and a Null when X is Null.

Be very careful working with data that contains Nulls. Here’s a query using SQL Pass-Through that shows an
approach if you have a need to distinguish between blanks and Nulls.

proc sql threads;
 connect to oracle (path=’orcl4’ user=tarzan pass=’Cheetah#1’)

 create table testread as

 select * from connection to oracle

 (select customer_id

 , (when customer_type=’ ’ then ’ ’

 when customer_type is null then ’X’

 else customer_type end) as customer_type) end as cust_type

 from wfjbent.cust_base;

 disconnect from oracle;

quit;

Data ManagementSAS Global Forum 2013

7

SUMMARY OF OPTIONS FOR READING TABLES

PROC SQL has its own rich set of options and if you write SQL you should take the time to review them. Here are
some of the read-related options the author finds most useful.

Option Valid Values Description/Explanation

READBUFF=

integer value Specifies the number of database rows to return from the
results set in one fetch operation. A reasonable higher
number usually improves performance by returning data
faster at the expense of higher memory usage

DBSLICE=

Two or more properly
specified WHERE clauses.

A data set option. Provides a user-supplied WHERE
clause for partitioning the results set so that threaded
reads can return the data to SAS.

DBSLICEPARM= NONE | ALL |
THREADED_APPS

Controls when threaded read processing is applied. The
default is THREADED_APPS.

DBSASTYPE <col-name-1>=<’SAS-
data-type’>

A data set option that specifies a data type to override the
default SAS data type during processing.

If for example a field has an Oracle data type of
decimal(20) by default SAS will display it in scientific
notation.
 set X(sasdatatype=(var1=’char20’));

lands var1 as a character string.

DBSASLABEL=

COMPAT | NONE When creating a data set, by default the value COMPAT
causes SAS to write the database column name as the
label. The value NONE leaves the label blank.

 When reporting via PROC SQL, the value NONE
ignores an alias assigned to the column and uses the
column name itself as the header.

Table 4. Options for Reading Oracle Data

CHALLENGE #3 – WRITING TO ORACLE TABLES

Writing SAS data to Oracle is simple but it can also be time consuming. Proper use of certain options is guaranteed
to speed things up. Writing to an Oracle table is by default a single-threaded operation. There is an easy technique
to change that to a multi-threaded operation but first let’s look at the default because there are many situations where
that is entirely appropriate.

USE BUFFERS

A simple libref with the Oracle engine and a DATA Step or PROC SQL are all that are needed to create an Oracle
table, add rows, or modify existing records data. Here are three basic examples that will work just fine but might take
a l-o-n-g time if there are lots and lots and lots of rows.

libname orcDB oracle path=’orcl4’ schema=’test_hm’ user=tarzan pass=’Cheetah#1’;

** Create a table containing January customer data. ;

data orcDB.jan_data; set year_to_date_data(where=(mon=1));

run;

** Create a table containing February customer data. ;

proc sql;

 create table orcDB.feb_data as

 select *

 from year_to_date_data

 where mon=2;

quit;

Data ManagementSAS Global Forum 2013

8

** Revise the December customer data. Libref revised is a SAS library. ;

proc sql;

 update orcDB.dec_data as orc_table

 set total_refund_amt=

 (select sas_ds.total_refund_amt

 from revised.adjusted_dec_refunds as sas_ds

 where sas_ds.cust_id=orc_table.cust_id)

 where exists

 (select 1

 from revised.adjusted_dec_refunds as sas_ds

 where sas_ds.cust_id=orc_table.cust_id);

The default buffer value is probably not optimal (depending on the number of records) because by default SAS uses
buffer values that guarantee the processing will work if the code is syntactically correct but are not optimized for the
amount of data involved. Loads and updates will work, but performance may leave much to be desired. Changing a
couple options, however, may make a big difference.

The first two examples will use the SQL Insert operation to load the tables, even the DATA Step. Inserting records,
especially lots of long records, is a slow process for Oracle even though it does it at a phenomenal speed. Pick a
number—1000. At 1000 inserts per second, it still takes over 16 minutes to insert 1,000,000 records. Add to this the
time it takes to execute a commit operation that permanently writes the new records to the table. By default, SAS
tells Oracle to issue a commit after every 10 inserts so for a million records that’s 100,000 commit operations. If it
takes .001 seconds to run a commit, 100,000 commits add another minute and a half to processing. So we’re up to
about 17 minutes.

The example above that updates an Oracle table will use SQL Update operations and updates are slower than the
Inserts because we have to find which records to update. In fact, we probably don’t want to run this update as coded
here because of the need to join SAS with Oracle. We’ll revisit that topic in Challenge #5.

For both of these examples, performance can be perhaps dramatically improved by using options that control how
many records are inserted or updated in a single operation. INSERTBUFF= and UPDATEBUFF= control how many
records are processed “at once”, and DBCOMMIT= controls how many records are processed before a commit is
issued. The default values are low enough to insure that the processing will work but not high enough in probably
most cases to get good performance. Here is a libref that should allow inserts and updates to work faster when there
is a large number of records.

libname orcDB oracle path=’orcl4’ schema=’test_hm’

 user=tarzan pass=’Cheetah#1’ insertbuff=5000 updatebuff=25;

The Somerville and Cooper paper “Optimizing SAS Access to an Oracle Database in a Large Data Warehouse” (see
References section) has tables showing the impact of different values for INSERTBUFF= and UPDATEBUFF=.
Trial-and-error is often not the fastest way to figure something out, in some cases it is the only way. The buffer
options’ optimal values are based on how many records you’re working with and how wide they are. So for
production jobs it would be useful to experiment with different values to find what works best for that particular job.

PARTITION NEW TABLES AND TURN OFF LOGGING

In Oracle, partitioned tables are faster to read and update so it behooves us to partition new tables when we create
them. Large Oracle tables (large is site-specific) should be organized into smaller pieces—partitioned—based on a
key such as customer number. All data related to that key is in the same partition and that makes data
retrieval/update faster. To a program, a partitioned table is no different from a non-partitioned table, but Oracle
doesn’t partition a table unless it’s told to.

DBCREATE_TABLE_OPTS= is a valuable option because it allows us to pass native Oracle syntax that is added to
the CREATE TABLE statement and causes thing like partitioning to happen. Generally speaking, partitioning large

tables is important because it

 Provides faster performance by lowering query times from minutes to seconds;

 Improves manageability by creating smaller 'chunks' of data; and

 Enables more cost-efficient use of storage.

Partitioning improves performance after the table is created. Turning off logging on the other hand speeds up the
table creation process itself. Logging takes space by creating rollback files and adds time writing log entries so
turning it off reduces time but at the cost of not being able to rollback records inserted in error. Turning off logging
does not affect the ability of subsequent data manipulation statements like UPDATE and DELETE to generate
rollback files.

Data ManagementSAS Global Forum 2013

9

This code example partitions the dataset we’re creating and turns off logging.

proc sql;

 create table orcDB.feb_data

 (dbcreate_table_opts=nologging

 partition by hash (cust_id) partitions 4) as

 select cust_id

 , <field list>

 , case when eom_bal=. then ’ ’

 else eom_bal end as eom_bal

 from year_to_date_data(nullchar=no nullcharval=’ ’)

 where mon=2;

quit;

HANDLE MISSING VALUES PROPERLY

By default Oracle loads a Null when it finds a SAS missing value. This may be what you want, but two data set-level
options are used together control handling SAS missing character values when loading or updating an Oracle table.

NULLCHAR=NO tells Oracle to load a special value instead of Null and the special value is specified with the
NULLCHAR= option. To recode missing numeric values when nulls are not wanted you must use an IF-THEN-ELSE

or CASE statement on the SAS side before the data is sent to Oracle.

In this example we use a CASE statement and options to load blanks instead of Nulls for missing values.

proc sql;

 create table orcDB.feb_data as

 select <field list>

 , case when eom_bal=. then ’ ’

 else eom_bal end as eom_bal

 from year_to_date_data(nullchar=no nullcharval=’ ’)

 where mon=2;

quit;

If we wanted character field-specific special missing then we would use a CASE statement to recode the character

Nulls.

SUMMARY OF OPTIONS FOR WRITING TO ORACLE

Bulkload Option Valid Values Description/Explanation

INSERTBUFF=

a positive-integer Specifies the number of rows moved to the buffer and
processed in a single database insert operation. The
default value is 10.

UPDATEBUFF=

a positive-integer Specifies the number of rows moved to the buffer and
processed in a single database insert operation. The
default value is 1.

DBCOMMIT=

a positive-integer Causes a Commit operation (permanent writing) after a
specified number of rows have been processed. If the
value is less than INSERTBUFF or UPDATEBUFF
then the COMMIT= overrides the other value. A value
of 0 causes the commit to be issued only after all rows
have been processed.

 This option must be coordinated with ERRLIMIT=. The
DBCOMMIT value overrides the ERRLIMIT value. It is
possible that a rollback initiated by ERRLIMIT might
not include bad records already committed.

DBCREATE_TABLE_OPTS Oracle-specific syntax Specifies Oracle code to be passed to the database
engine as part of the CREATE TABLE statement. Useful
for controlling partitioning and logging.

Data ManagementSAS Global Forum 2013

10

Bulkload Option Valid Values Description/Explanation

DBLABEL= YES | NO Specifies whether to use SAS variable names or the
variable labels for column names when creating a table.
Default is NO, use variable names.

DBNULL= _ALL_=YES | NO |
column_name=YES|NO

Indicates whether or not Null is a valid variable for a
column. When YES, applies a constraint that rejects the
record and reports an error when a Null value is found.
ALL specifies that constraint is applied to all columns,
or specific columns can be named. Default is
ALL=NO.

ERRLIMIT= a positive-integer Specifies the number of errors allowed before SAS
stop processing and issues a rollback command. The
value 0 causes SAS to process all rows regardless of
the number of errors.

 This option must be coordinated with DBCOMMIT=.
The DBCOMMIT value overrides the ERRLIMIT value.
It is possible that a rollback initiated by ERRLIMIT
might not include bad records already committed.

NULLCHAR= SAS | YES | NO Indicates how missing SAS character values are handled
during insert and update processing.

NULLCHARVAL= ‘character string’ When NULLCHAR=SAS or YES, defines the character
string to use instead of a Null value.

Table 5. Options for Writing to Oracle Tables

BULK LOADING—NOT A SILVER BULLET BUT CLOSE

Bulk loading gets around the performance restriction imposed by Insert operations when creating a new table or
inserting records into an existing table, and SAS supports Oracle’s bulk loading facility (SQL*Loader) via the
BULKLOAD=YES option. Bulk loading provides amazing load performance compared to not using it simply because
without it you’re doing single-threaded insert operations. Your mileage may vary but the author recommends using
the bulk loading facility when you have more than maybe 10,000 records of more than a half-dozen fields.

The bulk loader is available with both a DATA Step and PROC SQL for creating a new table, and PROC APPEND is
best for adding rows to an existing table. In its most basic form, it looks like the examples below.

libname orcDB oracle path=’orcl4’ schema=’test_hm’

 user=tarzan pass=’Cheetah#;

data orcDB.finalCustomerUpdate(bulkload=yes);

 set customerUpdateStep5;

 <...process 100,000 observations each with 242 variables...>

run;

If you’re not a SQL fan and you have to do complex data modifications and transformation the easiest way to do it is
in two steps. Use a DATA step to manipulate the data and save a work data set and then run PROC SQL or PROC
APPEND to load the data.

proc sql;

 create table orcDB.productOwnership_&_when(bulkload=yes) as

 select *

 from work.finalCustomerUpdate;

quit;

proc append base=orcDB.productOwnership

 (bulkload=yes bl_index_option=’sorted indexes(product)’)

 data= work.finalCustomerUpdate;

run;

PROC APPEND is a powerful way to add a large amount of data to an existing table, such as a transaction or history
table. Appending with bulk loading is fast and it places the data in the correct partition.

Data ManagementSAS Global Forum 2013

11

Oracle indexes are by default dropped and rebuilt when bulk loading with PROC APPEND. If your data is already
sorted by one of the index keys, you can specify the BL_INDEX_OPTION= as we did in the example and the index

will be rebuilt as the table is loaded. The performance gain can be significant. If your data isn’t already sorted or you
have many indexes then it doesn’t necessarily make sense to sort prior to loading.

PROC SQL by default creates a new table without partitions or indexes regardless of whether or not bulk loading is
used. Using bulk loading still allows the DB_CREATE_TABLE_OPTS= option to be used for partitioning and turning
off logging, and indexing can be done using Oracle commands executed via the Pass-Through Facility’s EXECUTE
(…) syntax. The example below creates an index for a table created with PROC SQL.

proc sql;

 connect to oracle path=’orcl4’ user=tarzan pass=’Cheetah#1’);

 create table test_hm.productOwnership_&_when

 (bulkload=yes

 dbcreate_table_opts=nologging partition by hash (cust_id) partitions 4) as

 <complex query>

 ;

execute (

 create index on orcDB.productOwnership_&_when (product_cd, cust_cat_cd)

) by oracle;

disconnect from oracle;

quit;

Behind the scenes, when you specify BULKLOAD=YES a flat file of the data and a record layout file are created and
landed by default in the current directory. A control file with Oracle specifications for loading the table such as the
location of the flat file and record layout is also produced. The Oracle SQL*Loader utility is then invoked and
executes the control file. During loading a log of the bulk loading activity is created. This log is different from the one
we turn off with DBCREATE_TABLE_OPTS=NOLOGGING.

In the SAS program, if you get an error that says something like Oracle can’t find the bulk loader—it will be obvious—
then contact a DBA and ask that the SQL*Loader executable be made available to your user id.

Bulk Loading Options

BULKLOAD=YES supports quite a few options that can add or subtract from performance and Jun Cai’s paper “How
to Leverage Oracle Bulk-load for Performance Contact Information” (see references) does a great job of explaining
them. Most options apply to all RDBMS, but some are specific to one or more databases. The table below lists some
that the author finds useful for Oracle. The SAS/ACCESS documentation is very good and provides generic usage
examples.

Bulkload Option Valid Values Description/Explanation

BL_CONTROL= <path-and-filename.ext> Names a file to capture the Oracle SQL*Loader DDL
statements.

BL_LOG= <path-and-filename.ext> Names a file to capture a log of the statistics and
messages produced by Oracle during the load.

BL_DATAFILE= <path-and-filename.ext> Names the file that contains the data to be loaded to an
Oracle table.

BL_BADFILE= <path-and-filename.ext> Names the file to hold rejected records. Empty if zero
problem records.

BL_DISCARDFILE= <path-and-filename.ext> Names a file to hold records that do not meet any
WHERE criteria specified in the SQL. If an error is later
found in the criteria, the discard file can be loaded.

BL_DELETE_DATAFILE=

YES | NO Controls if the data file is deleted after the load is
completed. Default is Yes but the file is retained if the
load completely fails. Caution: disk space management
says do not set this to NO unless there is a good
reason.

Data ManagementSAS Global Forum 2013

12

Bulkload Option Valid Values Description/Explanation

BL_DIRECT_PATH= YES | NO Sets the SQL*Loader option for using the Direct or
Conventional path loading technique. YES forces the
Direct Path to be used and that is significantly faster but
restrictions apply. NO forces the Conventional Path
technique. The default is YES if the Direct Path is
available but that depends on your SQL*Loader
installation. Best to speak with your DBA about it.

BL_INDEX_OPTIONS= SINGLEROW |
SORTED INDEXES

Used with PROC APPEND. When the data is sorted by
an index key specify the SORTED INDEXES value to
optimize performance.

BL_LOAD_METHOD= INSERT | APPEND |
REPLACE | TRUNCATE

Specifies the method to use when bulk loading a table.

 INSERT requires a new or empty table;

 APPEND adds rows to an existing table.

 REPLACE deletes all rows in existing table, and then
loads new rows.

 TRUNCATE uses the Oracle truncate command to
drop and replace data,. Faster than REPLACE.

REPLACE and TRUNCATE are valid only with PROC
APPEND.

Defaults: INSERT when creating a table, APPEND
when loading an existing table.

BL_OPTIONS= ERRORS= and LOAD= Allows two options to be passed directly to the
SQL*Loader facility.

 ERRORS= specifies the number of insert errors
allowable before aborting the load. Default is 50.

 LOAD= specifies the number of records to load. This
is valuable during development and testing for loading
only a test table of a few dozen records without
creating a subset or sample data set.

BL_PRESERVE_BLANKS= YES | NO Determines how SQL*Loader handles character missing
(blank) values. YES causes the field to be filled with
blanks. NO insures that missing values are inserted as
NULL values. Default is NO.

Caution: YES causes trailing blanks to be inserted. 5-
character field will be filled with 5 blanks, not 1. A code
of ‘AF5’ loaded into a 5-character field will be loaded as
‘AF5 ‘.

Table 6. Bulk Loading Options

Writing the control, log and data files and the bad and discarded record files to a specific directory is useful during
development and testing QA and might be required during production for validation. By default, the files are written to
the ‘current’ directory and are deleted after a successful run. The default name form is BL_<table-name>_
<unique_id>.<ext>. table-name is the name of the table being loaded/appended, and unique-id prevents collisions
during parallel loads and overwriting when the file is retained between loads. The default extensions are—

 control=.ctl

 log=.log

 data= .dat

 bad= .bad

 discard=.dsc

If you retain the BL_files, use a retention strategy to manage the disk space. BL_DELETE_DATAFILE=NO can be a
dangerous setting. When large amounts of data are loaded on a regular basis, the server file space can fill up very
quickly. It’s also possible to set BL_DELETE_DATAFILE=NO during development and test but then forgetting to

Data ManagementSAS Global Forum 2013

13

remove it or set it to yes when putting the code into production. If a month later jobs suddenly started failing with a
message of ‘File system full’, people will be ticked.

CHALLENGE #4 – JOINING A SAS DATA SET TO AN ORACLE TABLE

Joining a SAS data set to an Oracle table can be tricky and the documentation is helpful. The author’s general rule is
to minimize moving data and do the processing where the most data is. But when working with database data you
also have to consider where do you want the results set to end up? If you’re creating an Oracle table then you might
not want to pull the source data into SAS, do the join, and then return the results set to Oracle. If the results set is
going into a SAS data set, you might not want to send the SAS data to Oracle to do the join there. But then again the
size/amount of data comes into play also… you probably don’t want to move the larger of the data sources but
sometimes you might. Tricky, eh?

SAS/Access for Oracle by default will always try to pass a join to the database, even when one of the data sources is
a SAS dataset. Only when the join can’t be passed to the database, such as outer join that also has a WHERE
clause, the Oracle data is brought into the SAS environment and joined there. So for optimal performance, avoid
outer joins and the SAS data set should be smaller than the Oracle table.

When moving data in either direction, SAS parses the query and moves only the data elements that are SELECTed
plus the fields needed to complete the join. Unfortunately, it moves all the records. So if the SAS data set has more
records than the Oracle table, performance will suffer. Performance will take a double hit if you need to save the
results set back as a SAS data set.

There are, as you expect by now, options that allow us to override this default behavior. But incorrectly specifying
these options can degrade performance rather than improve it, so spend some time doing basic exploratory data
analysis and looking at the SAS/Access documentation.

As long as the SAS data set is smaller than the Oracle table (number of records) and you want the results set to end
up in an Oracle table or the results set is “small”, the default behavior is probably tolerable. But telling SAS which is
the larger of the data sources is useful because usually that’s the one you don’t want to move. The data set option
DBMASTER=YES identifies the largest data source and forces the data from the other data source to be moved.
The option is valid in both PROC SQL and DATA Steps. In this example we force the join to happen in SAS because
DBMASTER=YES is attached to the SAS data set.

proc sql;

 create table work.refund_data

 select base.cust_id, base.join_dt, base.ytd_tot_amt,

 , (case when refnd.cust_id is null then 0

 else refnd.ytd_refund_amt end) as ytd_refund_amt

 from orcDB.cust_w_refunds as refnd

 , sasData.customer_master(dbmaster=yes) as base

 where base.cust_id=refnd.cust_id;

quit;

If the Oracle table is larger than the SAS data set and it has an index on the join key column, the option DBKEY= will
improve performance by forcing Oracle to use the index during the join in the Oracle environment. Be careful with
this option—the documentation clearly warns that “[p]erformance can be severely degraded without an index” when
the option is used.

proc sql;

 create table matches

 select dat.cust_id, dat.join_dt, dat.ytd_tot_amt, data.ytd_refund_amt

 from work.cust_w_refundsas base

 , orcDB.master_data(dbkey=cust_id) as dat

 where base.cust_id=dat.cust_id;

quit;

Sometimes you want the join to take place in SAS, and MULTI_DATASRC_OPT= forces the join to happen there
regardless of the numbers of records in the data sources. The documentation says that it results in better
performance than the DBKEY= option. Restrictions are that it is available only for equi-joins, works only with PROC
SQL, is a LIBNAME option, and has only two valid values—NONE and IN_CLAUSE.

The IN_CLAUSE value forces a SELECT COUNT(*) against each table to determine which is the smaller table. If
you know which data source is smaller, you can save some time by specifying DBMASTER= to avoid the SELECT
COUNT(*) full table scan. Based on the values returned by COUNT(*), the larger and smaller data sources are
identified.

Data ManagementSAS Global Forum 2013

14

An IN clause is constructed containing all the unique values of the join key from the smaller table or the SAS data set.
This is important—when a SAS data set is one of the data sources, it always provides the keys for the IN clause.
The IN clause criteria (a list of the unique join keys) is passed to Oracle along with the data set’s WHERE criteria and
only those records that meet the IN clause constraint are returned to SAS for the join. This greatly reduces the size
of the data set passed to SAS.

MULTI_DATASRC_OPT= has great potential for improving performance in the right situation, but the downside is that
the IN clause is limited to 4500 unique values. This means that it probably can’t be used for joins that use an
account, customer, or household key.

All three of the options here have potential, but only in certain circumstances and they’re a bit tricky to use. To
simplify things, unless the amount of data is only a few tens of thousands of records the author’s standard solution is
to bulk load SAS data into an Oracle table, run the join there, and then keep the results in an Oracle table or
download them into SAS for further processing. Sometimes performance can be sacrificed for simplicity and
reliability.

DBINDEX= YES | NO | ‘index name’ Detects and verifies that an Index is available for a table.
If it can be used then join performance may be improved.

 YES= search for a usable index and formulate a
WHERE clause that will utilize it in the join.

 NO= do not perform an automated search.

 ‘index name’ provides the name of a specific index to
use.

DBMASTER= YES Designates which table is larger. The smaller table is
passed to the larger table’s environment for the join.

MULTI_DATASRC_OPT= NONE | IN_CLAUSE Improves equi-join performance by generating an IN
clause containing join key values from the smaller table or
the SAS data set.

Table 7. Options for Joining SAS and Oracle tables.

CHALLENGE #5 – DATA SECURITY

Because so much of the contents of a database can be sensitive in one way or another, security is increasingly an
issue. For a database, security means restricting read access to those with a need to know and write access to the
very minimum number of people. SAS preserves and honors all the data security provided by an Oracle database. It
doesn’t over-ride any security features to restrict or control data access, modification, or deletion. SAS can, however,
add a level of security to whatever exists on the database side.

USE VIEWS AND PASSWORDS

Views are a great approach for protecting data from unauthorized access. A view is a subset of a data table or set of
data tables defined by SQL and stored as a ‘virtual’ table. It takes very little storage space because only the
definition (the underlying SQL) is stored. Whenever the view is referenced, the definition (SQL) is processed to
return the results set. This way, the data tables themselves are not exposed to the outside world. Many databases
restrict user queries to views and the users may not even know it! Kirk Lafler’s Proc SQL: Beyond the Basics Using
SAS

®
 has a good chapter on views.

SAS can easily use PROC SQL to create views pointing to Oracle tables and with them the Oracle security remains
in place and must complied with. For example, Oracle can assign users to a ‘role’ and then grant the role a specific
level of access. This is more efficient than managing privileges for dozens or hundreds of individual user ids.

SAS has options for initializing and passing Read, Write, and Alter passwords. READ= and WRITE= passwords
apply to the underlying physical table and prevent it from being read or updated via a view. They don’t however
prevent the view itself from being replaced. For both a view and a table it’s the ALTER= password that protects it
from being modified, deleted, or replaced.

In this example, we create a view from an Oracle table that contains sensitive demographic data such as age,
gender, race, and religion. To prevent access to those fields, we simply do not select them when we create the view.
Not selecting fields for a view does nothing to affect their availability in the underlying physical table or in other views.

Data ManagementSAS Global Forum 2013

15

Here is basic syntax for creating a view with a SAS read password.

libname orcDB oracle path=‘orcl4’ schema=’test_hm’ user=tarzan pass=’Cheetah#1’;

libname mrkting ’/home/marketing/mtg/data’;

proc sql;

 create view mrkting.v_marketing_demogs(read=eyeball)

 select customer_id, <list of non-sensitive fields>

 from orcDB.demogs

 where <selection criteria>;

quit;

This query reads the table we just created. It pulls date from the Oracle table orcDB.demogs. Without the read
password, we’d get an error—ERROR: Invalid or missing READ password. If we gave the correct SAS password

but on the Oracle side didn’t have read privileges we’d get an error saying “Ora-00942 table or view does not

exist.”

proc sql;

 select customer_id, <list of fields>

 from mrkting.v_marketing_demogs(read=eyeball);

quit;

If we don’t assign SAS-level passwords when a view is created, then afterwards we can use PROC DATASETS to
add them. This example adds write and alter to prevent unauthorized changes.

proc datasets library=customer memtype=view;

 modify orcDB.v_marketing_demogs(write=pencil alter=eraser);

run;

MASK PASSWORDS

 Passwords are often a big issue among SAS users. Not the password itself, although changing it every 30 or 60
days can be troublesome, but most corporate IT departments I think have a policy against hardcoding passwords into
programs.

PROC PWENCODE or SAS macro variables go a long way to solving this particular problem. Paraphrasing the SAS
documentation, PWENCODE uses encoding to disguise the password. During encoding, characters are translated
on another character or set of characters using a unique lookup table. Decoding changes the word back to its
original value. Encryption on the other hand actually transforms the data value of the password using mathematical
operations and usually a "key" value. Decrypting returns the word to its original value. Encoding is obviously a
weaker form of security but serves for what we need. Here is an example PROC PWENCODE and the encoded
string it creates.

proc pwencode in=’Cheetah#1’ out=’/users/apps/shared_code/cust_db_cd.std’;

run;

{sas002}bXkgc51GF9wAzc3dvcmQ=

Each encoded password string is stored in its own text file designated by the out= option. So if you have three
passwords you must use three PROC PWENCODE’s each with a different out= value. To use the value, you read in
the text file and assign the encoded value to a macro variable. Three passwords require three DATA _NULL_
statements. Here is one.

data _null_;

 infile ’/users/apps/shared_code/cust_db_cd.std’ obs=1 length=l;

 input @;

 input @1 line $varying1024. l;

 call symput('_dbPswd',substr(line,1,l));

run;

libname orcDB oracle path=’orcl4’ schema=’test_hm’

 user=tarzan pass=”&_dbPswd” validvarname=any;

The obvious downside here is that the code for PROC PWENCODE and the DATA _NULL_ must reside somewhere.
A personal autoexec.sas might be a good place for the DATA _NULL_, but then only that person can run the
programs that use the passwords. If you run routines using a shared production account then having it in the

Data ManagementSAS Global Forum 2013

16

autoexec.sas solves that problem but then the file location is still available. But hopefully not too many people go
poking around in the shared autoexec.sas.

One solution might be to save the PROC PWENCODE code in an innocuously named text file stored in a shared
directory so it can be run each time the password must be updated. The DATA _NULL_ could be in a similarly
named text file that is %INCLUDED by the shared autoexec.sas with the NOSOURCE2 option. Although the files
would need UNIX group read permissions because they’re shared, an Access Control List (ACL) lets you control file-
specific permissions within the group. You’ll probably have to get your Sys Admin involved but it’s very doable and
might be more common than you think. The References section has a link to information on ACLs.

This is only one technique for hiding passwords. This author used compiled data sets and there are quite a few
others that can be found in SAS Conference papers.

CONCLUSION

SAS and Oracle are a powerful combination. We’ve covered here some of the SAS Options and techniques that
improve their performance and minimize problems. Options really can make a difference, even simple ones like
adjusting a buffer size and using bulk loading into Oracle. SASTRACE is a requirement for seeing what the database
is doing and troubleshooting perceived SAS-Oracle performance problems. There are many other options and you
really should flip thru the documentation specific to your version of SAS.

REFERENCES, RESOURCES, AND RECOMMENDED READING

 IBM. Access Control Lists. Available at http://www.ibm.com/developerworks/aix/library/au-
acl/index.html?cmp=dw&cpb=dwaix&ct=dwnew&cr=dwnen&ccy=zz&csr=05121friend

 Lafler, Kirk Paul. 2004. Proc SQL: Beyond the Basics Using SAS
®
. Chapter 8. Cary NC: SAS Institute.

 Levin, Lois. 2004. “Methods of Storing SAS
®
 Data into Oracle Tables.” Proceedings of the SAS Users

Group International Conference 29. Cary NC: SAS Institute. (PROC DBLOAD and the BULKLOAD option)

 Oracle Corporation. Reserved Words. Available at
http://docs.oracle.com/cd/B19306_01/em.102/b40103/app_oracle_reserved_words.htm

 Plemmons, Howard. 2010. “What’s New in SAS/Access.” Proceedings of the SAS Global 2010 Conference.

Cary NC: SAS Institute.

 Plemmons, Howard. 2009. “Top Ten SAS DBMS Performance Boosters for 2009.” Proceedings of the SAS
Global 2009 Conference. Cary NC: SAS Institute.

 Qai, Jun. 2009. “How to Leverage Oracle Bulk-load for Performance Contact Information.” Proceedings of
the SAS Global 2009 Conference. Cary NC: SAS Institute. (Bulk loading using SAS MP/CONNECT

®
.)

 Rhoads, Mike. 2009. “Avoiding Common Traps When Accessing RDBMS Data.” Proceedings of the SAS
Global 2009 Conference. Cary NC: SAS Institute.

 Rhodes, Diane. 2007. “Talking to Your RDBMS Using SAS/Access
®
.” Proceedings of the SAS Global 2007

Conference. Cary NC: SAS Institute.

 Somerville, Claire and Clive Cooper. 1998. “Optimizing SAS
®
 Access to an Oracle Database in a Large Data

Warehouse.” Proceedings of the SAS Users Group International Conference 29. Cary NC: SAS Institute.

(Older but valid examples of effectively using DATA Step, Procs, and Indexes.)

 SAS Institute. 2008. SAS/Access Supplement for Oracle. Cary NC: SAS Institute. (Be sure to use the
documentation specific to your version of SAS. An RDBMS-specific supplement is available for each
system SAS supports.)

 SAS Institute. 2008. SAS(R) 9.2 Language Reference: Dictionary. Cary NC: SAS Institute.

 SAS Institute. Connecting SAS to Oracle. Available at http://support.sas.com/techsup/technote/ts703.pdf

 SAS Institute. Reserved Words. Available at
http://support.sas.com/documentation/cdl/en/mcrolref/62978/HTML/default/viewer.htm#p0y43hj7lzhq1gn1r6
8h65wzljbt.htm

 SAS Institute. PROC SQL Options. Available at
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a002473669.htm

If you run into a problem Mike Rhoads paper would be a good one to start with. His References section provides a
very good list of pre-2009 SAS Conference papers.

Data ManagementSAS Global Forum 2013

http://www.ibm.com/developerworks/aix/library/au-acl/index.html?cmp=dw&cpb=dwaix&ct=dwnew&cr=dwnen&ccy=zz&csr=051211
http://www.ibm.com/developerworks/aix/library/au-acl/index.html?cmp=dw&cpb=dwaix&ct=dwnew&cr=dwnen&ccy=zz&csr=051211
http://docs.oracle.com/cd/B19306_01/em.102/b40103/app_oracle_reserved_words.htm
http://support.sas.com/techsup/technote/ts703.pdf
http://support.sas.com/documentation/cdl/en/mcrolref/62978/HTML/default/viewer.htm#p0y43hj7lzhq1gn1r68h65wzljbt.htm
http://support.sas.com/documentation/cdl/en/mcrolref/62978/HTML/default/viewer.htm#p0y43hj7lzhq1gn1r68h65wzljbt.htm
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm%23a002473669.htm

17

ACKNOWLEDGMENTS

I certainly didn’t figure out all this on my own. I’m extremely grateful to the technical writers and web developers at
SAS Institute for the online documentation, the patient people at the SAS Help Desk who answer my questions, SAS
users who give up their precious time to write papers and present at SAS Conferences, and the folks I work with who
share their wide-ranging knowledge. Thanks also to my enlightened bosses over the years who had the vision and
foresight to send me to SAS training and conferences. Thanks everybody, I couldn’t have done this without you.

CONTACT INFORMATION

John E. Bentley
Wells Fargo Bank
Charlotte NC 28226
John.bentley@wellsfargo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The views and opinions expressed here are those of the author and do not necessarily reflect the views and opinions
of Wells Fargo Bank. Wells Fargo Bank is not, by means of this article, providing technical, business, or other
professional advice or services and is not endorsing any of the software, techniques, approaches, or solutions
presented herein. This article is not a substitute for professional advice or services and should not be used as a
basis for decisions that could impact your business.

Data ManagementSAS Global Forum 2013

	2013 Table of Contents

