

1

This gives us an ODSOut object named “t” – we’ll use that
name to reference methods that build our output.

Again, the DECLARE statement only have to be executed
once in the data step.

Have it Your Way:
Creating Reports with the Data Step Report Writing Interface

Pete Lund, Looking Glass Analytics, Olympia, WA

ABSTRACT

SAS

©
 provides some powerful, flexible tools for creating reports, like PROC REPORT and PROC

TABULATE. With the advent of the Output Delivery System (ODS) you have almost total control over
how the output from those procedures looks. But, there are still times where you need (or want) just a
little more and that’s where the Report Writing Interface (RWI) can help.

The Report Writing Interface is just a fancy way of saying you’re using the ODSOUT object in a data step.
This object allows you to layout the page, create tables, embed images, add titles and footnotes and
more – all from within a data step, using whatever data step logic you need. Also, all the style capabilities
of ODS are available to you so that your data step created output can have fonts, sizes, colors,
backgrounds and borders to make your report look just like you want.

This presentation will quickly cover some of the basics of using the ODSOUT object and then walk
through some of the techniques to create four “real world” examples. Who knows, you might even go
home and replace some of your PROC REPORT code – I know I have!

THE BASICS OF RWI

PUT statements can still be used in DATA _NULL_ reporting to create reports in a DATA STEP and, with
all that’s available with ODS styles, they can look very nice (see Lund, 2011 for some discussion of this).
But, in the new world of DATA _NULL_ reporting tables can be defined right in the data step code and
even produce many different tables on the same page of output. Before a discussion of the Report
Writing Interface (RWI), please understand that this paper is just to get your interest piqued. This is huge
topic and you can get much more information in Dan O’Connor’s 2009 SAS Global Forum paper listed in
the references section. It contains 40 pages on this topic alone.

In all the example code that follows a couple assumptions are made (unless noted otherwise to expound
on the example):

1. They are all within a data step, so no DATA…; or RUN; statements will be shown
2. Often code that has already been shown and discussed will not be repeated
3. All of these examples would be creating PDF files, so the “ODS sandwich” statements will be

shown (ODS PDF file=…; and ODS PDF CLOSE;)

The RWI uses a data step object called ODSOut. There are “methods” (like functions) of that object that
will create tables, rows, cells, text, page breaks, lines, etc. To use an ODSOut object it is first declared
and given a name – this only has to be done once in the data step and is routinely placed in a conditional
section of code:

 if _n_ eq 1 then

 do;

 declare odsout t();

 <other statements>

 end;

Once the object is declared you can call “methods” that perform different tasks. For instance, with our
object “t,” just a few of the possible methods are:

Paper 040-2013

Beyond the BasicsSAS Global Forum 2013

2

 t.table_start() - begins a table (there is a table_end method that closes a table)

 t.row_start() - begins a row in that table – you can have as many rows in the table as you want
(there is also a row_end method that closes a row)

 t.format_cell() - inserts a cell (column) into that row – you can have as many cells in a row as
you want, but each row must have the same number of cells

 t.format_text() - inserts a line of text (not part of a table)

 t.line() - puts a horizontal line on the page

 t.page() - inserts a page break

 t.title() - creates a page title
(there is also a footnote method that creates a page footnote)

Note that all of these methods calls have parentheses, which are required – even if empty. There are
parameters that can be placed in the parentheses. For example, the Format_Cell method has a “text”
parameter that specifies the text to be printed in the cell. You can specify style attributes in most method
calls as well, specifying cell borders, appearance of text, line widths, etc., with the OVERRIDES or STYLE
parameters. These will be discussed in more detail as we move along.

Here’s a very simple example of using the ODSOUT object. No dataset will be read by the data step, so
wrapping the DECLARE statement in an _N_ = 1 loop is not necessary, because the step will execute
only once.

 data _null_;

 declare odsout t();

 t.format_text(text: ‘Hello World);

 run;

The output from this step would be a single page with the words in the upper left
corner. Note that if there are any TITLE or FOOTNOTE statements that are still
active, these would also appear on the page and the text would be after the
titles.

CREATING SIMPLE TABLES

But, reports are usually not comprised of just text. The RWI can define tables of data and there are sets
of table, row and cell methods that allow us to do that.

 t.table_start();

 t.row_start();

 t.format_cell(text: ‘Hello World);

 t.row_end();

 t.table_end();

As noted above, the parentheses following the method calls are required, even if no parameters are
passed. Also note that the FORMAT_CELL method parameter is exactly the same as that in the
FORMAT_TEXT method call in the earlier example. But, the appearance of the output will be very
different. The code above, rather than just creating text on the page,
would create a single cell “table” with the words “Hello World”. By
default, the output will be centered on the page, again following any
titles. The cell borders, fonts, color, etc. will be determined by the
ODS STYLE that is being used on the ODS PDF statement.

It’s simple to make the tables more table-like, by adding more columns and rows. Getting more columns
is just a simple matter of having more FORMAT_CELL calls between the ROW_START and ROW_END.
Note that each cell is bordered individually, just as would be expected in a table.

This method simply writes text to the page. By
default is will be left justified and use the font
attributes associated with the body of the ODS
style in effect.

The creation of a table is pretty straightforward:

 Start the table

 Start the first, and only, row

 Insert a single cell with some text

 End the row

 End the table

Beyond the BasicsSAS Global Forum 2013

3

 t.row_start();

 t.format_cell(text: 'hello');

 t.format_cell(text: 'world');

 t.row_end();

Getting more rows is just as simple – add as many ROW_START…ROW_END blocks needed between
the TABLE_START and TABLE_END.

 t.row_start();

 t.format_cell(text: 'hello');

 t.format_cell(text: 'world');

 t.row_end();

 t.row_start();

 t.format_cell(text: 'goodbye');

 t.format_cell(text: 'earth');

 t.row_end();

Notice above that the columns are automatically sized to fit the largest text in the column in the entire
table. To illustrate this further, and to show that in addition to multiple columns and rows, multiple tables
can also be created in the same data step.

 t.table_start();

 t.row_start();

 t.format_cell(text: 'hello');

 t.format_cell(text: 'world');

 t.row_end();

 t.table_end();

 t.table_start();

 t.row_start();

 t.format_cell(text: 'goodbye');

 t.format_cell(text: 'earth');

 t.row_end();

 t.table_end();

The two rows are no longer “joined” and widths of the columns are different. Later, ways to control lots of
attributes of the tables, which could have made these two tables look much the same, will be shown.

DATA-DRIVEN TABLES

It’s not too practical to think of hard-coding all the data to be presented in a table. Fortunately, in addition
to a quoted string, the TEXT attribute of the FORMAT_CELL method shown in the examples above can
take a variable or expression as its value. This allows for creation of tables from data in datasets or from
variables created in the data step. The following examples use the class list from the SASHELP.CLASS
dataset.

 set sashelp.class;

 if _n_ eq 1 then declare odsout t();

A row can have any number of cells –
here we’re creating a row with two
cells (columns), each with a single
word

A table can have any number of rows
– here we’ve added a second row to
the previous example

These are the same two rows we
had before, but now they are in
separate tables. Notice that the
sizing of the columns is table-
specific and the columns in the two
rows are no longer the same width
and that there is now separation
between the rows.

Now, bring in a dataset and we’ll use values
from that to populate our table

Remember, only need to declare the ODSOUT
object once – do it on the first iteration of the
data step.

Beyond the BasicsSAS Global Forum 2013

4

 t.table_start();

 t.row_start();

 t.format_cell(text: name);

 t.format_cell(text: height);

 t.format_cell(text: weight);

 t.row_end();

 t.table_end();

But, there’s a slight problem with the above code – the TABLE_START and
TABLE_END methods are going to be called for every iteration of the data step
and the result is a separate table for every observation, as shown in the table
snippet to the right. That might be what is wanted, but probably not.

The solution is simple – place the TABLE_START call in the _N_ eq 1 logic and the TABLE_END call
with a condition triggered by an END= option on the SET statement.

 set sashelp.class end=done;

 if _n_ eq 1 then

 do;

 declare odsout t();

 t.table_start();

 t.row_start();

 t.format_cell(text: 'Name');

 t.format_cell(text: 'Height (ins)');

 t.format_cell(text: 'Weight (lbs)');

 t.row_end();

 end;

 t.row_start();

 t.format_cell(text: name);

 t.format_cell(text: height);

 t.format_cell(text: weight);

 t.row_end();

 if done then t.table_end();

Those couple simple changes create a single table, with all the columns the
same size and the rows joined. There is a header row to tell the reader
what’s in the table. Now is the time to take a look at to control now just what
appears in the table, but how the table appears.

CONTROLLING THE APPEARANCE OF THE TABLES

The programmer has control over almost all aspects of the appearance of the table – text attributes like
font, color, size and style; cell attributes like borders, size, alignment and background; table attributes like
spacing and borders. All can be controlled at most down to the tiniest detail. There are two parameters
that can be used in most method calls to do this: OVERRIDES and STYLE.
The real difference between the two parameters is where the list of attributes to apply to the object is
maintained. The OVERRIDES parameter lists the “overrides” of the default attributes in the method call
itself, just like the TEXT parameter. The STYLE parameter references a style element that is defined in
PROC TEMPLATE for the ODS STYLE that is currently in use.

Now, rather than quoted values in the TEXT
parameter of the FORMAT_CELL method call,
put the name of a variable. The contents of that
variable will be placed in the cell.

The row and cell code is exactly the same as
before – all that needed to be changed was
when the table started and stopped. Now each
of these rows will be in the same table

Use the END= option to define a variable that
will be set to 1 (true) when the end of the
dataset is reached.

In addition to declaring the ODSOUT object,
move the TABLE_START call to the _N_ eq 1
block of code. Also, this is a good place to add
a single header row to the table. This
ROW_START and ROW_END block will only
be executed once.

When the end of the dataset is reached, end the
table.

Beyond the BasicsSAS Global Forum 2013

5

A quick example will show how easy, yet powerful, this is. First, change the appearance of the header
rows to set them off by overriding a few of the attributes of the cells.

 t.row_start();

 t.format_cell(text: 'Name',

 overrides: 'background=yellow fontweight=bold cellwidth=30mm');

 t.format_cell(text: 'Height (ins)',

 overrides: 'background=yellow fontweight=bold cellwidth=25mm');

 t.format_cell(text: 'Weight (lbs)',

 overrides: 'background=yellow fontweight=bold cellwidth=25mm');

 t.row_end();

Each cell can have its own list of overrides – here two of them are
the same across all three cells and one (cellwidth) is not. In the
code below, some overrides will also be added to the data rows to
left-align the name. Also, the height and weight values are right-
aligned and moved a little over to the left, with the RIGHTMARGIN
attribute, so that the values are not right against the edge of the cell.

 t.row_start();

 t.format_cell(text: name,

 overrides: 'just=left');

 t.format_cell(text: height,

 overrides: 'just=right rightmargin=4mm');

 t.format_cell(text: weight,

 overrides: 'just=right rightmargin=4mm');

 t.row_end();

As was noted for the TEXT attribute earlier, the OVERRIDE values can be either a quoted string, as
above, or a character variable (or expression). In the code above, the height and weight cells could be
coded as follows, with identical results:

 HW_over = 'just=right rightmargin=4mm';

 t.format_cell(text: height, overrides: HW_over);

 t.format_cell(text: weight, overrides: HW_over);

In this simple example, a hard-coded variable is used to set come common attributes. But, using
variables instead of hard-coded attribute values also allows a dataset to contain not only the data, but
information about how the data should be displayed. In one of the “real world” reports to come, at an
example of this will be shown.

Another, and probably preferable way, to deal with groups of common attributes is to create an ODS style
element that contains those attributes. PROC TEMPLATE is used to create the style, which will then be
used in the ODS PDF statement that defines the output file.

 proc template;

 define style test;

 parent=styles.printer;

The OVERRIDE parameter is used to change
default attributes. These are the cells in the
header row, which will be made bold, with a
yellow background.

We can use the CELLWIDTH attribute to set the
width of the columns.

In the first example of this table, all the values
are centered. Here, the name is now left-
justified and the other values are right-justified.

Create a new ODS style, called TEST, that uses
the PRINTER style as its base (that’s the
default style for PDF).

Beyond the BasicsSAS Global Forum 2013

6

 style DataCells from body /

 just=right

 rightmargin=4mm;

 end;

 run;

The following FORMAT_CELL calls will again produce the same table as those above with the
OVERRIDES parameters.

 ods pdf file=<file reference> style=test;

 <... previous data step code ...>

 t.format_cell(text: height, style: 'DataCells');

 t.format_cell(text: weight, style: 'DataCells');

As might expect be expected, the OVERRIDES and STYLE parameters can also be used together. If
both are used, the attribute list is additive, but common attributes use the values in the OVERRIDES. In
the code below, the height and weight cells have both parameters.

 t.format_cell(text: height, style: 'DataCells', overrides: 'fontstyle=italic');

 t.format_cell(text: weight, style: 'DataCells', overrides: 'just=left');

In the example above, attributes set in both places are used.
The height data is still right justified, with a 4mm margin on
the right. But, another attribute has been added – italic text.
The weight column has one of the attributes set in the
STYLE changed in the OVERRIDES parameter – the text in
the cell is now left-justified instead of right justified.

Being able to set attributes in both places gives a lot of control over how the output will look. Also, there’s
no real “right” or “wrong” way to do it. Sometimes, it is very handy to be able to see all the attribute
values in the data step code, without having to look at the PROC TEMPLATE code. It is often
advantageous to see the values where they’re being used. If this is so, only use the STYLE parameter
when there are a lot of attributes being set or there are a lot of cells with a common set of attributes.

SPANNING COLUMNS AND ROWS

There are header cells in the table above, but information in a table can often be more understandable
with cells that span multiple columns or rows that contain related information. There are two parameters
in the FORMAT_CELL method that control the spanning: COLSPAN, for specifying the number of
columns the cell should span, and ROWSPAN, for specifying the number of rows that a cell should span.

A single row added to the table defined above can add set the height and weight columns off a little bit
from the name column. This code would immediately precede the row with the height and weight header
text.

 t.row_start();

 t.format_cell();

 t.format_cell(text: 'Vital Stats',

 overrides: 'borderleftcolor=white fontweight=bold', colspan: 2);

The attributes that were in the OVERRIDES are
now put in a STYLE element called
DATACELLS. The BODY element in the
PRINTER style is what usually defines the
attributes of the text in the table. This overrides
two of those values.

Use the newly defined style in the ODS PDF
statement.

Instead of the OVERRIDES parameter, use the
STYLE parameter. The style element name is
in quotes, but could also be a variable that
contains the style element name.

A blank cell to go over the Name column and
then “Vital Stats” will be in a cell that spans the
Height and Weight columns.

Beyond the BasicsSAS Global Forum 2013

7

 t.row_end();

There have to be the same number of columns in each
row of the table. There are three columns in the body of
the table and three in the row above, taking into account
the vital stats column counts as two. By default, the cell
borders would have been drawn around the two merged
cells, with no line in the middle.

Nothing else new here, except a new attribute: setting the BORDERLEFTCOLOR to white makes the
appearance a little cleaner. As expected, the “LEFT” in this attribute could also be “RIGHT,” “TOP,” or
“BOTTOM.”

Rows can also be spanned with the ROWSPAN parameter. Suppose that the table above was sorted by
gender – a far-right column could be added with the gender value and spanned so as not to repeat the
gender on every row. A few things must be done to make this work correctly.

 by sex;

In the _N_ eq 1 block, add a little to the row above the column headers.

 t.table_start();

 t.row_start();

 t.format_cell(colspan: 2);

 t.format_cell(text: 'Vital Stats',

 overrides: 'borderleftcolor=white fontweight=bold', colspan: 2);

 t.row_end();

In the data rows, add the gender column. Note that for the column spanning we know how many columns
to span and hardcoded the values (2). But, the number of each type of row is determined by the data. In
a prior step, the number of each sex value has been computed and added to each row in a variable called
“num.” The cell only needs to be created for the first value of each gender, when the value of
FIRST.GENDER is true. This demonstrates another principle – that the method calls themselves can be
conditional.

 t.row_start();

 if first.sex then t.format_cell(text: put(Sex,$Sex.),

 overrides:'just=left fontweight=bold vjust=top',

 rowspan: num);

 t.format_cell(text: name,overrides: 'just=left');

 t.format_cell(text: height, style: 'DataCells');

 t.format_cell(text: weight, style: 'DataCells');

 t.row_end();

The rest of the cells are defined just as they were before,
with a new spanning row created when the value of sex
changes.

The complete code for this last example, which covers everything discussed so far, appears in Appendix
A, along with the final output.

The table is sorted by the variable Sex, so that
the rows can be grouped

The last example had a blank column above the Name. Now
we need another blank column above Sex – we could either
add another FORMAT_CELL or span this over 2 columns

The cell will only be created on the first of a gender value.The
value of Num determines how many rows will be spanned and
the VJUST=TOP attribute will move the value to the top of the
spanned cell.

Beyond the BasicsSAS Global Forum 2013

8

LAYING OUT THE PAGE

Those familiar with ODS LAYOUT and ODS REGION statements know that they can be used to place
output from one or more SAS procedures anywhere on a page. A powerful feature of the RWI are
analogous methods for the ODSOUT object. This means that the tables and text produced in the data
step can be placed anywhere on the page.

The LAYOUT_ABSOLUTE, REGION and LAYOUT_END method calls allow for tables and text created
with other method calls to be placed in exact locations on the page. Like the ODS REGION statement,
the REGION method call allows for X, Y, HEIGHT and WIDTH parameters defining the position and size
of the region. With just a few additional lines of code, the table created above can be placed at a
designated position on the page.

 if _n_ eq 1 then

 do;

 declare odsout t();

 t.layout_absolute();

 t.region(x: '2in', y: '2in', height: '8in', width: '5in');

 <same table start and header row code as before>

 end;

 <same table row code as before>

 if done then

 do;

 t.table_end();

 t.layout_end();

 end;

As can be seen in the example to the right, the table has been shifted down and to
the right. Note that the Y parameter is sensitive to whatever is already on the page.
If there are titles or other, no “regionalized” output already on the page, this table
would begin 2in below that. (Note: this is the same behavior as the ODS REGION
statement.)

There is nothing to prevent multiple regions on the same page. If the class dataset were sorted by
region, it would be a simple matter to have separate tables for boys and girls, side by side on the page.
The complete code for this and a snapshot of the output is shown in Appendix B.

There is also a LAYOUT_GRIDDED method that, along with REGION and LAYOUT_END methods, allow
for a grid to be defined on the page and output to be placed in one of the grid “cells.” See Dan
O’Connor’s paper for examples of this technique.

REAL WORLD EXAMPLES: A TABLE OF CONTENTS

Let’s look at some real-life examples that use the RWI to produce the results. First, a few assumptions
that will be made for all of the examples:

 All will be part of a PDF document, so the ODS PDF statement (and corresponding CLOSE) are
not shown

 When needed, all use ~ as the ODS ESCAPECHAR

The LAYOUT_ABSOLUTE method “turns on” the ability set up
regions

The upper-left corner of the table created here will start 2in
from the left and 2in from the top – the height and width
parameters are optional, but must be big enough to hold the
generated output. If the region is too small, the output is
suppressed.

After the table is ended, end the layout

Beyond the BasicsSAS Global Forum 2013

9

 For the sake of brevity, often some formatting code will be left out if it does not directly affect the
current

 For the sake of clarity, hard-coded values are often shown that, in the production jobs, are
actually macro calls or macro variable references

In this first example, let’s build a table of contents for a report using a data step with just one RWI
statement. In this case the information about the pagination of the report is stored in an Excel
spreadsheet. This could have been in a SAS dataset,
database table or any other source that SAS could read. (We
kept it in a spreadsheet, so someone else could maintain the
information.) The data step reads the spreadsheet and uses
the “Context Text” and “Page Number” columns as the text in
the table.

The simple data step below is all that’s needed to create a
simple table of contents. The values are used in a
FORMAT_TEXT method call and written to the file.

data _null_;

 set TOC.'Report Contents$'n;

 if _n_ eq 1 then declare odsout rt();

 LineText = catt(Contents_Text,'~{leaders .}',Page_Number);

 rt.format_text(text: LineText,overrides: "cellwidth=100pct");

run;

To the right we see the results of the above data
step. The text and page numbers are “stretched”
across the whole page, with the dot leaders
filling in the gap.

But, as menioned earlier, there are times when
it’s advantageous to use information in the
dataset for formatting the results. Here, we can
use the Indent_Level column in the spreadsheet to help make the table of contents more readable by
adding just a few lines of code.

 LineText = catt(Contents_Text,'~{leaders .}',Page_Number);

 if Indent_Level eq 0 then LineText = catt('~{newline}',LineText);

 if Indent_Level eq 0 then LOvr = "cellwidth=100pct";

 else LOvr = catx(' ', "cellwidth=100pct",catt('marginleft=',Indent_Level*3,'mm'));

 rt.format_text(text: LineText, overrides: LOvr);

Use the spreadsheet as the input “dataset”

Declare the ODSOUT object

The ODS escape function LEADERS will put
a line of dots between the Contents _Text
and Page_Number fields

 Need to tell the string to use 100% of the
page width – otherwise there would only be
one dot between the text and page number

When Indent_Level is 0, add a line break

Move the CELLWIDTH to a variable and if
the INDENT_LEVEL gt 0, add 3mm to the
left margin for each indent level

Beyond the BasicsSAS Global Forum 2013

10

The new TOC is much easier to read,
with line breaks between each section
and subsections indented under the
main headings. All of this by using
information in the data, rather than any
“fancy” coding.

The complete table of contents is shown in Appendix C.

REAL WORLD EXAMPLES: “REPLACING” PROC REPORT

As seen in some of the examples above, RWI can be used to create tables that look a lot like PROCs
REPORT, PRINT or TABULATE. Often times, the level of control over the appearance of the tables
make RWI a great choice. Also, as shown above, the ability to use data that is not directly displayed in
the table simplifies the coding that might be required in PROC REPORT, where conditional logic can also
be use.

In this example, an RWI data step will produce a table that looks very much like something PROC
REPORT or TABULATE could produce. The data comes from reports of a statewide survey of students,
where local results (from a school, district or county) are compared to results of a statewide sample.

In the _N_ eq 1 block, the ODS object “ft” is declared, a table started and the following header row is
defined. Notice that a total of eight columns are defined – three with a COLSPAN of 2 and two single-cell
columns. The single-cell columns have no text and are very narrow (4mm and 7mm). They are simply
used to add a little white space between the columns that contain data.

 ft.row_start();

 ft.format_cell(text: '6. How would you describe yourself? (Respondents could....)',

 style: 'HeaderRows',

 overrides: 'cellwidth=104mm just=left', colspan: 2);

 ft.format_cell(text: " ",overrides: 'cellwidth=4mm');

 ft.format_cell(text: "Your Students",style: 'HeaderRows',

 overrides: 'cellwidth=26mm', colspan: 2);

 ft.format_cell(text: " ",overrides: 'cellwidth=7mm');

 ft.format_cell(text: "Statewide",style: 'HeaderRows',

 overrides: 'cellwidth=26mm', colspan: 2);

 ft.row_end();

The header (and data rows) are shown in the table below:

Beyond the BasicsSAS Global Forum 2013

11

The code for the data rows is also similar to code that has been demonstrated earlier. In this case, there
are actually eight columns defined, to match those defined in the header row.

 ft.row_start();

 ft.format_cell(text: " ",overrides: 'cellwidth=4mm');

 ft.format_cell(text: put(VarValue,Race.),overrides: "cellwidth=100mm just=left");

 ft.format_cell(text: " ");

 ft.format_cell(text: put(Percent,NoMissings.),overrides: "cellwidth=12mm");

 ft.format_cell(text: put(PlusMinus,PlusMinus.),overrides: "cellwidth=14mm");

 ft.format_cell(text: " ");

 ft.format_cell(text: put(StatePercent,NoMissings.),overrides: "cellwidth=12mm");

 ft.format_cell(text: put(StatePlusMinus,PlusMinus.),overrides: "cellwidth=14mm");

 ft.row_end();

Just a couple things to note here:

1. Notice that the cell widths of columns 1 and 2 (100mm and 4mm) sum to the total in the header
column (104mm). The same is true of the columns 4 and 5, and 7 and 8 (12mm and 14mm)
equaling the 26mm in the header.

2. The first columns, of width 4mm, is simply used to indent the values. A LEFTMARGIN attribute of
4mm in the overrides of the VarValue column, with a total CELLWIDTH of 104mm, would have
produced the same results.

Now, these results would have been very easy to produce in PROC REPORT. But, there were some
circumstances where the desired result would have been much more difficult. One example was a
question on honesty in answering the survey. Surveys from students who responded that they were not
very honest were removed from the final results, but the complete set of answers to the question were
required in the report, as shown below.

Having the “Surveys pulled” text spanning the data columns would have been a challenge in SAS
procedure output. However, in the data step it is a rather trivial matter. First, the data row defined above
is put in an IF…THEN conditional, based on whether a suppression flag is off. If not, we create a “data
row” that spans five columns and contains the text that we want. Notice that five columns are spanned to
account for the four data columns and the blank, white-space column between them.

 if not SuppressValues then

 do;

 <data row code from above>

 end;

 else ft.format_cell(text: 'Surveys pulled',overrides: "just=center", colspan: 5);

The real reports that this example comes from are over 55 pages long and contain over 240 tables
generated using this method, along with other assorted tables and charts. A couple complete pages from
a sample report are shown in Appendix D. Also see the AskHYS information in the reference section for
links to publicly available versions of these reports.

Beyond the BasicsSAS Global Forum 2013

12

REAL WORLD EXAMPLES: FREE-FORM REPORTS

In earlier examples, LAYOUT_ABSOLUTE was used to position RWI-generated tables at a particular
location on the page. Another use of the layout capabilities of RWI is to “fill out” a form. This example
comes from a web-based STD surveillance application. Data can be entered on line directly from patient
records or a form can be printed, filled out by hand and the data entered at a later time, if a computer is
not readily available. An example of one page of the form is shown in Appendix E-1.

Once the data is in the database, the user can also print the same form, filled with the data that was
entered into the application. The RWI is used to put the data onto the page. There is some tedious initial
set up, as the X-Y coordinates of all the form fields must be calculated and stored. But, once it’s done,
the form can be printed for any case. As with the table of contents example, the information about the
form fields is stored in a spreadsheet. Again, this is just for the ease of maintaining the information.

There are two “tricks” to make this work. The first “trick” is to get the form onto the page. It would be very
difficult (never say impossible with SAS) to recreate the form, with all the rounded corners and check
boxes. Besides, someone went to a lot of work to create the form, so why not use it as the basis for our
report. A simple addition to the style template used to define the page is made in PROC TEMPLATE.
This is a two-page report and there is a style template for each page – the templates are exactly the
same, except for the background image. The images are simply image files of the form pages.

 proc template;

 define style work.myjournal_p1;

 parent=styles.journal;

 style body / backgroundimage="<image-location>\STD_Form_1.jpg"

 margintop=0mm marginleft=0mm height=10.5in width=8in;

 end;

 define style work.myjournal_p2;

 parent=styles.journal;

 style body / backgroundimage="<image-location>\STD_Form_2.jpg"

 margintop=0mm marginleft=0mm height=10.5in width=8in;

 end;

 run;

On the ODS PDF statement, the page 1 style template is used and the image of the form will be the
background on the page and any output created will be on top of that background image.

 ods pdf file='<file-location>' style=work.myjournal_p1 notoc;

 <code here to generate first page of output>

Before the code for the 2

nd
 page starts, another ODS PDF statement is used to change the template.

This will continue to write to the same file defined in the initial ODS PDF statement, but now with the other
template, a different background image will be used. This method can be used for as many form pages
as needed – just change the style templates between each page.

 ods pdf style=work.myjournal_p2;

The second “trick” to make this all work is to get the information about coordinates, fonts and styles into
the data step. A HASH object is used to hold all the data in the spreadsheet and it is loaded in the _n_ eq
1 block, along with the declaration and initial setup of the ODSOUT object.

The template for page 1 parents off the Journal style and
modifies the BODY element by adding a
BACKGROUNDIMAGE attribute

The template for page 2 is the same as above, but with the
image of the 2

nd
 page of the form

No FILE= here, just changing the template

Beyond the BasicsSAS Global Forum 2013

13

if _n_ eq 1 then

 do;

 declare hash pl(dataset: "pl.'PageLayout$'n");

 pl.defineKey("ItemName");

 pl.defineData('Xpos','Ypos','ItemText','FontSize','FontWeight');

 pl.defineDone();

 <more code>

 end;

The Xpos and Ypos columns hold the position
on the page where the output will be placed.
The other columns contain the font size and
weight, and the value that will be placed at that
position – either an “X” in a box of the value of
a variable.

This page of the form displays information
about the presumptive diagnosis that caused
the patient to seek treatment.

There are a number of types of information displayed on the form. A number of fields contain just a single
value for the case (e.g., patient name, facility name, date of birth). These are all stored in a dataset
called PatientInfo. Other variables can have multiple values for the case, such as the reason for the visit
(stored in VisitReason). The database containing information on all cases has already been queried and
multiple datasets have been created containing the information about the case for which the report is
being generated. Multiple SET statements will be used to read all this information, but the data step that
creates the page will iterate just one time, calling the %DisplayInfo macro the put the information on the
page.

 set visit.PatientInfo end=endPatient;

 %DisplayInfo(PatientName);

 %DisplayInfo(PatientID);

 %DisplayInfo(DOB);

 %DisplayInfo(DOV);

 %DisplayInfo(FacilityName);

 <more fields displayed>

 do while (not endFacType);

 set visit.VisitReason end=endReason;

 %DisplayInfo(VisitReasonCode,GetValue=Y);

 end;

 do while (not endPD);

 set visit.VisitPD end=endPD;

 %DisplayInfo(SyndromeCode,GetValue=Y);

 end;

So, how does that macro work? The ultimate purpose of the macro is to generate two method calls:
REGION, to place the text where it’s needed, and FORMAT_TEXT to put the proper value. The full code
is listed here.

 %macro DisplayInfo(IN,GetValue=N);

 %if &GetValue eq N %then %str(ItemName = "&IN";);

 %else %str(ItemName = vvalue(&IN););

 rc = pl.find();

The information from the spreadsheet is loaded into a HASH
object called “pl” - the key field is ItemName and if a search
on that key is found, all the other data columns are populated.

The single value information is all stored in the dataset
PatientInfo and the %DisplayInfo macro is called for each
variable – the variable in the macro call is looked up in the
spreadsheet and the value will be printed at the location listed
(e.g., the patient’s name)

For those variables that can have multiple values, the SET
statement is placed inside a DO WHILE loop which is
executed once for each observation in the dataset (could be
zero). In these cases, the value of the variable is looked up in
the spreadsheet and an “X” is placed at the location listed.

ItemName is the “key” of the hash – it will either be
the actual value passed to the macro (“&IN”) or the
value of a variable name passed to the macro
(vvalue(&IN))

The FIND method on the hash
looks for the value in the key
variable (ItemName)

Another dataset is looped through and the values
displayed on the page.

Note that there is no need for the datasets to be in
any particular order as the X/Y coordinates can
place the values at any location on the page.

Beyond the BasicsSAS Global Forum 2013

14

 if not rc then

 do;

 vi.region(x: catt(Xpos,'mm'), y: catt(Ypos,'mm'));

 if missing(FontWeight) then FontWeight = 'medium';

 TextOverrides = catx(' ',catt('fontsize=',FontSize,'pt'),catt('fontweight=',FontWeight));

 vi.format_text(text: vvaluex(ItemText), overrides: TextOverrides);

 end;

 %mend;

If the value of ItemName was found, the XPos and YPos values (from the spreadsheet) are used in the
REGION method call to set the position on the page where the next output will be placed. The value of
ItemText (from the spreadsheet) will be displayed. Also in the spreadsheet are fontsize and fontweight
values that are used to build a list of overrides to the default display attributes.

In this example, when PatientName is passed to the macro, it is found in the spreadsheet with the FIND
method on the hash object and the associated variables are loaded. So, the X and Y position of the
region will 39mm and 22.5mm and the patient’s name will print in a 12pt bold font.

In loop that reads the VisitReason reason dataset, the value of the variable VisitReasonCode is looked for
in the spreadsheet. A value for symptoms (SYMPT) would print an 8pt bold “X” at 16mm from the left and
103mm down.

This technique allows for printing of almost any type of form. The complete code to create this page is
shown in Appendix E-2 and a completed version of the form is shown in Appendix E-3.

REAL WORLD EXAMPLES: REUSING FEATURES!

As seen with the last example, placing RWI code in a macro can often make the actual data step that
creates the report much shorter and easier to read. This final example makes heavy use of macros – in
fact, other than the declaration of the ODSOUT object, there is not a single line of RWI code in the data
step itself.

The report that is created is for TB case notification for a particular year. Counts of cases are presented
in many different ways. The pages contain headers, tables of different structures and simple rows of
numbers. Different macros were created for each type of output. I won’t present the code here, but will
describe what some of the macros do and you can envision how “clean” the data step will look.

The SectionHeader macro simply uses a FORMAT_TEXT method to place formatted text at the beginning
of a section of the report – all that needs to be passed is the text string:

%SectionHeader(%str(SECTION 2: TB CASE NOTIFICATIONS AND TREATMENT OUTCOMES))

The SimpleQuestion macro takes three parameters: the question number on the form (just text), the
question text and the variable that contains the count for that question. This macro uses code very
similar to the table of contents example above:

%SimpleQuestion(2.1,New pulmonary smear-positive,Q2_01);

%SimpleQuestion(2.2,New pulmonary smear-negative,Q2_02);

%SimpleQuestion(2.3,New pulmonary smear-unknown/not done,Q2_03);

If the value is found, the return code is 0, and all the data
fields are filled with the associated values

Beyond the BasicsSAS Global Forum 2013

15

This report also mimics a paper-based report that the user can fill out. For this reason, some of the
elements on the report are there for compatibility reasons only. On the paper form, the user has a
number of places where they can check if data was not available for a section. The EmptyCellCheckBox
macro is just a cell in a table with the text shown below – no parameters need to be passed as, in this
report, the text is always the same.

%EmptyCellCheckBox;

There are a number of tabular presentations of data in this report. One that is used a number of times is
a breakdown of different types of cases by age and gender. The AgeGenderTable macro uses the
TABLE and ROW methods (START/END) and the FORMAT_CELL methods to create the tables. The
question number and text are passed, similar to the SimpleQuestion macro, along with an array
reference, which contains the numbers for the table. Notice that we’re taking advantage of the
BORDER…COLOR attributes to “turn off” the borders of the upper left cell.

%AgeGenderTable(2.16,%str(New pulmonary smear-negative or smear-unknown...,WHO_PSN);

There are other table-generation macros that create tables with spanning rows, spanning columns,
grayed-out cells when data was unavailable, etc. As we’ve seen in the examples so far, there’s not much
that cannot be done with a little imagination.

The actual report code contains 14 macros that create output types like those shown above. The single
data step generates a four page report with using over 70 calls to those macros. Hopefully, this will give
you the idea that RWI code is perfect for a “modularized” implementation. There are often reports that
might use the same type of output over and over and this is so easily done with this method.

The first two pages of this report are shown in Appendix F, showing much of what’s been discussed here.

CONCLUSION

The Report Writing Interface is a powerful tool in the SAS reporting toolbox. Even though it’s still “pre-
production” even in v9.3, it has proven to be stable and reliable for many tasks. Take a look at other
papers on the SAS Global Forum proceedings web site (see references) and glean what you can. You’ll
find that you might often turn to the data step rather than a procedure when it’s time for the next reporting
task.

REFERENCES

AskHYS – a website for reporting of information from the Washington State Healthy Youth Survey:
www.AskHYS.net – click on HYS Results…Frequency Reports. Then, select 2012 and any report from
the ESD or County list. These reports were all 100% SAS-generated and make extensive use of the
Report Writing Interface.

Beyond the BasicsSAS Global Forum 2013

http://www.askhys.net/

16

Lund, Pete, “You Did That Report in SAS®!?: The Power of the ODS PDF Destination,” Proceedings of
the 2011 SAS Global Forum Conference, SAS Institute Inc. (Cary, NC), 2011.
(http://support.sas.com/resources/papers/proceedings11/247-2011.pdf)

O’Connor, Daniel, “The Power to Show: Ad Hoc Reporting, Custom Invoices, and Form Letters,”
Proceedings of the 2009 SAS Global Forum Conference, SAS Institute Inc. (Cary, NC), 2009.
(http://support.sas.com/rnd/base/datastep/dsobject/Power_to_show_paper.pdf - this is an updated
version of the paper presented at the conference)

AUTHOR CONTACT INFORMATION

Pete Lund
Looking Glass Analytics
215 Legion Way SW
Olympia, WA 98501
(360) 528-8970
pete.lund@lgan.com

ACKNOWLEDGEMENTS

SAS® is a registered trademark of SAS Institute, Inc. in the USA and other countries. Other products are
registered trademarks or trademarks of their respective companies.

Beyond the BasicsSAS Global Forum 2013

http://support.sas.com/resources/papers/proceedings11/247-2011.pdf
http://support.sas.com/rnd/base/datastep/dsobject/Power_to_show_paper.pdf

17

Appendix A
Example of Basic Table Creation with the Report Writing Interface

proc template;

 define style test;

 parent=styles.printer;

 style datacells from body /

 just=right

 rightmargin=4mm;

 style headercells from body /

 background=yellow fontweight=bold;

 end;

run;

proc sql;

 create table numsex as

 select sex,count(*) as num

 from sashelp.class

 group by 1;

 create table newclass as

 select c.*,

 num

 from sashelp.class c,

 numsex n

 where c.sex eq n.sex

 order by sex,name;

quit;

proc format;

 value $Sex

 'F' = 'Girls'

 'M' = 'Boys';

run;

ods pdf notoc style=test;

data _null_;

 set newclass end=done;

 by sex;

 if _n_ eq 1 then

 do;

 declare odsout t();

 t.table_start();

 t.row_start();

 t.format_cell(colspan: 2);

 t.format_cell(text: 'Vital Stats',

 overrides: 'borderleftcolor=white fontweight=bold', colspan: 2);

 t.row_end();

 t.row_start();

 t.format_cell(text: 'Gender',style: 'HeaderCells', overrides: 'cellwidth=15mm');

 t.format_cell(text: 'Name',style: 'HeaderCells', overrides: 'cellwidth=30mm');

 t.format_cell(text: 'Height (ins)',style: 'HeaderCells', overrides: 'cellwidth=25mm');

 t.format_cell(text: 'Weight (lbs)',style: 'HeaderCells', overrides: 'cellwidth=25mm');

 t.row_end();

 end;

 t.row_start();

 if first.sex then t.format_cell(text: put(Sex,$Sex.),

 overrides:'just=left fontweight=bold vjust=top', rowspan: num);

 t.format_cell(text: name,overrides: 'just=left');

 t.format_cell(text: height, style: 'DataCells');

 t.format_cell(text: weight, style: 'DataCells');

 t.row_end();

 if done then t.table_end();

run;

ods _all_ close;

Beyond the BasicsSAS Global Forum 2013

18

Appendix B
Using the LAYOUT_ABSOLUTE Method for Side-by-Side Output

proc template;

 define style test;

 parent=styles.printer;

 style datacells from body /

 just=right

 rightmargin=4mm;

 style headercells from body /

 background=yellow fontweight=bold;

 end;

run;

ods _all_ close;

ods pdf notoc style=test;

data _null_;

 set sortedclass end=done;

 by sex;

 retain Group 0;

 if _n_ eq 1 then

 do;

 declare odsout t();

 t.layout_absolute();

 end;

 if first.sex then

 do;

 t.region(x: catt(Group*4,'in'), y: '1in', width: '3.5in');

 Group + 1;

 t.table_start();

 t.row_start();

 t.format_cell();

 t.format_cell(text: 'Vital Stats', overrides: 'borderleftcolor=white fontweight=bold',

 colspan: 2);

 t.row_end();

 t.row_start();

 t.format_cell(text: 'Name',style: 'HeaderCells', overrides: 'cellwidth=30mm');

 t.format_cell(text: 'Height (ins)',style: 'HeaderCells', overrides: 'cellwidth=25mm');

 t.format_cell(text: 'Weight (lbs)',style: 'HeaderCells', overrides: 'cellwidth=25mm');

 t.row_end();

 end;

 t.row_start();

 t.format_cell(text: name,overrides: 'just=left');

 t.format_cell(text: height, style: 'DataCells');

 t.format_cell(text: weight, style: 'DataCells');

 t.row_end();

 if last.sex then t.table_end();

 if done then t.layout_end();

run;

ods _all_ close;

Beyond the BasicsSAS Global Forum 2013

19

Appendix C
A Simple Table of Contents Created with the Report Writing Interface

Beyond the BasicsSAS Global Forum 2013

20

Appendix D

“Replacing PROC REPORT” with the Report Writing Interface

Beyond the BasicsSAS Global Forum 2013

21

Appendix D (cont)
“Replacing PROC REPORT” with the Report Writing Interface

Beyond the BasicsSAS Global Forum 2013

22

Appendix E-1
Using LAYOUT_ABSOLUTE to Fill a Form

The Empty Form

Beyond the BasicsSAS Global Forum 2013

23

Appendix E-2
Using LAYOUT_ABSOLUTE to Fill a Form

Complete Code to Fill the Form

proc template;

 define style work.sti_journal;

 parent=styles.journal;

 style TestInfoHeader from document /

 font_face=Helvetica

 fontsize=7pt

 fontweight=bold

 background=cxFFFFFF

 just=center;

 style TestInfo from document /

 font_face=Helvetica

 fontsize=7pt

 just=left;

 end;

 <page 1 definition>

 define style work.myjournal_p2;

 parent=work.sti_journal;

 style body / backgroundimage="&ImagePath\STI_form_FINAL-2.png?width=100%nrstr(%&)height=100%nrstr(%%)"

 margintop=0mm marginleft=0mm height=10.5in width=8in;

 end;

 <page 3 definition>

run;

ods pdf file=<file location> notoc style=work.myjournal_p1;

<page 1 code>

 ods pdf style=work.myjournal_p2;

 data _null_;

 length ItemName $40 ItemText $100 Xpos Ypos FontSize 4 FontWeight $10 TextOverrides $200;

 call missing(ItemName, ItemText, Xpos, Ypos, FontSize, FontWeight);

 retain X 'X';

 if _n_ eq 1 then

 do;

 declare hash pl(dataset: "pl.'PageLayout$'n");

 pl.defineKey("ItemName");

 pl.defineData('Xpos','Ypos','ItemText','FontSize','FontWeight');

 pl.defineDone();

 declare odsout vi();

 vi.layout_absolute();

 end;

 do while (not endPatient);

 set PatientInfo end=endPatient;

 %DisplayInfo(PatientName_2);

 %DisplayInfo(PatientID_2);

 %DisplayInfo(DOB_2);

 %DisplayInfo(DOV);

 %DisplayInfo(FacilityName);

 %DisplayInfo(STIFacilityCode,GetValue=Y);

The purpose of the complete code is
not to be able to reuse it, but to show
that it’s not all that difficult to create
a pretty complex form, assuming that
the data have been processed and
the position/style information have
been set up correctly.

This is a technique I use frequently
and it allows for a SAS-generated
form that looks exactly as the user
expects.

Beyond the BasicsSAS Global Forum 2013

24

 %DisplayInfo(STIClinicCode,GetValue=Y);

 %DisplayInfo(ClinicOther);

 %DisplayInfo(PartnerGenderCode,GetValue=Y);

 %DisplayInfo(PartnersIdentified);

 %DisplayInfo(PartnersContacted);

 %DisplayInfo(PartnersTreated);

 %DisplayInfo(PartnerComments);

 %DisplayInfo(PatientOutOfJurisdiction);

 %DisplayInfo(PatientOutOfJurisdictionNoUnk,GetValue=Y);

 end;

 do while (not endReason);

 set VisitReason end=endReason;

 %DisplayInfo(STIVisitReasonCode,GetValue=Y);

 end;

 do while (not endReasonOther);

 set VisitReasonOther end=endReasonOther;

 %DisplayInfo(VisitReasonOther,GetValue=Y);

 end;

 do while (not endPD);

 set VisitPD end=endPD;

 %DisplayInfo(STISyndromeCode,GetValue=Y);

 end;

 do while (not endTx);

 set Treatments end=endTx;

 TreatmentCodeMain = compress(STITreatmentCode,'0123456789');

 TreatmentCodeByClass = catx('_',TreatmentCodeMain,TreatmentClass);

 if STITreatmentCode ne TreatmentCodeMain then TreatmentCodeDetail = STITreatmentCode;

 %DisplayInfo(TreatmentCodeByClass,GetValue=Y);

 if STITreatmentCode ne TreatmentCodeMain then

 do;

 %DisplayInfo(STITreatmentCode,GetValue=Y);

 end;

 if TreatmentDate ne . then

 do;

 TxDate = put(TreatmentDate,mmddyy10.);

 DateField = catx('_',TreatmentCodeMain,'Date');

 %DisplayInfo(DateField,GetValue=Y);

 end;

 if STITreatmentSpecify ne '' then

 do;

 DetailField = catx('_',TreatmentCodeMain,'Detail');

 %DisplayInfo(DetailField,GetValue=Y);

 end;

 end;

 %VisitReportInfo;

 vi.layout_end();

 stop;

 run;

<page 3 code>

ods pdf close;

Appendix E-3
Using LAYOUT_ABSOLUTE to Fill a Form

Beyond the BasicsSAS Global Forum 2013

25

The Filled Form

Beyond the BasicsSAS Global Forum 2013

26

Appendix F
Using the Report Writing Interface to Create Complex Output

Beyond the BasicsSAS Global Forum 2013

27

Appendix F (cont)
Using the Report Writing Interface to Create Complex Output

Beyond the BasicsSAS Global Forum 2013

	2013 Table of Contents

