SAS Global Forum 2013 Beyond the Basics

Paper 020 -2013

Using the SAS® datastep to generate HTML or text based “mark-up”
Matthew T. Karafa, PhD, Cleveland Clinic Foundation, Cleveland, Ohio

Abstract

The author presents macros which produce reports direct to MSWord compliant HTML, thus
demonstrating an alternative method to create MSWord documents from SAS. The first step is to
create a mock up of the table in an external mark-up editor, then use SAS to produce the text that
creates the file, interspersing the required data between the mark-up tags. These macros
demonstrate a way to increase the control and flexibility over what is available via the traditional
ODS RTF or HTML mechanism. Further, via this method, any text-based mark-up language
(HTML, RTF, LaTeX, etc.) can be produced with a minimal effort.

Introduction

ODS has been a great addition to all of our SAS® tool belts. The ability to manipulate the output
from specific procedures and piece them together into a table programmatically rather than on
the fly helps generate production ready results and lets us systematically repeat the process.
However, customizing those tables can be cumbersome and trying to tweak an ODS template can
be a daunting task to a new programmer for example trying to produce tables with more complex
layouts with spanning columns and the like. However if you know a little HTML, or are willing
to make MSWord (or your favorite HTML editor of choice) teach it to you, it is possible to
produce very complex tables via Base SAS and the data step. Further since Microsoft as so
kindly added in specific tags to make its word documents look spiffy, we can use this technique
to create MSWord ready tables as well!

Writing the HTML File
Since HTML is a plain-text markup language, SAS can generate it. Thanks to the file and
put statements. The basic methodology is to use the data step to create a file and “put” our
HTML code into the file by brute force thus using a data step to create the text file that contains
the HTML. Constructing such a data step is a fairly simple task in SAS the general structure:
data null ;
file “SomeFileName.Ext”;

put “Line 1 to be put to the output file”;
put “Line 2 to be put to the output file”;

put “Line K to be put to the output file”;
put “This line is last”;
run;

Reverse Engineering the HTML

OK so getting the file made is relatively easy code to achieve, but that begs the question what
tags and text should be put out to make the HTML table? To determine the needed HTML code,
the first step is to create a mock up of the table we wish to create in MSWord. This can be as
simple or as complex as we like so long as the cells of interest can easily be found or searched
for. In the mock table, generic terms that can later be replaced with SAS macro variables are
used rather than actual values. Next, save this file using “Save as Web Page” and open the
resulting HTML file in your favorite text editor.

SAS Global Forum 2013 Beyond the Basics

So for example if we wanted to make a table that looked something like this:

Table 1: Comparison of Treatment X vs Y (Continuous Measures)

Treatment X Treatment Y
Factor N Median (Q1,Q3) N Median (Q1,Q3) Units OR (CD) P value®
SAS Factor 25 120 (90, 280) 22 180 (130, 290) 1 1.12(1.01,1.20) P<0.001

A: Wilcoxon Rank Sum P-Value

To make the mock up we would use for coding, replace the actual values with placeholders.
Typically I use macro names I plan to use in the code I’'m developing, but easy to search for
words are also good. The resulting Word table looks like this:

MainTitle

Gpl Label Gp2 Label
Factor N Median (Q1,Q3) N Median (Q1,Q3) Units OR (CI) Pvalue
var_label i GplSS i GplStats i Gp2SS i Gp2Stats i Units i OR i Pvalue i
_FootNote

A search through the resulting HTML document finds a line that has the form:
<p class=MsoNormal>

MainTitle

</p>

so in the SAS DATA ta_null we would need the following command:
put “<p class=MsoNormal>";
put “";
put MainTitle ;
put “</p>";

If we store the title to be used in a DATA step variable called “ Maintitle ”, the data null step
will replace that with its value in the resulting text file. Note also that the tags can be split up for
legibility. Thus the reader of the program can see the HTML tags that are put into the text file as
well as the SAS dataset variables that are used in the process. Searching for the other
placeholders and constructing a similar series of put statements can generate the remainder of the
table.

For repeated data points (e.g. the Group 1 and Group 2 data in the above example) we can use
looping logic to code more efficiently:

SAS Global Forum 2013 Beyond the Basics

array Events(*) NEvents _ NNonEvents ;

array Percents (*) Pl P2;

do i =1 to dim(Events);
put "<td valign=top>";
put "<p class=Textbody align=center " @;
put " style='text-align:center'>";
put "<span style='font-size:10.0pt; " @Q;
put " mso-bidi-font-size:11.0pt'>" @;
put Events[i] @;
put "<o:p></o:p></p>";
put "</td>",'
put "<td valign=top>";
put "<p class=MsoNormal align=center " @;
put " style='text-align:center'>";
put "<span style='font-size:10.0pt; " @;
put " mso-bidi-font-size:12.0pt'>" @;
put Percents| i] @;
put "<o:p></o:p></p>";
put "</td>",'

end;

Admittedly with only 2 columns this is a bit tedious, but the extension possibilities are there.
Branching logic is also possible if something is not always going to be in your talble:

$if &0ddsratios = 1 %then %do;
put "<td valign=top>";
put "<p class=MsoNormal align=center" @;
put " style='text-align:center'>";
put "<span style='font-size:10.0pt; " @;
put " mso-bidi-font-size:12.0pt'>" @;
put ORCI @;
put "<o:p></o:p></p>";
put "</td>";

send; ;

Examples of Use

%Cattable() and %Conttable()

The details of these macros usage is published elsewhere [1], but they rely on this method of
presenting the final tables. %Cattable is used for categorical factors and has a sample call
looking like:

%cattable (ds=Test, GroupVar = Group,
vlist =Male Black Handedness/E Small,
DefaultStyle=D, DefaultCutoff=0.15,
ColP=0, OddsRatios=1,
ListingFile = T, DelimitedFile = F, HtmlFile = T,
owrite html = T, ofile html =./SGF2013.html,
MainTitle=%str (Table 1: Comparison of Group 1 vs. Group O0)
)

run;

This produces output in the list (ListingFile=T) and HTML output (HTMLFi1le=T) stored in the
file “./SGF2013.html”. Note that in order for the title to correctly parse blanks we need to use
$str () in the call.

Table 1: Comparison of Group 1 vs. Group 0

SAS Global Forum 2013

Risk Group Reference Group

Factor Level Total N (%) N (%) QOdds Ratio (CI) P value
Male 9.3(3.6,24.2) <0.001
Female 70 6 8.6 64 91.4
Male 75 35 46.7 40 53.3
Black 1.02 (0.30,3.4) 0.99F
White 131 37 28.2 94 71.8
Black 14 4 28.6 10 71.4
Handedness 0.86F
1:Left 8 3 37.5 5 62.5 1.6 (0.32,7.5)
3:Right 43 12 27.9 31 72.1 1.0 (REF)
2:Both 94 26 27.7 68 72.3 0.99 (0.44 ,2.2)
Small 3372937.6 (0.00 ,3.1) <0.001F
Non-Event 132 28 21.2 104 78.8
Event 13 13 100.0 0 0.00

Similarly, the sample call below produces a nice little table for continuous measures. This mixes
mean (SD) and median (quartiles) together well, and uses the appropriate parametric or non-
parametric test which corresponds with the asked for summary statistics:

%sconttable(ds = Test, GroupVar = Group,
vlist = Age+10 LOS Cost/w+25 Satis/w,
DefaultStyle = T, DefaultTtype = U, PrintTvalue = 0,
MainTitle = %str(Table 2: Comparison of Group 1 vs. Group O
[cont.]),
OddsRatios = 1, gtldecplace = 1, Estdecplace =1,
Unitdecplace = 1,
ListingFile = T, DelimitedFile = F, HtmlFile = T,
owrite html = F, ofile html =./SGF2013.html);
run;

Table 2: Comparison of Group 1 vs. Group 0 [cont.]

Risk Group Reference Group
Factor N Statistics N Statistics Odds Ratio (CI) P value
Age 41 37.7(20.3) 104 36.4(21.8) 1.03 (0.87,1.2) 0.72S
LOS 41 136.7(230.0) 104 168.7(258.7) 1.00 (1.00,1.00) 0.47S
Cost 41 992.0 (975.0, 1024.0) 104 1001.0 (972.5,1017.0) 1.07 (0.81,1.4) 0.79W
Satis 41 3.0(3.0,3.0) 104 3.0(3.0,3.0) 1.01 (0.72,1.4) 0.97W

%Corr()

The native correlation procedure in SAS produces fine output, but sometime you need it
formatted a little differently, the macro provided here uses the HTML table technique to produce
a table that provides confidence limits around the estimated rho values: This macro I use takes a
list of vars and a list of “with variables” and produces pairwise correlations between each of the
possible pairs. It can handle both Spearman and Pearson correlations, as well as partial
correlations, correlations by sub group and weighted data as well. The sample call looks like this:

Beyond the Basics

SAS Global Forum 2013 Beyond the Basics

$corr (ds Test, vlist = Age LOS Cost, wlist=Satis satiZz,
CorrType=S, alpha=.05, Estdecplace =2, CI decplace =2,
MainTitle = %str(Table 3: Correlation with Satisfaction
Measurements),
FootNote = %str(A: Spearman Correlation Coefficients),
ListingFile=T, DelimitedFile = F, HtmlFile = T,
owrite html= F, ofile html =./SGF2013.html);

Table 3: Correlation with Satisfaction Measurements

With Var N rho 95% CI P value*
Satis
Age 145 0.15 (-0.31,0.01) 0.071
LOS 145 -0.00 (-0.17,0.17) 0.99
Cost 145 0.03 (-0.14,0.19) 0.75
Satisfaction
Age 145 0.15 (-0.31,0.01) 0.071
LOS 145 -0.00 (-0.17,0.17) 0.99
Cost 145 0.03 (-0.14,0.19) 0.75

A: Spearman Correlation Coefficients

%DSI()

%DSI() takes a comma separated data file defining data “rules” with fields including variable
name, type, valid values and ranges. These metadata are then applied to the data set using
internal macros that report the records and values that violate the given set of rules. These are
then organized using the HTML techniques described here into a fairly concise, MSWord
compliant HTML document, which can be returned to the client for action. For more details on
%DSI check out [2].

%DSI (DS= MyData, Rules= “C:\datal\datadict.csv”,
RulesDlm=%str(',"'), ListingFile=T, HtmlFile=T,
owrite html=F, ofile html=./Temp.html, PageBreakAtSplit=F,
AppendToPrevRuns=F, ReportTitle=, DEBUG = 0);

The sample report below is thus produced (Note: I have changed the ID’s and blacked out dates
to protect the innocent.) The nice thing about this report is unlike so many we produce it sorts
things by ID so that all the troubles for a given ID can be addressed at once. In our field, this is
likely how physicians will address problems in the data.

Table 4: Sample of 3 ID’s with problems from %DSI()

Problem ID #001

Problem Variable Value of
Involved Involved Variable

0 : Missing Values deg dt

4 : Gender Male or Female gender

7: Check Valid DOB dob 12JUNI

SAS Global Forum 2013 Beyond the Basics

Problem ID #007

Problem Variable Value of
Involved Involved Variable

6 : Age between 12 and 35 age 55

2 : Check Valid Date admit_dt 17DEC.

3 : Check Valid Date deg dt 26DEC]

7 : Check Valid DOB dob 250cTH

Problem ID #042

Problem Variable Value of
Involved Involved Variable

0 : Missing Values dbp .

5 : Race White Black Hispanic Other race K

6 : Age between 12 and 35 age 63

2 : Check Valid Date admit dt 15AU

3 : Check Valid Date deg dt 24AU

7 : Check Valid DOB dob 16JU

7 : Check Valid DOB dob 13MARSEE

The Next Steps

It is a short leap from the HTML data to other forms of text based mark up language (xml,
LaTeX, etc.) Once the markup tags delimiters that go between the data points are known, the file
and put statements give the user a lot of power to create text-based documents to be taken in to
any form of document.

If you strip away all the special meaning from the markup tags, they become simply another
form of delimiter between the data that you wish to present in Tabular form. Thus we SHOULD
be able to parse that “delimited” data set and generate it using the datastep we all know and love.
Thus, the ultimate goal would be to design a SAS macro that could read a “mock table” based on
HTML or other markup rules as a SAS dataset. The trick would be to then use key words within
the HTML document (e.g. Title 1 , Title 2 , Data Sub I , FOOTNOTE) and create the

table without ever needing to hard code the HTML data directly.
Something to ponder for SGF 2014!

References
1. Karafa MT, “Illustrating generation of MSWord tables via HTML with the %cattable and
%contable macros.” www.mwsug.org/proceedings/2006/stats/MWSUG-2006-SD02.pdf
2. Karafa MT, Thornton J, “Data Set Investigator - Automated Exception Reporting from an
electronic data dictionary with %DSI().”
www.mwsug.org/proceedings/2008/appdev/MWSUG-2008-A02.pdf

SAS Global Forum 2013 Beyond the Basics

Contact Information

Matthew T. Karafa, PhD

Quantitative Health Sciences, Cleveland Clinic Foundation
9500 Euclid Avenue

Cleveland, Ohio 44195

Phone: (216) 445 — 9556

Fax: (216) 444 - 8021

Email: karafam@ccf.org

Copies of the macros listed available at: www.sascommunity.org/wiki/User:Mkarafa

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

	2013 Table of Contents

