

1

Paper 012-2013

A Metadata Driven Programming Technique using SAS®

Xiyun Cheryl Wang, Statistics Canada, Ottawa, Ontario, Canada

ABSTRACT

In a typical statistical SAS® system, validations on user inputs and imputation on missing values using default values
are essential to ensure core system processes finish successfully without errors. This paper introduces a metadata
driven programming technique using SAS® for validations and imputations in SAS macros. It first explains how to
define validation rules as metadata for various types of inputs and how to store default values for missing values as
metadata using SAS syntax; then it illustrates how to utilize the defined metadata to automate validation and
imputation processes against user inputs. This metadata driven programming technique using SAS

®
eases our

system development by promoting efficiency, reusability, easy maintainability, and good coding consistency.

1. INTRODUCTION

Metadata driven programming technique contains two key concepts. First, what are the metadata and how to define
them. Second, how to utilize the defined metadata to drive system implementation. Next, I will explain how metadata
driven programming technique using SAS is brought into our SAS systems development.

G-Sam (Generalized Sampling System), a new statistical SAS system I am responsible for, has a very unique
situation; some SAS macros receives more than 20 different user inputs which need to be validated and imputed
before proceeds to the core system processes. User inputs can be library names, dataset names, string, or floating
point numbers. During prototyping, I quickly find out that by using IF THEN ELSE IF THEN statements, the block of
SAS code for validation and imputation becomes excessive. Furthermore changes on the excessive blocks of IF
THEN ELSE IF THEN statements become fragile since often unenclosed if statements are found; modifying existing
blocks of IF THEN ELSE IF THEN statements is always at risk to introduce new bugs when validation and imputation
rules need to be changed. It gets hard to accurately spot the full business rules for validation and imputation within
the excessive IF THEN ELSE IF THEN statements blocks. My investigation and research to find another alternative
to replace IF THEN ELSE IF THEN blocks ends up a new solution: use metadata driven programming technique for
validations and imputations. Validation and imputation rules can be defined in centralized metadata file and then the
defined metadata drives system implementation of validation and imputation processes. The already released G-Sam
system proves this technique efficient with high reusability, easy maintainability, and good coding consistency.

2. THREE LEVELS OF VALIDATIONS AND IMPUTATIONS

In G-Sam, the end products are a collection of pre-compiled SAS macros stored in SAS macro catalogs. Typically
when a SAS macro is to be built into G-Sam, I insist three levels of validations and imputations done in the SAS
macro, described below:

• At macro parameters level: First, macro parameters are validated against validation rules. If some macro
parameters are not valid, then error messages are printed into SAS log and the SAS macro exits with errors;
otherwise, missing optional macro parameters are set to default values. Then the macro can proceed to next
level of validations and imputations.

• At input datasets file structure level: At this level, input datasets must have correct file structures. If not, then
error messages are printed into SAS log and the SAS macro terminates with errors; otherwise, add optional
variables into input datasets with correct data types if they are not in input datasets. Then the macro can
proceed to next level of validations and imputations.

• At data level: At this level, the data inside input datasets are validated to be correct. If not, then error messages
are printed into SAS log and the SAS macro stops with errors; otherwise, impute default values for missing
values in input datasets. Then the macro can proceed to further system processing.

When user inputs passes these three levels of validations and imputations, the quality of user inputs are ensured and
thus further core system processing will encounter less problems.

The three levels of validations and imputations are required for many SAS macros. As mentioned in section 1, by
using IF THEN ELSE IF THEN statements, not only the blocks of code are excessive and hard to be maintained, but
also system implementation of validation and imputation processes becomes repetitive, robotic and time-consuming.
On the contrary, meta-data driven programming technique using SAS becomes a nature fit. First SAS allows code
generate through SAS macro facilities. This allows validation and imputation rules in SAS syntax format to be stored
in SAS macro variables and then be plugged into SAS data steps or SAS macros to generate code for validations

Applications DevelopmentSAS Global Forum 2013

2

and imputations. Second, by utilizing SAS macro facility and SAS data steps, it is easy to build generic SAS macros
for three levels of validations and imputations; then these generic SAS macros can be invoked in any SAS macro to
conduct its three levels of validations and imputations. So meta-data driven programming using SAS becomes a
nature fit for validations and imputations in statistical SAS systems. It saves systems development efforts and
promotes reusability, easy maintainability, and coding consistency.

3. METADATA DRIVEN PROGRAMMING FOR THREE LEVELS OF VALIDATIONS AND
IMPUTATIONS

Here, examples are used to explain how to define the three levels of validations and imputations rules as metadata
and furthermore how the defined metadata drives the implementation of validations and imputations processes.

 Assume the following SAS macro %process1 is defined according to specifications. It receives a collection of user
inputs, runs its processing steps, and finally saves system results to output files.

3.1 AT MACRO PARAMETERS LEVEL

1) Define metadata on validation and imputation rules for macro parameters of SAS macro %process1

Here are validation and imputation rules for macro parameters of SAS macro %process1:

• inDatalib specifies the SAS library where all input files are stored and has to be valid; if missing,

inDatalib is set to SAS "WORK" library;

• outDatalib specifies the SAS library where output files are stored and has to be valid; if missing,

outDatalib is set to SAS "WORK" library;

• inGlobalParametersFile, inFrameFile, inAllocationFile specify input datasets names; these

datasets must exist in the input data library;

• inUpdateFlag specifies a flag; it has to be "YES" or "NO" or missing. If missing, it is set to "NO";

• inRotationRate specifies a floating number; it has to be between 0.0 and 1.0;

• outSampleFile specifies an output dataset name;

The above rules can be easily translated into metadata in Table 1 and saved into a Microsoft Excel file. Note some
columns are written in SAS syntax format for code generation within validation processes.

Table 1: Metadata on validation and imputation rules for macro parameters of SAS macro %process1

For SAS macro %process1, the metadata in Table 1 is interpreted in this way:

• object_type: the type is “MACRO”;

• object_name: the object name is “PROCESS1”;

• member_type: the type of information supplied by macro parameters and is used in validation process;

o If member_type is "LIBRARY", then the library provided by the corresponding macro parameter must exist
and its name must not be longer than 8 characters;

o If member_type is "DATASET", then if the corresponding macro parameter specifies "INPUT" dataset name,

Applications DevelopmentSAS Global Forum 2013

3

then the dataset must exist and its name cannot be longer than 32 characters;

• member_name: the list of members are macro parameters of macro %process1;

o inDataLib and outDataLib: specify input and output library names;

o inGlobalParametersFile, inFrameFile, inAllocationFile, outSampleFile: specify dataset
names ;

o inUpdateFlag: specifies a character string (CHARACTER type);

o inRotationRate: specifies a floating point number (NUMERIC type);

• IO_type: specifies whether a macro parameter provides information for input or for output. This metadata is
used in validation process. For example, if a macro parameter specifies an input dataset names, then the dataset
must exist; but if it specifies an output dataset name, then no need to check whether the dataset exists or not;

• invalid_condition: specifies under what condition, a macro parameter is invalid; this metadata is used to

generate code and must be in SAS syntax format; take inDataLib as an example, (%updase(&inDataLib)

NE WORK and %updase(&inDataLib) NE WORK1) means if inDataLib is not equal to "WORK" or "WORK1",
then it is invalid;

• errMsg: describes what error messages to be printed into SAS log when invalid_condition is true

• default: specifies what is the default value for an optional macro parameter when it is missing

• required: specifies whether a macro parameter is mandatory or optional; this metadata is used for both
validations and imputations processes. For example:
o “inDataLib” is optional. During validation, it can be missing; during imputation, if missing, it is set to WORK;
o For all mandatory macro parameters, if missing, they are invalid and SAS macro stops;

2) Utilize metadata for validations and imputations on macro parameters of SAS macro %process1

Here are the major steps for validations and imputations processes on macro parameters of %process1.

• Step1: import metadata in the Excel file storing Table 1 into a SAS dataset work.macroParams_metaData

• Step 2: build generic SAS macros for validations and imputations on macro parameters driven by metadata

defined in work.macroParams_metadata.

First the generic SAS macro %macroParamsValidation(inMacroName=) loops through each macro

parameter defined in metadata for &inMacroName and invokes another generic SAS macro

%genericMacroParamValidation() to conduct validations and imputations on each macro parameter.

Applications DevelopmentSAS Global Forum 2013

4

Generic SAS macro %genericMacroParamValidation() performs the following validations and imputations:
o For mandatory parameters: they must not be missing, library and input datasets provided by them must

have rigth name length and exist, and invalid_condition is not true; otherwise, macro stops with errors;
o For optional parameters: if missing, impute to default values. If not, library and input datasets provided by

them must have proper name length and exist, and invalid_condition is not true, otherwise, macro
stops with errors;

• Step 3: Utilize the above generic SAS macros to validate and impute macro parameters of macro %process1.

SAS macro %process1 invokes %macroParamsValidation to conduct validations and imputations on its

macro parameters. Testing case 1 is to test a collection of valid and invalid macro parameter for %process1.

Applications DevelopmentSAS Global Forum 2013

5

• Step 4: review SAS log

In testing case1, a group of errors found on macro parameters and macro %process1 stops due to errors; at
same time, optional macro parameters are set to default values and warning message are printed out. Here the
validation and imputation are done together for each parameter to avoid repetitive code since the code for
validations and imputations would be pretty similar.

3.2 AT FILE STRUCTURE LEVEL

After all macro parameters of SAS macro %process1 are properly supplied, now I move to file structure level

validations and imputations. Here I take input dataset &inGlobalParametersFile as an example.

1) Define metadata on file structure of &inGlobalParametersFile

Based on specifications, metadata for validations and imputations on input dataset &inGlobalParametersFile is
defined in Table 2 and saved into a Microsoft Excel file.

Table 2: Metadata for validations and imputations on input dataset &inGlobaParametersFile

Note, in Table 2, I naturally combined metadata for validations and imputations both on file structures and on data in
input dataset &inGlobalParametersFile together. Only these columns are needed for file structure validations

and imputations: macroName, object_type, object_name, member_name, member_type, required.

Applications DevelopmentSAS Global Forum 2013

6

For dataset &inGlobalParametersFile, rotationRate and seed variables are optional; other variables are

mandatory; and each variable has its own data type indicated in member_type column.

2) Utilize metadata for validations and imputations on file structure of dataset &inGlobaParametersFile

Here are the major steps for validations and imputations on file structure of dataset &inGlobaParametersFile.

• Step 1: import metadata in a Excel file storing table 2 into work.DSN_metadata.

• Step 2: build generic SAS macros %genericFileStructValidation(inDSN=,inMacroName=) to validate

and impute file structure of dataset &inDSN according to its defined metadata. First the list of variable names in

&inDSN are stored in a macro variable &inDSN._varList; next a data step loops through each variable

defined in metadata for &inDSN and uses SAS index() function to check whether a required variable is in

&inDSN._varList. If yes, then check the variable type is correct or not. if not in &inDSN._varList, and if the

variable is optional, add this variable into &inDSN with proper data type and print out warning messages. (Note:
code example continues to next page).

Applications DevelopmentSAS Global Forum 2013

7

• Step 3: Utilize the above generic SAS macros to validate and impute file structure of
&inGlobalParametersFile. Macro %process1 simply invokes %genericFileStructValidation.

Testing case1 is to test valid and invalid variables and their data types in input dataset globalParameters.

Applications DevelopmentSAS Global Forum 2013

8

• Step 4: review SAS log

The log shows that in globalParameters dataset, mandatory variables selMeth and rotationRate are not

presented, and optional variables direction and seed are added with proper data type. Again, here
validations and imputations on file structure are conducted at the same time since the two processes are similar.

3.3 AT DATA LEVEL

After ensure all input dataset have the right file structures for macro %process1, I move to data level validations and

imputation inside each input dataset. I'll take input dataset &inGlobalParametersFile as an example.

1) Define Metadata on validations and imputations for data inside &inGlobalParametersFile

In Table 2, only these columns are used for data validations and imputations: macorName, object_type,

object_name, member_name, member_type, default, required. The metadata is interpreted in this way:

• Variable selMeth is required and should be either "SRS" or "BERNOULLI";

• Variable start is optional and should be between 0 and 1 or missing; if missing, it is set to default value 0;

• Variable rotationRate is required and should be between 0 an 1;

• Variable direction is optional and should be either "LEFT" or "RIGHT" or missing; if missing, it is set to

default value "RIGHT";

• Variable seed is optional and can be missing; if missing, it is set to default value %sysfunc(time())*1000;

2) Utilize metadata for validations and imputations on data inside dataset &inGlobaParametersFile

Here are the major steps of validations and imputations on data inside dataset &inGlobalParametersFile.

• Step 1: import metadata in the Excel file storing Table 2 into a SAS dataset, shown in step 1 in section 3.2 -> 2;

• Step 2: build generic SAS macros to validate and impute data inside an input dataset &inDSN;

Applications DevelopmentSAS Global Forum 2013

9

The above generic macro %genericDSNSetDefault is to set default values for missing data values in

&inDSN. It stores default values for variables in &inDSN into a sequence of macro variables; then a data step

loops through each observation in &inDSN, and within the loop, code is generated by using the sequence of
macro variables to set default values for missing data values for each variable.

The following generic macro %genericDataValidation() is to validate the data inside &inDSN. Note the

macro parameter keyID is a string containing the key columns forming the unique key for &inDSN. This keyID
parameter is used to identify at which observation, invalid data is found. This macro first stores the list of

validation rules into a sequence of macro variables; then in a data step on &inDSN, it generates code by using

the sequence of macro variables to validate data inside &inDSN and save invalid data in an output dataset.

Applications DevelopmentSAS Global Forum 2013

10

• Step 3: Utilize the above generic SAS macros to validate and impute data of &inGlobalParametersFile in

SAS macro %process1. Macro %process1 simply invokes %genericDataValidation to validate the data

inside &inGlobalParametersFile and then invokes %genericDSNSetDefault to impute default values

for missing data values in &inGlobalParametersFile.

Testing case1 is to test invalid data in input dataset globalParameters dataset. Testing case 2 is to test the

imputation on missing data values in globalParameters dataset.

• Step 4: review SAS log, invalid data, and data imputed

Here is the SAS log for testing case 1: there are invalid data found on variable start and the invalid data is

saved into work.globalParameters_invalid.

Applications DevelopmentSAS Global Forum 2013

11

By examining work.globalParameters_invalid, I find that the first record in work.globalParameters

input file has wrong value for variable start as 10, which should be between 0 and 1.

Here is the SAS log for testing case 2: First, the input file passes data validations, then missing values are set to
default for variables seed, start, and direction.

By comparing the data in globalParameters dataset before and after imputation, I can verify that the

imputation is done properly. Note, default value for seed is generated by time() function which changes

depending on when the generic macro %genericDSNSetDefault is invoked.

Before imputation After imputation:

3.4 PORTABILITY AND REUSABILITY

Generic SAS macros described in 3.1, 3.2 and 3.3 for three levels of validations and imputations using metadata are
portable and reusable. I'll take another example to explain this. Here a new macro %process2 to be built:

To conduct the three levels of validations and imputation for %process2, the only work to be done is to define its

metadata properly and append them into the same Excel files where metadata for macro %process1 are stored;

then re-import the Excel files. Then macro %process2 simply invokes these generic SAS macros

%macroParamsValidation, %genericFileStructValidation, %genericDataValidation,

%genericDSNSetDefault by feeding them with proper information. No other system coding efforts are required.

This greatly shortens development time for validations and imputations processes in macro %process2.

Next, major steps of conducting three levels of validations and imputations for macro %process2 are explained to
prove it is very easy to implement it.

• Step1: Define metadata for three levels of validations and imputations for SAS macro %process2.

The metadata for its macro parameters in Table 3 explains that inDatalib and outDataLib are optional

macro parameters specifying library names; inStaringValuesFile and outAllocationFiles are
mandatory macro parameters specifying dataset names.

Table 3: Metadata for validations and imputations on macro parameters of macro %process2

Applications DevelopmentSAS Global Forum 2013

12

The metadata for one of the input dataset &inStartingValueFile in Table 4 includes both metadata for file

structure and for the data. Variable StratID is mandatory and is numeric data type and must be integer.

Variable size is optional and is numeric data type, and its default values is 1.

Table 4: Metadata for validations and imputations on input dataset &inStartingValulesFile

• Step2: re-import metadata Excel files into SAS datasets (Table 3 is appended to the same Excel file storing
metadata in Table 1 and Table 4 is appended to the same Excel file storing metadata in Table 2)

• Step3: reuse generic SAS macros to conduct three levels of validations and imputations for %process2.

Below is the code example. Note that in macro %process2, first %macroParamsValidation() validates and

imputes macro parameters of %process2; next %genericFileStructValidation() validates and imputes

file structure of &inStartingValuesFile; next %genericDataValidation() validates the data inside

&inStartingValuesFile, and at the end %genericDSNSetDefault() imputes default values for missing

values in &inStartingValuesFile. Four testing cases is built to test validation and imputation processes.

Applications DevelopmentSAS Global Forum 2013

13

• Step 4: Review SAS logs

In testing case 1: a list of macro parameters errors are found and macro %process2 stops with errors;

In testing case 2: all macro parameters are provided properly, but errors are found in file structure of input
dataset &inStartingValuesFile; %process2 stops with errors;

In testing case 3: all macro parameters and input datasets file structure are provided properly, but errors are
found in data in input dataset &inStartingValuesFile. %process2 stops with errors;

In testing case 4: No validation error is encountered in the three levels of validations and %process2 passes all
validations and imputations successfully;

The three levels of validation and imputations for the new macro %process2 becomes very simple by reusing
the existing generic SAS macros shown in 3.1, 3.2, and 3.3. This greatly eases our system development.

4. BENEFITS

G-Sam system is released for user testing already, in which metadata driven programming technique is used for
three levels validations and imputation in SAS macros. Based on my experience, here are key benefits gained:
• Efficiency in system development: the lines of code for three levels of validations and imputations are

shortened significantly. Also efficiency is gained by reusing generic SAS macros for three levels of validation and
imputations.

• Reusability: one aspect is that generic metadata driven SAS macros for validations and imputations can be
ported to any other SAS systems. Another aspect is that developers' knowledge of meta-data driven
programming can be reutilized in other SAS® systems development once they understand it well.

• Easy maintainability: when validation and imputation rules are changed, required changes on system side are
only in metadata files and no system processing code needs to be modified. This eliminates the risk of
introducing new bugs into existing system and makes it easy to maintain the processes of validations and
imputations. Since validation and imputation rules are centralized metadata files, it is easy for users and system
developers to examine the full business rules of the system globally.

• Consistency: Cross the whole systems, validations and imputations are done in a consistent way. It makes easy
for new resource to understand the processes of validations and imputations.

Applications DevelopmentSAS Global Forum 2013

14

• Modularization: The metadata on validations and imputations are defined in template Excel files, then the files
are imported into SAS datasets for utilization. A metadata maintainer can be trained to be central expertise for
defining the metadata using SAS syntax without needing knowing systems processes. Then he can also take
care of the generic meta-data driven SAS macros and insert the block of template code for validations and
imputations to create a pre-template SAS macro for any new SAS macros to be built. Lastly, other developers
can focus on building the main system processes by using the pre-template SAS macros. Modularized system
development can save development efforts also and ensure the systems to be easily maintained..

5. LIMITATIONS AND CHALLENGES

• Since metadata is imported into a dataset. I need to interoperate two datasets: the metadata dataset and the
user input datasets. In our implementation, the values in one of the dataset will be saved into a list (macro
variables separated by a delimiter or a sequence of linked macro variables). Then utilize this list within a data
step of another dataset.

• To ease system coding, constraints and defaults have to be written in SAS® format. based on my experience, it
is better have one person to take care of defining metadata to ensure its correctness and consistency. a junior
SAS® programmer can be easily trained to do this and a senior developer or project leader should always review
the metadata before they formally used by the team.

• There are always exceptions when validation and setting default are not straightforward and metadata cannot be
easily abstracted. For example, if a variable's default value is based on data from another input dataset, then the
default value cannot be register into the metadata. Setting default for this variable has to be done outside the
metadata driven imputation block. It is essential to analyze systems specifications carefully in order to utilize
meta-data driven validations and imputation at maximum to gain its benefits.

6. CONCLUSION

This paper demonstrates how metadata driven programming technique is used for three levels of validations and
imputations when building SAS macros. Through examples, step by step explanation is given to help readers fully
understand this technique. Then, the paper illustrates how this programming technique can ensure strong reusability,
easy maintainability, and good coding consistency, thus shortens system development efforts. Lastly, challenges and
benefits are summarized.

ACKNOWLEDGMENTS

Special thanks to my section chief Yves Deguire for his strong support on my experiment of using meta-data driven
programming in G-Sam project.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name : Xiyun (Cheryl) Wang
Enterprise : Statistics Canada (http://statcan.gc.ca)
Work Phone: (613) 951-0843
E-mail : cherylxiyun.wang@statcan.gc.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2013

	2013 Table of Contents

