
1

 Paper 267-2012

Off the Beaten Path: Create Unusual Graphs with GTL

Prashant Hebbar, SAS Institute Inc., Cary, NC

ABSTRACT

You open the latest edition of Time magazine and see a unique spiral bar chart of revenue shortfall by state, or your
coworker sends you a link to an interesting population pyramid graph on a Web site and you ask yourself: “Can I do
that using SAS®”? Often, as it is for these two graphs, the answer is “Yes.” With a little bit of data transformation and
some creativity, you can generate spiral plots, conditional regression trees, and population pyramids using ODS
Graphics, without a shred of annotate code.

This presentation covers many tricks and tips to create unique graphs that grab the reader‟s attention, and also
deliver the information effectively. Learn how to stretch the boundaries of what is possible with ODS Graphics.

INTRODUCTION

The ODS Graphics System allows you to create modern, analytical graphs. It comprises the SG Procedures (also
called the ODS Graphics Procedures), the Graph Template Language (GTL), the ODS Graphics Designer, and the
ODS Graphics Editor.

GTL is used to define a STATGRAPH template using the TEMPLATE Procedure. The SGRENDER procedure lets
you associate the data for the graph with a template and creates the graph. GTL offers a „building-block‟ approach to
specifying your graph template. You can combine the following in numerous ways to create different graphs:

 Layouts: Overlay: OverlayEquated, Gridded, Region, Lattice, DataLattice, and DataPanel.

 Plots: Scatter: Series, Histogram, Bubble, HighLow, BoxPlots, BarCharts, Fit plots, and more.

 Text and Legends: EntryTitle, EntryFootnote, Entry, DiscreteLegend, ContinuousLegend, and more.

 Other features: Expressions, conditional blocks, dynamic, and macro variables.

This system is now a part of Base SAS starting with SAS 9.3. In this presentation, you will see how we use GTL to
create some atypical graphs. Many of these techniques can also be used to great effect in the SG Procedures.

You can download a copy of the code and data used in this paper from the SAS Technical Papers and Presentations
site at http://support.sas.com/rnd/papers/index.html. Find the entry "Off the Beaten Path: Create Unusual Graphs with
GTL" under the section for SAS Presentations at SAS Global Forum 2012, and download the examples. The code in
this paper was tested using SAS® 9.3 software.

POPULATION PYRAMID

Traditionally, horizontal bar charts have been used to show population variation by age. One of the novel
presentations of this graph uses multiple overlaid series plots to create a gossamer-like effect. (See ExcelCharts Blog
in the References section.)

Here is a GTL version of the population pyramid for USA:

Reporting and Information VisualizationSAS Global Forum 2012

http://support.sas.com/rnd/papers/index.html

Off the Beaten Path: Create Unusual Graphs with GTL, continued

2

Figure 1: Population Pyramid for USA

In the next few sections, you will see the details about how this graph was implemented.

DATA PREPARATION

The data for this plot comes from the US Census Bureau in CSV format and was imported into a SAS data set. Here
are the relevant columns:

Obs Country Year Age Percent_Male Percent_Female ...

1 United States 1980 Total 100 100

2 United States 1980 0-4 7.6 6.9

3 United States 1980 5-9 7.7 6.9

4 United States 1980 10-14 8.4 7.6

 ...

Table 1: Population Data

After we filter out any observations where age = Total or age = (NA), we need to scale the columns
PERCENT_MALE and PERCENT_FEMALE to [0, 1] as columns PCT_MALE and PCT_FEMALE respectively, to
allow us to use the percent. format.

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

3

TEMPLATE CODE

To implement this in GTL, you can use the lattice layout with two cells arranged in one row. Each cell contains an
overlay layout with a series plot of age against gender-specific population percentages, grouped by year. Here is the
program snippet:

The first cell (on the left) has a reversed X axis to give you the „reflection‟ effect. In addition, we turned off the Y axis
display here, but retained Y axis tick values in the second cell (on the right). We have set the column weights
explicitly to even out the space allocation for the wall area of the two cells. This compensates for the axis of the right
cell taking up some space, compared to the entire space being occupied by the wall in the left cell.

The series plots have a data transparency of 0.5 to help provide a „silky‟ feel for the lines. We have also set the
SMOOTHCONNECT option to true in order to reduce sharp transitions.

If you observe carefully, the group column YEAR_ATTRVAR is not in the original data! This is a discrete attribute
variable that is being used to map the colors for the year variable using a discrete attribute map as shown below:

proc template;

define statgraph pop_pyramid;

...

 layout lattice / columns=2 columnDataRange=unionAll columnWeights=(0.47 0.53);

 layout overlay / wallDisplay=none yAxisOpts=(display=none)

xAxisOpts=(reverse=true display=(tickvalues)

linearOpts=(tickValueFormat=percent. viewMin=0) ...);

 entry hAlign=left 'Male' / vAlign=top ... ;

 seriesPlot x=pct_male y=age / group=year_attrvar smoothConnect=true

lineAttrs=(pattern=solid thickness=2) dataTransparency=0.5;

endLayout;

 layout overlay / wallDisplay=none yAxisopts=(display=(tickValues)...)

xAxisOpts=(display=(tickValues)

linearOpts=(tickValueFormat=percent. viewMin=0) ...);

 entry halign=right 'Female' / vAlign=top ...;

 seriesplot x=pct_female y=age / group=year_attrvar smoothConnect=true

 lineAttrs=(pattern=solid thickness=2) dataTransparency=0.5;

 endLayout;

 endLayout;

...

...

 discreteAttrMap name='year';

value '1980' / lineAttrs=(color=cxff0000);

 value '1981' / lineAttrs=(color=cxff0300);

 value '1982' / lineAttrs=(color=cxff0700);

 ...

 value '2050' / lineAttrs=(color=cxffff00);

endDiscreteAttrMap;

 discreteAttrVar attrVar=year_attrvar var=year attrMap="year";;

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

4

The „year‟ discrete attribute map has been coded to map every year to a unique, stepped line color starting from 1980
(color = red) and ending with 2050 (color = yellow).

Next, let us look at how the legend was constructed. As shown below, the discrete legend directly references two
legend items, one for each end range of colors for the YEAR column. If we had referenced the series plot instead, we
would have ended up with too many legend items to be meaningful.

We are finished with the data and template. All that is left is to generate the graph by submitting the SGRENDER
procedure below:

A FURTHER TWIST

The above construction can be extended by overlaying the data for another country on the first one so that we can
compare them. Below is an example of such an overlay for USA and Qatar:

Figure 2: Populations of USA and Qatar

SPIRAL BAR CHART

If you had browsed the July 25th 2011 issue of Time magazine, you would have seen an interesting presentation of a
bar chart that seemed to spiral out, drawing attention to the revenue shortfall for some states in the USA even after
accounting for online sales tax collection.

The bars were sorted clockwise in descending order with stacked (cumulative) bars for taxes from online sales and
out-of-state catalog sales overlaid against the budget shortfall.

Here is a GTL version of that display:

...

 legendItem name='1980' type=line / label='1980'

 lineAttrs=(color=cxFF0000 thickness=2);

 legendItem name='2050' type=line / label='2050'

 lineAttrs=(color=cxFFFF00 thickness=2);

 ...

discreteLegend '1980' '2050' / title=’Year’;

...

proc sgrender data=pop_clean template=pop_pyramid;

run;

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

5

Figure 3: Spiral Bar Chart Showing Revenue Shortfall

Let us now dive into the details of this implementation.

DATA PREPARATION

The data here is approximate and for illustration-purposes only. We start with the raw numbers „eyeballed‟ from the
original graph. Here is a snippet of the DATA step:

Our goal here is to draw the bar chart in a radial fashion, in polar coordinates. A vector plot without arrow heads lends
itself well to drawing angled bars.

We will first compute the vector‟s radial length and an equidistant angle for each state. We will use a grouped vector
plot with the CASE column as our group. Each vector tags on to the end of the previous group value, in the same

data state_online;

 input State $1-10 stateAbbr $15-20 Case $21-35 Amount;

 format Amount dollar6.0;

 label amount='Amount in Billions';

 datalines;

California CA Online 2.0

California CA Out-of-State 2.2

California CA Net Shortfall 23.0

New Jersey NJ Online 0.2

New Jersey NJ Out-of-State 0.2

New Jersey NJ Net Shortfall 9.6

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

6

order as shown in the DATA step above. Let us assume we want to plot fourteen states and offset the bars from the

pole on a circle of radius = 2, with the bars being equally spread out over 2π radians.

Next, we convert the polar coordinate data into Cartesian coordinates to allow us to draw the graph in GTL. In this
step, we project the data into X and Y values using the cosine and sine functions, respectively. The columns X1, Y1
are the origin of the vectors and X2, Y2 are the end points.

We also calculate the positions for the abbreviated state labels at the end of each bar as STLABELX, STLABELY,
after adding a small offset from the end value.

Continuing with this DATA step, we generate some „reference circles‟, akin to reference lines in a Cartesian plot, at
the end of the DATA step. The RADIUS column contains the radii for these circles. The X coordinate for the reference
labels, CLABELX, is fixed at -2.2, slightly to the left of center, whereas the Y coordinate can be slightly offset from the
radius value itself. The label text itself is generated from the radius value, with „B‟ suffix (for billions).

%let numTopStates = 14;

%let baseRadius = 2.0;

/* Compute vector end points prev, this and angle theta */

data state1;

 retain theta 0 this &baseRadius prev;

 set state_online (obs= %eval(3 * &numTopStates));

 if mod(_N_, 3) NE 0 then stateAbbr="";

 prev = this;

 this = prev + amount;

 output;

%let PI = %sysfunc(constant(PI));

 if mod(_N_, 3) = 0 then do;

 theta = theta + 2 * &PI / &numTopStates;

 this = &baseRadius;

 end;

run;

data revenue;

 set state1 end=last;

 length circLabel $7;

 keep state case x1 y1 x2 y2 stLabelX stLabelY cLabelX

stateAbbr radius circLabel;

 xProject = cos(theta); yProject = sin(theta);

 x1=prev*xProject; /* vector origin */

 y1=prev*yProject;

 x2=this*xProject; /* vector end */

 y2=this*yProject;

 /* State labels at the end of each ‘bar’ */

%let labelOffset = 0.7;

 stLabelX=(this + &labelOffset)*xProject;

 stLabelY=(this + &labelOffset)*yProject;

 radius = &baseRadius;

 output;

 ...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

7

This is all the data we need to draw the graph.

TEMPLATE CODE

It is best to use a layout that uses the same rendered scale for the X and Y coordinates when displaying a polar
coordinate visual. Hence, we start with an OVERLAYEQUATED layout and suppress the axis displays as they are
not needed here, as shown in the template code snippet below.

First, we put down our reference circles, using parametric ellipses with their SEMIMAJOR and SEMIMINOR
parameters set to the RADIUS column. As a bonus, these overlapping circles also give us a stepped color effect due
to the transparencies being used.

The „bars‟ are specified next as a vector plot with the X1, Y1 columns as their origin and X2, Y2 columns for their
ends. The second parametric ellipse that follows the vector plot adds a „cap‟ to the center of the plot to smooth out
the ends of the bars.

The next two scatter plots add the state labels at the end of the bars and the labels for the reference circles. The
discrete legend references the vector plot to complete the template.

Notice the reference line lurking just before the discrete legend. Its purpose is purely to nudge the graph‟s minimum Y
range below the lowest bar label („PA‟ in this case). Without this, the label can be clipped due to the fact that we have
explicitly set the Y axis OFFSETMIN option.

We have used a custom style to change the first three group colors shades of red, yellow, and blue. All the pieces are
now in place and the graph is rendered using PROC SGRENDER code similar to the previous graph.

...

 /* Reference circles */

 if last=1 then

 do;

 state=''; stateAbbr=''; case='';

 x1=.; y1=.; x2=.; y2=.; stLabelX=.; stLabelY=.;

 do radius=7 to 32 by 5;

 clabelX=-2.2;

 circLabel=put(radius - &baseRadius, 2.);

 circLabel=cat('$', strip(cat(strip(circLabel),' B')));

 output;

 end;

 end;

...

...

layout overlayEquated / xaxisopts=(display=none offsetmin=0 offsetmax=0)

 yaxisopts=(display=none offsetmin=0 offsetmax=0.03);

ellipseParm semimajor=radius semiminor=radius slope=0 xorigin=0 yorigin=0 /

 display=all clip=true datatransparency=0.7

 fillAttrs=(transparency=0.8);

vectorPlot x=y2 y=x2 xorigin=y1 yorigin=x1 / group=case

arrowheads=false name='v' includeMissingGroup=false

 lineattrs=(pattern=solid thickness=12);

ellipseParm semimajor=2.1 semiminor=2.1 slope=0 xorigin=0 yorigin=0 /

 display=all fillAttrs=(color=darkGray);

scatterPlot x=stLabelY y=stLabelX / markercharacter=stateAbbr ... ;

scatterPlot x=cLabelX y=eval(radius + 0.4) / markercharacter=circLabel ... ;

 referenceLine y=-6.8 / datatransparency=1;

 discreteLegend 'v' / location=inside valign=top halign=right across=1 ... ;

endLayout;

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

8

TWEAKED VERSION

The above presentation can be improved by adding a „skin‟ effect to the vectors. This is done by overlaying several
vectors with decreasing thicknesses and lighter colors. A shopping cart icon has been placed at the origin of the bars
using the DRAWIMAGE statement. Adding a text box using DRAWTEXT statements to explain the analysis adds the
final touch.

Figure 4: Spiral Bar Chart with Simulated Skin

This graph now has an Infographics feel to it, which demonstrates one more facet of GTL‟s capabilities.

CONDITIONAL REGRESSION TREE

Next, we will show how we can use GTL to display tree-structured graphs. Conditional trees show the binary
recursive partitions used for statistical inference. Many of the examples on the Web were created using R.

The example below is a regression tree (box plots for leaf nodes) created with GTL. Tree vertices and edges need to
be explicitly positioned, but the leaf nodes with box plot fit nicely into a lattice layout. Let us proceed to the data
preparation for the graph.

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

9

Figure 5: A Conditional Regression Plot

.

DATA PREPARATION

Assuming that we know the regression tree structure, we first generate the positions and size for the nodes as the
nodes data set and the node labels as the nodeLabels data set.

In this process, it helps to visualize plotting these inside a rectangle with an approximate width of 5 and height of 25.
This gives us an X range of [0, 5] and y range of [0, 25], with the leaf nodes being toward the Y = 0 side. The choice
of these ranges is not crucial, but a larger Y range allows us to position the numerous labels and nodes vertically in
larger steps than if the range were small.

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

10

Next, we generate the position of the edges as the edges data set:

Lastly, we merge the box variable data with all the above data sets. We are using randomly generated data as the
box data set for this example.

data nodes;

 input xvar yvar size nodeId $3.;

 datalines;

3.0 21 30 1

1.5 14 30 2

4.8 14 30 7

2.4 7 30 4

;

run;

data nodeLabels;

 input xscat yscat label1 $15.;

 datalines;

3.0 22.0 1

3.0 21.4 Temp

3.0 20.7 p=0.001

1.5 14.9 2

1.5 14.2 Wind

1.5 13.7 p=0.002

4.8 14.9 7

4.8 14.2 Wind

4.8 13.7 p=0.003

2.4 8.0 4

2.4 7.4 Temp

2.4 6.7 p=0.003

;

run;

data edges;

 input x y xor yor;

 datalines;

0.8 0 1.5 14

1.5 14 3.0 21

2.4 7 1.5 14

1.9 0 2.4 7

3 0 2.4 7

4.8 14 3.0 21

4.2 0 4.8 14

5.4 0 4.8 14

;

run;

data box;

do i=1 to 20;

y1=abs(rannor(9273)*50);

y2=abs(rannor(9273)*50);

y3=abs(rannor(9273)*50);

y4=abs(rannor(9273)*50);

y5=abs(rannor(9273)*50);

output;

end;

run;

data cr_tree;

merge nodes nodeLabels edges box;

run;

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

11

TEMPLATE CODE

The conditional regression tree can be thought of as two cells arranged in a single column. The top cell contains the
tree part and the bottom cell has the box plot leaf nodes. The ratio of top cell to the bottom cell can be adjusted with
the ROWWEIGHTS option, and here we have used a ratio of 3:2 to give enough space for the tree part.

Let us now inspect the top cell. We have set the VIEWMIN and VIEWMAX options for the axes to help register the
tree with the box plots by trial and error. The edges are drawn first as a vector plot and the nodes are overlaid on
them as a bubble plot. Reversing this order would expose the edges being drawn to the center of the node bubbles!

Next, we use the scatter plot to label the node with the node ID and other information, as shown below. The block for
edge labels and the lattice of box plots will be discussed separately.

We could have used a scatter plot to label the edges as well, but if you prefer to use Unicode for the symbol „≤‟, we
cannot use column-based text data. In SAS 9.3, GTL supports layout-based draw statements that support in-line text
data, similar to the ENTRY statements. These draw statements are similar to the annotate facility in traditional
SAS/GRAPH, but give you more control.

Here we have used the DRAWTEXT statement to place the edge labels. This statement has a fully transparent
background by default. By setting the transparency to zero (opaque), we get a „wipe out‟ effect underneath the edge
labels.

...

layout lattice / rows=2 rowweights=(0.6 0.4);

layout overlay / walldisplay=none

 yaxisopts=(display=none offsetmin=0.02

linearopts=(viewmin=0 viewmax=21))

xaxisopts=(display=none offsetMin=0 offsetmax=0

linearopts=(viewmin=0 viewMax=6.2));

vectorplot x=x y=y xorigin=xor yorigin=yor / arrowheads=false ... ;

 bubbleplot x=xvar y=yvar size=size / display=(outline fill)

 bubbleRadiusMin=24 bubbleRadiusMax=28 dataSkin=gloss ... ;

 scatterplot x=xscat y=yscat / markercharacter=label1 ... ;

/* << Draw text statements go here >> */

endlayout;

/* << Lattice layout with box plots goes here >> */

 endLayout;

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

12

The last piece in this template puzzle is the bottom cell of the lattice layout containing the box plot leaf nodes. We use
a five-column lattice layout, each containing a box plot. The leaf node ID and labels have been implemented as
COLUMN2HEADERS, as shown below.

With this, the template for the conditional regression tree is complete. The graph is generated using the SGRENDER
procedure as shown in the earlier sections.

TIME SERIES SEGMENTED TREE

This is a type of visualization for presenting similarity of time series segments. The graph displays several time period
(regime) segments, and the time series is clustered within those segments using dendrogram-like trees.

...

%let unicodeLTEq = {unicode '2264'x}; /* Unicode <= character */

%macro drawTextStmt(symbol, txt, x=, y=);

 drawText textAttrs=(size=7) &symbol &txt / x=&x y=&y

 drawSpace=datavalue backGroundAttrs=(transparency=0);

%mend drawTextStmt;

%drawTextStmt(&unicodeLTEq, " 82", x=2.45, y=18.5);

 %drawTextStmt(">", " 82", x=3.65, y=18.5);

 %drawTextStmt(&unicodeLTEq, " 6.9", x=1.30, y=10);

 %drawTextStmt(">", " 6.9", x=2.05, y=10);

 %drawTextStmt(&unicodeLTEq, " 8.6", x=4.55, y=8);

 %drawTextStmt(">", " 8.6", x=5.1, y=8);

%drawTextStmt(&unicodeLTEq, " 77", x=2.1, y=2.5);

%drawTextStmt(">", " 77", x=2.75, y=2.5);

...

...

layout lattice / columns=5 rowDataRange=union columnGutter=10;

 column2Headers;

 entry "Node 3 (n=10)";

entry "Node 5 (n=48)";

entry "Node 6 (n=21)";

entry "Node 8 (n=27)";

entry "Node 9 (n=10)";

endColumn2Headers;

rowAxes;

rowAxis / display=(tickValues) displaySecondary=(tickValues)

gridDisplay=on;

endRowAxes;

%let boxDisplay=(caps fill median outliers);

boxplot y=y1 / display=&boxDisplay ;

boxplot y=y2 / display=&boxDisplay ;

boxplot y=y3 / display=&boxDisplay ;

boxplot y=y4 / display=&boxDisplay ;

boxplot y=y5 / display=&boxDisplay ;

endLayout;

endLayout;

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

13

Let us look at the data and template for this graph.

DATA PREPARATION

First we create the tree data:

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

14

The above DATA step creates the positions and labels for each node. It also creates the node links composed of
three segments in the shape of an inverted „U‟. The last few lines are for horizontal double

Then we create the regime data and merge the two data sets:

data TimeSeriesTree;

 length Name $3 Label $13;

 format Date x xo xl xh xlabel date9.;

 format Cost percent.;

 retain id 1;

 x=.; y=.; xo=.; yo=.;

 /* Leaf nodes at x=date, y=cost */

 do date='01Jan2000'd, '01Feb2000'd, '01Mar2000'd, '01Apr2000'd,

 '01May2000'd, '01Jun2000'd, '01Jul2000'd, '01Aug2000'd,

 '01Sep2000'd, '01Oct2000'd, '01Nov2000'd, '01Dec2000'd;

 Cost=0.05; Size=1; Name=' ';

 output;

 id = id + 1;

 end;

 /* Each non-leaf node is generated. Its left and right links are created as an

 * inverted ‘U’ with 3 segments.

 */

id=13; name='1'; date='16Mar2000'd; cost=0.20;

 output;

 id=.; name='V1'; x='01Mar2000'd; y=0.2; xo=x; yo=0.05; cost=.;

 output;

 id=.; name='V2'; x='01Apr2000'd; y=0.2; xo=x; yo=0.05; cost=.;

 output;

 id=.; name='V3'; x='01Mar2000'd; y=0.2; xo='01Apr2000'd; yo=0.2; cost=.;

 output;

 ...

 /* Left and right extents for double-ended arrows */

 id=.; y2=1.05; xl='01Jan2000'd; xh='10Apr2000'd; label='Segment One';

 xlabel=(xl+xh)/2; /* Label for arrows */

 output;

...

run;

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

15

TEMPLATE CODE

The template for this graph is rather simple compared to the previous conditional regression tree example. We have
an overlay layout with a block plot for demarcating the regimes. A high-low chart with filled arrow end caps is used to
draw the arrows at the top. These are then labeled using a scatter plot.

The dendrogram-like tree is rendered by using a vector plot to draw the node links (as inverted „U‟s) and overlaying a
bubble plot on top for the nodes. This is similar to the previous example. The nodes are once again labeled using a
scatter plot.

Now that we have the data and the template, we can generate the time series segmentation graph using the
SGRENDER procedure as shown earlier.

MAP MAGIC

GTL does not have standard map support in SAS 9.3. But for simple outline maps, you can get the desired visual
using projected data and series plots. Shown below is a graph created using GTL. The graph shows the populations
of the four largest cities in the USA on a map. An inset provides the ethnicity breakdown for each of the four cities.
Note that the states of Alaska and Hawaii have also been displayed on the map. Note that this example requires
SAS/GRAPH for the data and projection.

Let us now see how this was achieved in GTL.

data regimes;

 input date2 regime;

 informat date2 date.;

 format date2 date.;

 datalines;

'01Jan2000'd 1

'15Apr2000'd 1

'15Apr2000'd 2

'15Jul2000'd 2

'15Jul2000'd 3

'15Oct2000'd 3

'15Oct2000'd 4

'01Dec2000'd 4

;

run;

data merged;

 set timeseriestree regimes;

run;

...

layout overlay / xaxisopts=(label='Time' offsetmax=0.05 offsetmin=0.05

 display=(ticks tickvalues)

 timeopts=(splittickvalue=false interval=month

 tickvalueformat=monname3.))

 yaxisopts=(label='Cost' linearopts=(viewmin=0 tickvalueformat=percent.));

blockplot x=date2 block=regime / display=(fill) filltype=alternate

altfillattrs=(color=white) datatransparency=0.3;

highlowplot y=y2 low=xl high=xh / type=bar intervalbarwidth=11

highcap=filledarrow lowcap=filledarrow datatransparency=0.5 ... ;

scatterplot y=y2 x=xlabel/ markercharacter=label ... ;

vectorplot x=x y=y xorigin=xo yorigin=yo / arrowheads=false;

bubbleplot x=date y=cost size=size / bubbleradiusmin=12px ... ;

scatterplot x=date y=cost / markercharacter=name;

endlayout;

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

16

Figure 6: A GTL Map Using Series Plot

DATA PREPARATION

We start with the MAPS.STATES data set that comes with SAS/GRAPH. Since we will be using a series plot to draw
the map outline, we need to close the map polygons by repeating the first observation for each segment (state). We
have selected a lower level of detail (density ≤ 1) as that is sufficient for our purpose here. Puerto Rico has been
omitted to allow space for the bar chart inset.

In order to reposition Alaska and Hawaii, we have split the data set into three data sets as shown below:

data usa alaska hawaii;

 /* Use less detailed data; remove Puerto Rico to allow barchart inset */

 set maps.states(where=((density <= 1) and (state ne 72)));

 length id $8;

 retain xFirst yFirst;

 keep state segment x y id;

 by state segment;

 /* Make unique Id for each state+segment combination */

 id=put(state, 3.0) || put(segment, 3.0);

 /* Save away the first vertex */

 if first.segment=1 then do;

 xFirst=x; yFirst=y;

 end;

 if state=2 then output alaska;

 else if state=15 then output hawaii;

 else output usa;

 /* Close the segment polygon: write first vertex again */

 if last.segment=1 then do;

 x=xFirst; y=yFirst;

 if state=2 then output alaska;

 else if state=15 then output hawaii;

 else output usa;

 end;

run;

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

17

Next, we append the information about the four cities to the end of our USA data set:

Our original data set MAPS.STATES had unprojected coordinates in radians. We now project the data sets into
Cartesian coordinates using the SAS/GRAPH GPROJECT procedure with the default projection (Albers):

Next, we generate the ethnicity data. Note that this data is for illustration purposes only.

data usa_map_pop;

 set usa end=last;

 drop deg2Rad lat long;

 format pop 1.0;

 length city $12;

 deg2Rad=atan(1)/45; /* Degree to radian conversion factor */

 output;

 /* Append obs for city population values to USA map data */

 if last=1 then do; /* Convert lat,long from deg,min --> x, y radians */

 segment=1;

 state=102; City='New York'; lat=40+47/60; long=73+58/60;

 x=long*deg2Rad; y=lat*deg2Rad; pop=8.1; output;

 state=103; City='Houston'; lat=29+45/60; long=95+31/60;

 x=long*deg2Rad; y=lat*deg2Rad; pop=2.1; output;

 state=104; City='Chicago'; lat=41+50/60; long=87+37/60;

 x=long*deg2Rad; y=lat*deg2Rad; pop=2.7; output;

 state=105; City='Los Angeles';lat=34+3/60; long=118+15/60;

 x=long*deg2Rad; y=lat*deg2Rad; pop=3.8; output;

 end;

run;

/*--Project each map separately--*/

proc gproject data=usa_map_pop out=usap;

id state;

run;

proc gproject data=alaska out=alaskap;

id state;

run;

proc gproject data=hawaii out=hawaiip;

id state;

run;

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

18

In the final steps, we merge the ethnicity data with the map data after renaming the X, Y and ID columns for Alaska
and Hawaii to new columns. We then separate out the city population data coordinates we added earlier to different
columns. We also add a scale label of „Mil‟ for labeling the population values. This completes the data preparation
phase.

We will go over the template next.

TEMPLATE CODE

The best way to render map data is with an equated overlay layout because it uses the same „data to drawing scale‟
for both X and Y axes. A series plot is used to draw the map outlines with the projected X and Y columns and group
set to the ID column. We then overlay filled circles centered on the city coordinates, sized according to their
population values using a bubble plot. The bubbles are then labeled with their population values using two scatter
plots. Note that the Y values of the scatter plots have been adjusted around the center to allow for a two-line label.

An interesting feature of this template is the use of nested overlays. As you can see below, the insets for Alaska and
Hawaii have been created by two nested equated overlay layouts. Each overlay contains a series plot with specific
data for its state, similar to the parent layout.

Note that these nested overlays have been explicitly sized using the WIDTH and HEIGHT options specified as
percentages of the output size. These values have to be set with some care to get the relative dimensions of the
states to look right. We position these nested layouts inside the parent layout using the numeric forms of the HALIGN
and VALIGN options.

data race;

 input City2 $1-12 Race $ Value;

 format Value percent.;

 datalines;

New York White 0.6

Los Angeles White 0.4

Chicago White 0.65

Houston White 0.5

New York Black 0.3

Los Angeles Black 0.25

Chicago Black 0.25

Houston Black 0.2

New York Hispanic 0.1

Los Angeles Hispanic 0.35

Chicago Hispanic 0.1

Houston Hispanic 0.3

;

run;

data merged;

 merge usap

 alaskap(rename=(x=ax y=ay state=astate segment=aseg id=aid))

 hawaiip(rename=(x=hx y=hy state=hstate segment=hseg id=hid))

 race;

run;

/* Separate the city population data coord columns from the map coord */

data mergedFinal;

 set merged;

 if city ne ' ' then do;

 xc=x; yc=y; x=.; y=.; segment=.; state=.;

 scale='Mil';

 end;

run;

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

19

The last bit of template code is for the inset bar chart showing the ethnicity data. Once again, we employ a nested
overlay layout for this. A simple overlay suffices here since we do not require the coordinate drawing scales for a bar
chart to be equal. We have used the clustered group display in the bar chart for easy comparison between the group
values.

Both data and the template for this graph are now complete. The SGRENDER procedure is then used to render this
graph.

A TRANSIT MAP FOR THE MILKY WAY

Are you lost in your galactic travels? Samuel Arbesman came up with a stylized map for our Milky Way galaxy, akin
to the ubiquitous subway transit maps. (See Arbesman, S. in the References section.) The map shows different
transit „lines‟ with stations and terminals. It also has transfer stations between the different transit lines. Note that this
stellar map has been augmented with some definitely terrestrial locations, just to see if you are paying attention!

The GTL implementation of this map is shown below:

...

 /* << Legend items go here >> */

 layout overlayEquated / xAxisOpts=(offsetMax=0.3 display=none)

 yAxisOpts=(offsetMin=0.3 display=none);

 seriesPlot x=x y=y / group=id ... ;

 bubblePlot x=xc y=yc size=pop / dataTransparency=0.3 dataLabel=city

 bubbleRadiusMin=15 bubbleRadiusMax=30 ...;

 scatterPlot x=xc y=eval(yc + 0.015) / markerCharacter=pop ... ;

scatterPlot x=xc y=eval(yc - 0.015) / markerCharacter=scale ... ;

 /* Inset Alaska */

layout overlayEquated / xAxisOpts=(display=none) yAxisOpts=(display=none)

 width=25pct height=20pct hAlign=0.05 vAlign=0.1

 wallDisplay=none opaque=false;

seriesPlot x=ax y=ay / group=aid ... ;

 endLayout;

 /* Inset Hawaii */

layout overlayEquated / xAxisOpts=(display=none) yAxisOpts=(display=none)

 width=10pct height=10pct hAlign=0.4 vAlign=0.1

 wallDisplay=none opaque=false;

seriesPlot x=hx y=hy / group=hid ... ;

endLayout;

/* << Inset bar chart layout >> */

endLayout;

...

...

layout overlay / width=40pct height=30pct hAlign=0.95 vAlign=0.1

 wallDisplay=none xAxisOpts=(display=none)

 yAxisOpts=(reverse=true display=(tickValues) ...) ;

 entry textAttrs=(size=7) "Population Breakdown by Ethnicity" /

 location=outside vAlign=top;

 barChart x=city2 y=value / group=race orient=horizontal name='a'

 groupDisplay=cluster includeMissingGroup=false

 barLabel=true dataSkin=pressed ... ;

 discreteLegend ... ;

endLayout;

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

20

Figure 7: Milky Way Transit Map

Next, we will go over the data and the template needed for this visual.

DATA PREPARATION

First we create the transit lines with columns X and Y for vertex positions on the transit line. The ROUTE column tags
vertices belonging to the same line with their route name. The TERMINUS column is set to 1 for stations that are
terminals. The STATIONGRP column marks the vertices that are transfer stations with common non-missing values.

Next we generate the positions and text for all the labels in the DATA step below:

data mw_routes;

 input route $14. x y stationgrp terminus;

 datalines;

Outer 415 16 . 1

Outer 492 95 . .

Outer 492 304 . .

Outer 420 375 . .

Outer 224 375 . .

Outer 180 334 . .

Outer 180 232 . .

Outer 228 186 3 1

Outer 274 186 . .

Outer 314 215 4 1

Crux-Scutum 366 414 . 1

Crux-Scutum 192 414 . .

Crux-Scutum 155 380 . .

Crux-Scutum 155 221 . .

Crux-Scutum 216 162 3 1

Crux-Scutum 362 162 . .

Crux-Scutum 390 190 . .

Crux-Scutum 390 241 . .

Crux-Scutum 367 264 . .

Crux-Scutum 310 264 . .

Crux-Scutum 286 241 4 1

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

21

We now get to stations that are neither terminals or transfer stations (sub stations). These are grouped according to
the transit line they belong to. Notice that we have an observation for SUBSTATION_GRP = 3 with missing XS and
YS. This is because there are no substations on this line (Sagittarius) and this serves as a place-holder so that the
group colors stay in sync.

The last part of the data generation is to merge the above three data sets. We also reverse the Y coordinate values to
account for the fact that our data generation assumed the coordinate origin to be at the top-left, whereas GTL uses a
bottom-left origin.

We will inspect the template next.

TEMPLATE CODE

The template has a single layout overlay with the wall and both X and Y axis displays turned off. We have used two
parametric ellipses to show the galaxy center and Canis Major constellation. The series plot with columns X, Y for
position and ROUTE as the group is overlaid next. This forms the transit lines, which we also reference from the
discrete legend, as shown below:

data mw_names;

 input xn yn name $ 13-31 ;

 datalines;

152 30 Andromeda Customs

138 56 The Hamptons

 88 108 Levittown

 6 178 Omega

 10 190 Centauri

 3 278 New Outer Junction

 65 366 Omicron Centauri

...

data mw_substations;

 input xs ys substation_grp ;

 datalines;

285 375 1

390 219 2

346 264 2

 . . 3

235 74 4

data mw_merged;

 merge mw_routes mw_names mw_substations;

 y = 430 - y;

 if (yn ne .) then

 yn = 430 - yn;

 if (ys ne .) then

 ys = 430 - ys;

run;

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

22

We will go over the details of the terminals, transfer stations and sub stations next. In order to get the connected
outline effect on the transfer stations, we draw the transfer lines as a series plot with thick lines and a scatter plot with
larger markers. We then overlay a slightly thinner series plot and a scatter plot with smaller markers in the
background color to „hollow out‟ these features, leaving us with an outline effect. This is shown below:

Lastly we draw the sub stations using scatter plots and then place all the labels using a scatter plot.

...

 layout overlay / walldisplay=none yaxisopts=(display=none)

 xaxisopts=(display=none offsetmax=0.1);

 /* Galactic Center */

 ellipseparm semimajor=51 semiminor=20 slope=.88 xorigin=288 yorigin=191 /

 display=(fill) fillAttrs=(color=cxFDFDB0);

 /* Canis Major */

 ellipseparm semimajor=100 semiMinor=50 slope=-.70 xorigin=130 yorigin=334 /

 display=(fill) fillattrs=(color=cxFDFDB0);

 /* Main routes */

 seriesplot x=x y=y / name="routes" includemissinggroup=false

 group=route lineattrs=(thickness=1.8% pattern=solid)

 dataTransparency=0.2;

 /* << Transfer stations, Terminals and Sub-Stations go here >> */

 discretelegend "routes" / border=false;

 endlayout;

...

...

 /* Transfer outline */

 seriesplot x=x y=y / group=stationgrp includemissinggroup=false display=all

 lineattrs=(thickness=1.8% pattern=solid color=black)

 markerAttrs=(size=3.0% symbol=circlefilled color=black);

 /* Terminal outline */

 scatterplot x=x y=y / group=terminus includemissinggroup=false

 markerattrs=(size=3.0% symbol=circlefilled color=black);

%let bgColor=white;

 /* Transfer fill */

 seriesplot x=x y=y / group=stationgrp includemissinggroup=false

 lineattrs=(thickness=0.8% pattern=solid color=&bgColor);

 /* Terminal fill */

 scatterplot x=x y=y / group=terminus includemissinggroup=false

 markerattrs=(size=2.0% symbol=circlefilled color=&bgColor);

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

23

Note that we first draw the sub stations with filled markers (SQAUREFILLED) and then overlay smaller SQUARE
markers to achieve the inlay effect. One of the drawbacks of this trick of overlaying markers and lines is that we
cannot get the same superimposed representation in the discrete legend. But since we have labeled the markers and
have a legend for the series plot transit lines, we can do without a legend for the sub stations.

We render this graph the same way as the previous graphs, using the SGRENDER procedure.

PARALLEL AXES PLOT

Parallel axes plot (or parallel coordinates plot) is a good visualization for detecting patterns in multivariate data. After
seeing the previous examples in this presentation, it should come as no surprise to see a parallel axis plot
implemented in GTL!

Figure 8: A Parallel Axis Plot for Year 2004 Automobiles

The above graph shows how automobiles in 2004 varied in their miles per gallon for city and highway, weight and
horsepower values, depending on their origin. We have omitted vehicles using hybrid technology from this example.

Let us proceed to the data and template for this graph.

DATA PREPARATION

We will use the SASHELP.CARS data set as our starting point and we will look at four columns: MPG_CITY,
MPG_HIGHWAY, WEIGHT and HORSEPOWER, for this example. This graph simulates the Y axes (as you will see
in the template section), so we cannot rely on the built-in support for generating the axis tick values. Instead, we need

...

 /* Substations fill */

 scatterplot x=xs y=ys / group=substation_grp includemissinggroup=false

 markerattrs=(size=3.0% symbol=squareFilled);

 /* Substations inlay */

 scatterplot x=xs y=ys / group=substation_grp includemissinggroup=false

 markerattrs=(size=2.0% symbol=square color=&bgColor);

 /* Terminal/Sub Labels */

 scatterplot x=xn y=yn / group=name includemissinggroup=false

 markerattrs=(size=0) datalabelattrs=(color=grey size=8)

 datalabel=name datalabelposition=right;

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

24

to know the data ranges for our columns of interest. Here we have set the minimum and maximum values for each
column after some experimentation, starting from their true ranges. We create macro variables for the min, max and
range values for each column, as shown below:

Next, we filter out cars of TYPE=‟Hybrid‟ from our input data set. We setup up four X axis coordinates X1 to X4, one
for each parallel axis column and also create new normalized [0, 1] columns for these columns.

We now calculate the coordinates for the Y axis tick values for each of the columns. Note that AXIS_X stays constant
for a given column while AXIS_Y varies from 0 to 1 in steps of 0.2 to give us five intervals. The actual tick value to
label this coordinate is obtained by linearly interpolating the column values from its min to max.

Lastly, we create the X coordinates and labels for the reference lines which simulate the axis lines and merge all the
data sets:

/* Set min, max for each variable */

%let min_v1 = 0; %let max_v1 = 50; /* mpg_city */

%let min_v2 = 0; %let max_v2 = 50; /* mpg_highway */

%let min_v3 = 2000; %let max_v3 = 7000; /* weight */

%let min_v4 = 0; %let max_v4 = 500; /* horsepower */

/* Calculate the ranges */

%let range_v1 = %sysevalf(&max_v1 - &min_v1);

%let range_v2 = %sysevalf(&max_v2 - &min_v2);

%let range_v3 = %sysevalf(&max_v3 - &min_v3);

%let range_v4 = %sysevalf(&max_v4 - &min_v4);

/* Normalize the values */

data par_axis_norm;

 set sashelp.cars(where=(type ne 'Hybrid'));

 x1 = 1; x2 = 2; x3 = 3; x4 = 4;

 mpg_city_pct = (mpg_city - &min_v1) / &range_v1;

 mpg_highway_pct = (mpg_highway - &min_v2) / &range_v2;

 weight_pct = (weight - &min_v3) / &range_v3;

 horsepower_pct = (horsepower - &min_v4) / &range_v4;

run;

data y_axis_ticks;

 drop i increment;

 attrib tvalue format=Best4.;

 axis_x = 1; axis_y = 0;

 tvalue=&min_v1;

 increment = 0.2 * &range_v1;

 output;

 do i=1 to 5;

 axis_y = axis_y + 0.2;

 tvalue = tvalue + increment;

 output;

 end;

 /* << Repeat for other columns >> */

 ...

run;

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

25

At this point we have all the data we need for the graph. Let us see how the template is structured next.

TEMPLATE CODE

The template for this graph is simpler than the data generation steps. We start with an overlay layout and turn off the
X and Y axis displays. We then draw a set of lines between the first pair of parallel axes as a vector plot using the X1
and MPG_CITY_PCT as the origin and X1 and MPG_HIGHWAY_PCT as the end, grouped by the ORIGIN column.
The arrow heads for the vector plot has been turned off and we also use a data transparency of 0.5 to enable us to
see the clusters of lines on the parallel axes. We specify such a vector plot for remaining two pairs of axes.

To simulate Y axis lines, we overlay two thick reference lines with slightly different thicknesses to create an outlined
bar effect. The curve label of second reference line functions as the X axis tick values.

As the last step, we label the Y axis tick values for the parallel axes using a scatter plot with AXIS_X and AXIS_Y
columns as their X and Y coordinates with the MARKERCHARACTER option set to the TVALUE column.

This completes the template for the parallel axes plot. We render this graph the same way as the previous graphs,
using the SGRENDER procedure.

/* X axis labels */

data x_axis_labels;

 input pos label $15.;

 datalines;

 1 MPG City

 2 MPG Hwy

 3 Weight

 4 Horsepower

;

run;

/* Final merged data */

data par_axis_final;

 merge par_axis_norm y_axis_ticks x_axis_labels;

run;

...

layout overlay / wallDisplay=(fill)

 xaxisOpts=(display=none offsetMin=0.02 offsetMax=0.02)

 yAxisOpts=(display=none offsetMin=0.03 offsetMax=0.02);

%let vectorOpts=lineAttrs=(pattern=solid thickness=3) arrowHeads=false

 dataTransparency=0.5;

vectorPlot xOrigin=x1 yOrigin=mpg_city_pct x=x2 y=mpg_highway_pct /

 group=origin &vectorOpts;

vectorPlot xOrigin=x2 yOrigin=mpg_highway_pct x=x3 y=weight_pct /

 group=origin &vectorOpts;

vectorPlot xOrigin=x3 yOrigin=weight_pct x=x4 y=horsepower_pct / name="p1"

 group=origin &vectorOpts;

 /* Y axis lines */
referenceLine x=pos / lineAttrs=(color=gray thickness=26)

 dataTransparency=0.6 ;

referenceLine x=pos / lineAttrs=(color=white thickness=22)

 dataTransparency=0.4 curveLabel=label curveLabelPosition=min;

 /* Y axis tick values */

scatterPlot x= axis_x y = axis_y / markerCharacter=tvalue

markerCharacterAttrs=(size=6 weight=bold);

discreteLegend "p1" / ... ;

endlayout;

...

Reporting and Information VisualizationSAS Global Forum 2012

Off the Beaten Path: Create Unusual Graphs with GTL, continued

26

CONCLUSION

The Graph Template Language in the ODS Graphics System offers you an extensive set of building blocks. You can
combine these along with some data manipulation to generate graphs that might not, at first, appear possible in GTL.

When you break a graph down into its components, it is fairly easy to take GTL „off the beaten path‟ to generate
unusual graphs.

REFERENCES

 SAS Technical Papers. Available at http://support.sas.com/rnd/papers/index.html

 ExcelCharts Blog. Available at http://www.excelcharts.com/blog/beautiful-but-terrible-population-pyramids/

 Arbesman, S. “Milky Way Transit Authority”. Available at http://arbesman.net/milkyway/

ACKNOWLEDGMENTS

This paper would not have been possible without the insight, ideas and support offered by Sanjay Matange. Thanks
are also due to Rich Hogan (Population Pyramid), Debpriya Sarkar (Conditional Regression Tree) and Jason Smith
(Milky Way Transit) for their SAS programs.

RECOMMENDED READING

 Cartier, Jeff. 2006. “A Programmer‟s Introduction to the Graphics Template Language.” Proceedings of the
Thirty-first Annual SAS Users Group International Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/events/sasglobalforum/previous/index.html.

 Kuhfeld, W. 2010. Statistical Graphics in SAS: An Introduction to the Graph Template Language and the
Statistical Graphics Procedures, Cary NC: SAS Press.

 Matange, S. and Heath, D. 2011 Statistical Graphics Procedures by Example: Effective Graphs Using SAS, Cary
NC: SAS Press.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Prashant Hebbar
SAS Institute Inc.
SAS Campus Dr.
Cary, NC 27513
E-mail: Prashant.Hebbar@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Reporting and Information VisualizationSAS Global Forum 2012

http://support.sas.com/rnd/papers/index.html
http://www.excelcharts.com/blog/beautiful-but-terrible-population-pyramids/
http://arbesman.net/milkyway/
http://support.sas.com/events/sasglobalforum/previous/index.html

	2012 Table of Contents

