

1

Paper 064-2012

Assigning a User-Defined Macro to a Function Key
Mary F. O. Rosenbloom, Edwards Lifesciences, LLC, Irvine, California

Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

ABSTRACT
Are you entering one or more of the same SAS

®
 Display Manager System (DMS) commands repeatedly during a

session? The DMS offers a convenient way of capturing and saving frequently entered commands in a user-defined
macro, and then saving the macro as a function key of your choosing. Are you typing SAS

®
 code for data exploration

during program development or validation, only to delete it soon afterwards? If you are, then this code can be placed
in a macro, too, and assigned to a function key. This paper illustrates the purpose and steps that you use to assign a
user-defined macro to a function key.

INTRODUCTION
During development and validation, when we are in the “getting to know you” stage with the data, we write a lot of
very basic code. While developing a program, we may want to run a frequency on all of the categorical variables to
examine their values. During validation, one might open an empty program window and write several PROC PRINT
calls or use DATA _NULL_ steps to examine the data. In both cases, the code is usually discarded. Another
inefficiency that many of us still subscribe to is to either use the “point and click” method to clear the log and output
windows, or to repeatedly issue these Display Manager System (DMS) commands throughout a session.

In fact, all of these processes can be placed into macro programs. We can write the macro programs in such a way
that they need no input parameters. Then, we assign these macro calls to function keys and suddenly, efficiency is
just a key stroke away!

STREAMLINING COMMAND-LINE DMS COMMANDS WITH A MACRO
The macro language is a powerful tool for streamlining frequently entered DMS commands to reduce the number of
keystrokes. By embedding a series of DMS commands inside a simple macro, you‟ll not only save time by not having
to repeatedly enter the commands over and over again, but you‟ll improve your productivity as well. The DMS
commands illustrated in Figure 1 are inserted between the %MACRO and %MEND statements in lieu of entering
them individually on a command line. The commands display and clear the output window, display, clear and expand
the SAS Log to full size, and then position control in the Program Editor window.

Figure 1. User-defined VALPOSTSUBMIT Macro

ASSIGNING A USER-DEFINED MACRO TO A FUNCTION KEY
The process of reducing keystrokes and enhancing productivity is an important technique used by application
developers, programmers, testers, and others. To illustrate the process of saving a macro call to a function key, the
user-defined macro, VALPOSTSUBMIT, will be assigned to function key F12 in the KEYS window. To access the
KEYS window, simply issue the KEYS command on the command line, or click on TOOLS  OPTIONS  KEYS in
the menu bar. Once the KEYS window is open, the desired key is selected from the list and the macro call is entered
next to it. The settings are automatically saved when the KEYS window is closed. A partial KEYS window is
displayed in Figure 2 to illustrate the process.

Figure 2. KEYS Window

Key Definition

F1 help
F2 reshow
F3 end;
… …
F10 keys
F11 command focus
F12 %VALPOSTSUBMIT

%MACRO valpostsubmit;

 output; clear;

 log; clear;

 zoom;

 wpgm;

%MEND valpostsubmit;

Coders' CornerSAS Global Forum 2012

2

A WORD ON NOMENCLATURE
When the suggestions from this paper are put into practice, the first thing that one must do is to compile all of the
macros that are assigned to the function keys. This can be done either by submitting a SAS program or through an
autoexec.sas file. It is extremely important to ensure that the macros defined here do not have the same name as
any macros that will be used in the SAS programs being developed or validated. In our examples, all macros and
macro variables (global or local) start with the letters “VAL” (short for validation). This choice is arbitrary, but the idea
is that within a working group, programmers will agree to designate “VAL” macros for this temporary use only, and will
avoid using this nomenclature in production.

CLEARING THE RESULTS VIEWER IN SAS 9.3
The macro VALPOSTSUBMIT can be used to clear the log and output window, but in version 9.3 of SAS, HTML is
the default output destination, and while we are able to view graphs and output in this enhanced way, the method for
clearing the results that we create is now different. A SAS note was issued on this topic. The SAS Institute suggests
closing the HTML destination, and then reopening it using one‟s registry settings:

Figure 3. SAS-suggested Method for Clearing the Results Viewer.

After this code is issued, the results viewer will appear to be unchanged. However, once new output is created, it will
be displayed and the old output will no longer be visible.

Rick Wicklin summarized the results of a SAS-L discussion on his blog, suggesting that this code could be used to
clear the results viewer:

Figure 4. Rick Wicklin’s Suggested Method for Clearing the Results Viewer.

Then Ken Kleinman took that one step further, using GSUBMIT:

Figure 5. Ken Kleinman’s Suggested Method for Clearing the Results Viewer.

In this case, the entire statement, including GSUBMIT, is assigned to one of the function keys.

One might want to place this code into a macro, and then assign a function key to call that macro:

Figure 6. User-defined VALOPCLHTML Macro

The macro, VALOPCLHTML, clears the log and returns to the enhanced editor, but it earns its name by closing („Cl‟)
and then re-opening („Op‟) then HTML destination. When ODS PREFERNCES is specified, the defaults from the
user registry are restored. For most users this will, among other things, turn the HTML destination back on, and the
for the HTML destination set NEWFILE to “none” (which stacks the results into one document), and change the ODS
path back to the work directory. In a moment we will discuss a macro that sets NEWFILE to “proc”. If both macros
are used in the same SAS session, re-setting this option in this macro becomes important.

Sometimes we want to see only the most recently created results in the results viewer, rather than the cumulative
output. The macro VALOPCLHTML, shown in Figure 7, achieves this goal:

%macro valClOpHTML;

 log; clear; wpgm;

 submit '

 ods html close;

 ods preferences;

 ';

%mend valClOpHTML;

gsubmit “ods html close; ods html;”

ods html close;

ods html;

ods html close;

ods preferences;

Coders' CornerSAS Global Forum 2012

3

Figure 7. User-defined VALHTML1PROC Macro

This macro differs from VALOPCLHTML in that the HTML destination is not closed. Instead, we issue a DM
command to clear the ODS results, which removes the output from the results window (on the left side of most SAS
sessions, not to be confused with the results viewer). We issue a command to ensure that the new results will be
sent to the work directory using ODS HTML PATH, and we set NEWFILE to “proc” so that a new HTML file is created
every time procedural output is generated. This way the results viewer will always show the most recent output, and
will not allow the results to stack together.

Together, the macros VALOPCLHTML and VALHTML1PROC can be used to clear the log and effectively clear the
results viewer, and to set user preferences for the results viewer to their desired states.

PRINTING THE FIRST TEN OBSERVATIONS FROM THE MOST RECENT DATASET
Often during development and validation of programs, we would like to view a small number of records in a dataset.
The macro VAL10OBS will print the first ten observations of the most recently created dataset, shown in Figure 8.

Figure 8. User-defined VAL10OBS macro

Here, we take advantage of &SYSLAST, which is an automatic macro variable which stores the name and libref of
the most recently created dataset in the form libref.dataset. This enables us to write the macro with no input
parameters, so that it can be assigned to a function key. The full code for this example is shown in the appendix.
The built-in dataset SASHELP.CLASS is used. The dataset is processed with a PROC SORT step, and output at the
temporary dataset _CLASS, immediately prior to calling this macro with its assigned function key. This ensures that
the value of &SYSLAST corresponds to the dataset that we want to print with this macro.

CHECKING THE MOST RECENT DATASET FOR DUPLICATES IN ‘BY’ VARIABLES
It is often necessary to check a dataset for repeats of „BY‟ variables. To do this, we must first ensure that the dataset
of interest is sorted by the desired variables, in the proper sequence, and that this was the last dataset created. Then,
VALDUPS can be used to check for and then print to the log the first 10 instances of duplicates, see Figure 9.

Figure 9. User-defined VALDUPS Macro

%macro valdups;

 submit

 "***store the most recently used dataset name as a macro variable;

 %let vallastdsn=&syslast;

 ***obtain a dataset containing variables by which the dataset is sorted;

 proc contents data=&vallastdsn out=_valcontents (keep=name sortedby

 where=(sortedby ne .)) noprint;

 run;

 ***sort the 'by variable' dataset by the sort order;

 proc sort data=_valcontents;

 by sortedby;

 run;

(Continued on next page)

%macro val10obs;

 submit

 "proc print data=&syslast (obs=10);

 run;";

%mend val10obs;

%macro valHTML1proc;

 odsresults; clear; log; clear; wpgm;

 submit '

 ods html path = "%trim(%sysfunc(pathname(work)))" newfile=proc;

 ';

%mend valHTML1proc;

Coders' CornerSAS Global Forum 2012

4

Figure 9. User-defined VALDUPS Macro (continued)

So far, when we have included DATA steps and PROC steps in the macros, we have had to use a SUBMIT
statement, wrap the code in quotes, and then end with a semicolon. In this example, the code exceeded 960
characters, so two submit statements were needed.

PRINTING A SUBSET OF THE DATA
In their book Validating Clinical Trial Data Reporting with SAS

®
, Matthews and Shilling suggest setting a macro

variable to a subset of records that you would like to keep an eye on throughout the program, and then printing
datasets throughout the program using a WHERE statement referencing the macro variable (Matthews and Shilling
2008, p.81), see Figure 10.

Figure 10. User-defined VALPRINT Macro

%macro valprint;

 submit

 “proc print data=&syslast;

 where &valwhere;

 run;”;

%mend valprint;

***run a PROC SORT, so that SYSLAST will refer to the sashelp.class data

(now called _class, but with the same contents);

proc sort data=sashelp.class out=_class;

 by age sex;

run;

***assign a value to VALWHERE – to be used in the WHERE statement;

%let valwhere=%str(name in ('Jane', 'John', 'Joyce'));

%put &valwhere;

***now press the function key to which %VALPRINT is assigned;

(Continued from previous page)

 proc sql noprint;

 ***create a macro variable containing list of by variables;

 select distinct name into :valby separated by ' ' from _valcontents;

 ***create a list of by variables separated by equal signs;

 select distinct name into :valequal separated by '=/ ' from _valcontents;

 quit;

 ***store the last BY variable in a macro;

 data _null_;

 set _valcontents end=last;

 if last then call symput('vallastby',name);

 run;”;

 submit

 “***check original dataset for duplicates and send first 10 dups to log;

 data _null_;

 set &vallastdsn;

 by &valby;

 ***keep duplicates;

 if first.&vallastby ne last.&vallastby;

 ***print first 10 duplicates to log;

 if _n_ le 10 then put 'WARNING: Duplicate records exist'/ &valequal.=/;

 run;

 ***delete temporary dataset;

 proc datasets lib=work memtype=data nolist;

 delete _valcontents;

 quit;”;

%mend valdups;

Coders' CornerSAS Global Forum 2012

5

Our objective is to print the records for Jane, John, and Joyce. This is done after each data step in the program
during development or validation, to ensure that these special records are handled correctly. Above, the PROC
SORT is again used to create the dataset WORK._CLASS, which will automatically be assigned to &SYSLAST.
When VALPRINT is called (using a function key) the results will be displayed in the log, as shown in Figure 11.

Figure 11. SAS Log Results from user-defined VALPRINT Macro

REVIEWING THE VALUES OF CHARACTER VARIABLES
In Cody’s Data Cleaning Techniques Using SAS

®
, Second Edition, Ron Cody suggests using the _CHARACTER_

keyword with PROC FREQ to examine the values of the character variables in a dataset (Cody 2008, p.6). One
might use this macro multiple times while working with a program that incorporates several datasets. As you would
expect, this can be placed in a macro, too, taking advantage once again of &SYSLAST, illustrated in Figure 12.

Figure 12. User-defined VALCHAR Macro

SHOWING EXTREME NUMERIC VARIABLE VALUES WITH PROC UNIVARIATE AND ODS
Cody also suggests using PROC UNIVARIATE with ODS SELECT to review the extreme values for numeric
variables (Cody 2008, p.34). In VALNUM, we use PROC CONTENTS to create a dataset of non-date numeric
variables. Then PROC SQL is used to store the variable names in a list using a macro variable. The macro is
referenced in the VAR statement in PROC UNIVARIATE.

Figure 13. User-defined VALNUM Macro

%macro valnum;

 submit

 “***store the most recently used dataset name as a macro variable;

 %let vallastdsn=&syslast;

 ***obtain a dataset containing only the numeric non-date variables;

 proc contents data=&vallastdsn out=_valcontents

 (where=(type=1 and index(format,'Date') eq 0)) noprint;

 run;

 ***create a macro variable containing a list of numeric variables;

 proc sql noprint;

 select distinct name into :valnumlst

 separated by ' ' from _valcontents;

 quit;

 ***use ODS and PROC UNIVARIATE to review extreme observations;

 ods select extremeobs;

 title 'Use PROC UNIVARIATE to Review Extreme Observations';

 proc univariate data=&vallastdsn;

 var &valnumlst;

 run;

 title;

(Continued on next page)

%macro valchar;

 submit

 “proc freq data=&syslast;

 tables _character_/ nocum nopercent;

 run;”;

%mend valchar;

MPRINT(VALPRINT): proc print data=WORK._CLASS ;

MPRINT(VALPRINT): where name in ('Jane', 'John', 'Joyce');

MPRINT(VALPRINT): run;

NOTE: There were 3 observations read from the data set WORK._CLASS.

 WHERE name in ('Jane', 'John', 'Joyce');

NOTE: PROCEDURE PRINT used (Total process time):

Coders' CornerSAS Global Forum 2012

6

Figure 13. User-defined VALNUM Macro (continued)

A CHEAT SHEET MIGHT BE HANDY
As the number of user-defined macros and macro function keys increases, users might find it helpful to either create
a reference (cheat) sheet for themselves, or to keep the KEYS window open. Assigning descriptive macro names
and keeping the list parsimonious will help in maintaining a more manageable system.

CONCLUSION
There are a multitude of function keys ready and waiting for an assignment within the SAS System. The examples
shown here are meant to inspire each user to develop a system that is useful and efficient for their situation. Do this
right, and in no time you too will be pressing “The Easy Button”.

ACKNOWLEDGMENTS
The authors would like to thank Andy Kuligowski, SAS Global Forum 2012 Conference Chair, and Sue Douglass and
Erik Tilanus, Coder‟s Corner Chairs for accepting our abstract and paper, as well as for a great conference!

REFERENCES
Burlew, Michele M. (1998), SAS Macro Programming Made Easy, SAS Institute Inc., Cary, NC, USA.

Carpenter, Art (2004), Carpenter‟s Complete Guide to the SAS Macro Language, Second Edition. SAS Institute Inc.,
Cary, NC, USA.

Cody, Ron (2008), Cody‟s Data Cleaning Techniques Using SAS
®
, SAS Institute Inc., Cary, NC, USA.

Kleinman, Ken. Clear the Results Viewer in SAS 9.3, available at http://kenkleinman.net/home/index.php/sas-and-r-
code/sas-tricks/77-clear-the-results-viewer-in-sas-93.html.

Lafler, Kirk Paul (2009), “Building Reusable and Highly Effective Tools with the SAS
®
 Macro Language,” PharmaSUG

2009 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “SAS Macro Programming Tips and Techniques,” Proceedings of the NorthEast SAS Users

Group (NESUG) 2009 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Matthews, Carol I. and Shilling, Brian C. (2008) Validating Clinical Trial Data Reporting with SAS
®
, SAS Institute Inc.,

Cary, NC, USA.

Rosenbloom, Mary F. O. and Lafler, Kirk Paul (2011), “Assigning a User-defined Macro to a Function Key,”

Proceedings of the Western Users of SAS Software (WUSS) 2011 Conference and Proceedings of the South Central
SAS Users Group, Edwards Lifesciences, LLC, Irvine, CA and Software Intelligence Corporation, Spring Valley, CA,
USA.

Wicklin, Rick. How to Clear the Output Window in SAS 9.3, available at
http://blogs.sas.com/content/iml/2011/08/29/how-to-clear-the-output-window-in-sas-9-3/.

SAS usage note on writing ODS output to the work directory available at http://support.sas.com/kb/45/625.html.

SAS usage note on clearing the results window in 9.3, available at http://support.sas.com/kb/43/911.html.

SAS documentation on SYSLAST, available at
http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#a000210371.htm.

CONTACT INFORMATION
Comments and suggestions can be sent to:

Mary F. O. Rosenbloom
Edwards Lifesciences, LLC
E-mail: mary.rosenbloom.sas@gmail.com

Kirk Paul Lafler
Software Intelligence Corporation
E-mail: KirkLafler@cs.com

(Continued from previous page)

 ***delete temporary dataset;

 proc datasets lib=work memtype=data nolist;

 delete _valcontents;

 quit;”;

%mend valnum;

Coders' CornerSAS Global Forum 2012

http://kenkleinman.net/home/index.php/sas-and-r-code/sas-tricks/77-clear-the-results-viewer-in-sas-93.html
http://kenkleinman.net/home/index.php/sas-and-r-code/sas-tricks/77-clear-the-results-viewer-in-sas-93.html
http://www.pharmasug.org/download/papers/AD22.pdf
http://www.nesug.org/proceedings/nesug08/ff/ff04.pdf
http://www.wuss.org/proceedings11/Papers_Rosenbloom_M_76113.pdf
http://blogs.sas.com/content/iml/2011/08/29/how-to-clear-the-output-window-in-sas-9-3/
http://support.sas.com/kb/45/625.html
http://support.sas.com/kb/43/911.html
http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#a000210371.htm
mailto:mary.rosenbloom.sas@gmail.com
mailto:KirkLafler@cs.com

7

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective companies.

Validation Macros

options mprint;

**;

***Clear the log, return to the editor window;

%MACRO valpostsubmit;

 output; clear;

 log; clear;

 zoom;

 wpgm;

%MEND valpostsubmit;

**;

***Clear the log, return to the editor window, close and reopen HTML (will clear

the history in the results viewer after next results);

%macro valClOpHTML;

 log; clear; wpgm;

 submit '

 ods html close;

 ods preferences;

 ';

%mend valClOpHTML;

**;

***Clear the log, return to the editor window, clear the results window (not the

viewer), create one HTML file in work directory for each procedural output;

%macro valHTML1proc;

 odsresults; clear; log; clear; wpgm;

 submit '

 ods html path = "%trim(%sysfunc(pathname(work)))" newfile=proc;

 ';

%mend valHTML1proc;

**;

***print the first 10 observations from the most recent dataset;

%macro val10obs;

 submit

 "proc print data=&syslast (obs=10);

 run;";

%mend val10obs;

***run a PROC SORT, so that SYSLAST will refer to the sashelp.class data (now

called _class, but with the same contents);

proc sort data=sashelp.class out=_class;

 by age sex;

run;

***now press the function key to which VAL10OBS is assigned;

(Continued on next page)

Coders' CornerSAS Global Forum 2012

8

(Continued from previous page)

**;

***examine the most recent dataset for duplicates in "BY" variables;

%macro valdups;

 submit

 "***store the most recently used dataset name as a macro variable;

 %let vallastdsn=&syslast;

 ***obtain a dataset containing variables by which the dataset is sorted;

 proc contents data=&vallastdsn out=_valcontents (keep=name sortedby

 where=(sortedby ne .)) noprint;

 run;

 ***sort the 'by variable' dataset by the sort order;
 proc sort data=_valcontents;

 by sortedby;

 run;

 proc sql noprint;

 ***create a macro variable containing list of by variables;

 select distinct name into :valby separated by ' ' from _valcontents;

 ***create a list of by variables separated by equal signs;

 select distinct name into :valequal separated by '=/ ' from _valcontents;

 quit;

 ***store the last BY variable in a macro;

 data _null_;

 set _valcontents end=last;

 if last then call symput('vallastby',name);

 run;”;

 submit

 “***check original dataset for duplicates and send first 10 dups to log;

 data _null_;

 set &vallastdsn;

 by &valby;

 ***keep duplicates;

 if first.&vallastby ne last.&vallastby;

 ***print first 10 duplicates to log;

 if _n_ le 10 then put 'WARNING: Duplicate records exist'/ &valequal.=/;

 run;

 ***delete temporary dataset;

 proc datasets lib=work memtype=data nolist;

 delete _valcontents;

 quit;”;

%mend valdups;

***run a PROC SORT, so that SYSLAST will refer to the sashelp.class data (now

called _class, but with the same contents);

proc sort data=sashelp.class out=_class;

 by age sex;

run;

***now press the function key to which VALDUPS is assigned;

(Continued on next page)

Coders' CornerSAS Global Forum 2012

9

(Continued from previous page)

**;

***print a subset of the data;

%macro valprint;

 submit

 “proc print data=&syslast;

 where &valwhere;

 run;”;

%mend valprint;

***run a PROC SORT, so that SYSLAST will refer to the sashelp.class data (now

called _class, but with the same contents);

proc sort data=sashelp.class out=_class;

 by age sex;

run;

***assign a value to VALWHERE – to be used in the WHERE statement;

%let valwhere=%str(name in ('Jane', 'John', 'Joyce'));

%put &valwhere;

***now press the function key to which VALPRINT is assigned;

**;

***review values of character variables;

%macro valchar;

 submit

 “proc freq data=&syslast;

 tables _character_/ nocum nopercent;

 run;”;

%mend valchar;

***run a PROC SORT, so that SYSLAST will refer to the sashelp.class data (now

called _class, but with the same contents);

proc sort data=sashelp.class out=_class;

 by age sex;

run;

***now press the function key to which VALCHAR is assigned;

**;

***Use PROC UNIVARIATE with ODS to show extreme values;

%macro valnum;

 submit

 “***store the most recently used dataset name as a macro variable;

 %let vallastdsn=&syslast;

 ***obtain a dataset containing only the numeric non-date variables;

 proc contents data=&vallastdsn

 out=_valcontents

 (where=(type=1 and index(format,'Date') eq 0)) noprint;

 run;

 ***create a macro variable containing a list of numeric variables;

 proc sql noprint;

 select distinct name into :valnumlst separated by ' ' from _valcontents;

 quit;

 ***use ODS and PROC UNIVARIATE to review extreme observations;

 ods select extremeobs;

 title 'Use PROC UNIVARIATE to Review Extreme Observations';

 proc univariate data=&vallastdsn;

 var &valnumlst;

 run;

 title;

(Continued on next page)

Coders' CornerSAS Global Forum 2012

10

(Continued from previous page)

 ***delete temporary dataset;

 proc datasets lib=work memtype=data nolist;

 delete _valcontents;

 quit;”;

%mend valnum;

***run a PROC SORT, so that SYSLAST will refer to the sashelp.class data (now

called _class, but with the same contents);

proc sort data=sashelp.class out=_class;

 by age sex;

run;

***now press the function key to which VALNUM is assigned;

end of program;

Coders' CornerSAS Global Forum 2012

	2012 Table of Contents

