
Paper 046-2012

Beep, Beep, Beep, Back It Up!
A Fool Proof Approach to Archiving with no Copying

Kristen Reece Harrington, BS, Rho® Inc., Chapel Hill, NC, USA

ABSTRACT
Have you been asked to revise a derivation and then several months later asked to revert back to the previous
derivation code? Or when a project ends, were you asked to remove it from the network to free up space? What if
Archival Software is not an option? This paper presents an “archiving” macro (%Archive()) which takes the contents
of a directory, including subdirectories, and creates a zip file which contains all files and mirrors the parent’s directory
structure. Like magic, your code is saved and easily retrieved! Using an elaborate array of SAS® functions, an X
command, and WinZip®, the archiving macro determines the execution location and the contents of the
subdirectories associated with that location. With virtually no specified parameters, anyone can archive and look like
a pro while doing it.

INTRODUCTION
In any statistical programming industry, it is imperative to SAVE YOUR WORK. You never know when the sponsor of
a project which ended three years ago will ask for a program delivery, or when you may be asked to revise an
imputation multiple times only to revert back to the original definition six months later. While saving your work seems
obvious, the key question is “Was all the necessary code saved”? Imagine someone needs to recover a specific
program from a directory which was completed months earlier. The person realizes that the included supporting
macro was located in a separate directory that was never included in the archive and now has a timestamp of
yesterday? The %Archive() macro was designed while keeping in mind that anyone, even a non-programmer or
someone unaffiliated with the project, could be executing the macro. The end goal of this macro is to create a
snapshot in time by producing one .zip file which contains all subdirectories and files EXCEPT the Archive folder
where the .zip file(s) will be stored.

THE %ARCHIVE() MACRO

%Archive(Sponsor=,Protocol=);

The %Archive() macro is designed to determine the location from which the macro is being called using
%SYSGET(SAS_EXECFILEPATH). This approach helps eliminate potential user error involving hidden spaces and
typos. It also ensures that the common practice of copying and pasting programs does not cause the accidental
zipping of incorrect directories. %SYSGET(SAS_EXECFILEPATH) kicks off this process by providing the full
pathname including the program name. The following code determines the full pathname, create a macro variable
containing the full pathname, strips off the program name and then finally creates a macro variable containing the just
path:

%let CurFile = %sysget(SAS_EXECFILEPATH);
%let CurName = %scan(&CurFile, -1, \/);
%let CurPath = %substr(&CurFile, 1, %eval(%length(&CurFile)-
%sysfunc(indexc(%sysfunc(reverse(&CurFile)),\/))));

Once &CurPath is set to the appropriate pathname (the location where the macro is being executed), a supporting
macro is called. The %DIR macro utilizes SAS system return codes and the SAS functions DOPEN, FOPEN,
DREAD, FINFO, and FCLOSE to produce a WORK dataset containing full pathnames for all files and subdirectories
within the &CurPath location.

The supporting %DIR macro creates the WORK.FILES dataset. The goal is to include all files and subdirectories
EXCEPT the Archive folder and its contents. The next step is to edit WORK.FILES to remove data points associated
with the Archive folder as well as ensure all contents of subdirectories are included in the .zip file.

1

Coders' CornerSAS Global Forum 2012

data files;
 set files;
 if type = 'DIR' and name = 'Archive' then delete;
/* this removes the Archive folder and associated files*/
 if type = 'DIR' then fullpath = left(trim(fullpath))||"*.*";
/* By using the wildcard characters, we ensure the contents of the folders are
included */
run;

Now that the list of files to be zipped is complete, confirmation of a location to save the .zip file that will be created
needs to occur. If a location does not exist a folder needs to be created. This is easily done with X commands:

options noxwait;
%if %sysfunc(fileexist(&CurPath.\Archive)) = 0 %then %do;
 x "cd &CurPath. ";
 x "mkdir Archive";
%end;

The NOXWAIT system option “specifies that the command processor automatically returns to the SAS session after
the specified command is executed. You do not have to type EXIT.” (SAS Institute, 2005). This is done so that the
DOS Window will not stay open. The %SYSFUNC(FILEEXIST(xxx)) statement returns a 1 (yes) or 0 (no) as to
whether the file, or directory in this case, exists. If the answer is 0, the %do loop is processed and the Archive folder
is created via two X commands. X “cd &CurPath” which makes sure the starting point is the same directory as our
program location and X “mkdir Archive” which makes a new subdirectory called Archive within the &CurPath
directory.

A .zip file without a date in the filename can cause issues. Therefore, the next step is to create a macro variable
containing the date of execution, i.e. today’s date.

%global fdate;
data _null_;
 call symput("fdate",left(put("&sysdate"d,date9.)));
run;

After creating the data set containing a list of files to .zip and checking to make sure an Archive folder in which to
create the .zip file exists. The next step is to create a .txt file containing the contents of WORK.FILES. This has two
purposes: 1. It provides an audit trail of what was zipped. 2. The .txt file can be used to create the .zip file.

data _null_;
 set files;
 file "&CurPath.\Archive\Archive_&Sponsor._&Protocol._&fdate..txt" DLM=',';
 put fullpath;
run;

Note that &Sponsor and &Protocol were the only two parameters defined in our macro. These two parameters are
only used in the .txt and .zip filenames.

The last step is creating the .zip file(s). First, a macro variable is created containing the full pathname of the .zip file
(%let zipfile=). Next, the X command is used to tell WinZip to execute. The following options are used in the X
command statement: 1. –a adds a file, folder, etc. 2. –r is used to include subfolders 3. –p is used to retain the
original directory structure within the final .zip file.

%let zipfile = &CurPath.\Archive\Archive_&fdate..zip;
x " ""c:\program files\winzip\WINZIP32.EXE"" -a -r -p ""&zipfile.""
@""&CurPath.\Archive\Archive_&Sponsor._&Protocol._&fdate..txt"" ";

 CONCLUSION

2

Coders' CornerSAS Global Forum 2012

3

Everyone should always save their work for future use or reference. There isn’t always time to go through each
program and determine what supporting macros, files, documents, etc. are needed to recreate specific output. Saving
the entire directory structure and all contents within that directory is a fool proof method of ensuring that a point in
time has been captured and can be recreated with two clicks of a button.

REFERENCES
SAS Institute Inc. 2005. SAS OnlineDoc® 9.1.3. Cary, NC: SAS Institute Inc.

Fairfield-Carter, Brian and Hunt, Stephen (2007), ‘Zipping Right Along: Push button SAS® Transfers via Command-
line Invocation of the WinZip32 Executable’, Proceedings of the 2007 SAS Global Forum Conference.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Kristen Harrington
Enterprise: Rho, Inc.
Address: 6330 Quadrangle Drive Suite 500
City, State ZIP: Chapel Hill, NC 27517
Work Phone: 919-599-6377
Fax: 919-408-0999
E-mail: Kristen_Harrington@RhoWorld.com
Web: www.rhoworld.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2012

mailto:Kristen_Harrington@RhoWorld.com
http://www.rhoworld.com/

	2012 Table of Contents

