
 1  
 

Paper 066-2012 

Create Multi-Sheet Excel Workbook for Large Data Sets Using SAS® and VBA 

Chao Huang, Oklahoma State University, Stillwater, OK 

ABSTRACT 

With fast-growing data volume, transforming large data sets from SAS to multi-sheet Microsoft Excel workbooks 

becomes challenging. In addition, more than one grouping variables may be specified to separate a SAS data set to 

sheets in an Excel workbook. This paper describes a new and fast solution to create multi-sheet Excel workbooks, 

which also allows multiple grouping variables for each sheet. Two examples with SAS’s help data sets will be used to 

illustrate how to use ODS HTML destination and a VBA script to produce Excel workbook. This two-step approach 

can process very large SAS data sets for multi-sheet Excel reporting in a short time. It is also customizable for special 

needs such as traffic lighting. 

 
INTRODUCTION 
  
There are two challenges in today’s working environment for Excel reporting: first data gets big and second more 

clients tend to view data in a multi-sheet Excel workbook. Romain compared seven methods for Excel reporting and 

weighted their strength and weakness [1]. A mutli-sheet Excel workbook from SAS means that the original SAS data 

set is divided toward Excel spreadsheets according to the levels of the grouping variables. ExcelXP ODS tagset is a 

popular option to generate multi-sheet Excel workbooks [2]. This method provides ample parameters to produce 

stylish Excel workbooks. However, ExcelXP transmits data from SAS to Excel by XML format, and therefore may be 

not very efficient regarding the speed and the final file size [1].  

To transform a large SAS data set to a multi-sheet workbook, we can apply a two-step approach by harnessing the 

powers of SAS’s ODS facility and Excel’s VBA functionality together. First we split a SAS data set into many XLS files 

by running a SAS macro split() in SAS. Second we merge those XLS files into a multi-sheet Excel workbook by 

running a VBA subroutine Merge() in Excel (Figure 1).   

 

Figure 1. Workflow of the Two-Step Approach 
 

AN EXAMPLE THAT USES ONE GROUPING VARIABLE  
 
SAS’s ODS HTML tagset generates HTML structured files, which can be recognized and opened by Excel if their 
extension is named as XLS. It is a popular solution to produce single-sheet Excel workbooks. To extend this facility to 
multi-sheet Excel reporting, we can design a simple SAS macro split() to output the corresponding XLS files for each 
level of the grouping variable.  
 
We start with a simple example using SASHELP.CLASS, which is from the SASHELP library and describes the 
name, age, sex, weight and height information of 19 teenagers. We show how to split this data set by the teenagers’ 
ages to 6 spreadsheets and then merge them in a multi-sheet Excel workbook. 
 

STEP 1 – SPLIT 
 
First we split the raw data set into separated XLS files by ODS HTML destination. For convenience, we can set up an 
empty directory in the hard disk, such as “c:\demo1”. Since the age variable in SASHELP.CLASS has 6 levels, the 
SAS macro will create 6 XLS files for each age group under the directory (Figure 2).  
 
%macro split(data = , dir = , clsvar = ); 

SAS step 

Split a data set to many XLS files 
by a SAS macro split()  

Excel step 

Merge all XLS files to a workbook 
by a VBA subroutine Merge() 

Coders' CornerSAS Global Forum 2012

 
 

http://support.sas.com/resources/papers/proceedings11/170-2011.pdf


 2  
 

/* 1 - Find the levels of the grouping variable */ 

 proc freq data = &data;                                                      

  table &clsvar / out = _tmp01; 

 run; 

/* 2 - Concatenate all levels of the grouping variable as a macro variable */   

 proc sql noprint; 

  select &clsvar into: clsvarlist separated by '|' 

  from _tmp01; 

  select count(*) into: nobs 

  from _tmp01; 

 quit; 

/* 3 - Set some system options for output */   

 footnote; title;                                                                        

 options nocenter nodate nonumber ps = 9000;  

/* 4 - Split each level of the grouping variable to a single spreadsheet in a loop */   

 %do i = 1 %to &nobs; 

  %let clsvarlevel = %scan(&clsvarlist, &i, '|');    

ods html file="&dir\&clsvarlevel..xls" style = minimal;                       

  proc print data = &data noobs label;                                    

   where &clsvar = &clsvarlevel; 

  run; 

 %end; 

 ods html close; 

%mend; 

/* 5 - Apply the macro to SASHELP.CLASS by the variable AGE */   

%split(data = sashelp.class, dir = c:\demo1, clsvar = age); 

 

 
Figure 2. The 6 XLS Files from SASHELP.CLASS Created by SAS’s ODS HTML Facility  

 
STEP 2 – MERGE 
 
Next step we move to Microsoft Excel. We open an empty Excel workbook and press ALT+ F11 keys to activate 
Excel’s VBA editor, then copy and paste the VBA subroutine called Merge() into the editor. The only place in the VBA 
subroutine that needs specification is the file path at the second line which is used by the first split step. After 
submitting this macro (click the RUN button or press F5 key), Excel will sequentially merge all XLS files under this 
directory. When the job is finished, the user can choose to save it as either an Excel 97-2003 workbook or an Excel 
2007 workbook (Figure 3).  
 
Sub Merge() 

' 1 - Specify the directory where SAS generates individual spreadsheet files  

Dim xlsPath As String 

xlsPath = "c:\demo1"  

' 2 - Disable some Excel display options                                                                                    

Application.DisplayAlerts = False 

Coders' CornerSAS Global Forum 2012

 
 



 3  
 

Application.EnableEvents = False 

Application.ScreenUpdating = False   

' 3 - Declare four objects for the following loop 

Dim wbDst As Workbook 

Dim wbSrc As Workbook 

Dim wsSrc As Worksheet 

Dim strFilename As String 

' 4 - Merge all spreadsheets under the directory to a workbook in a loop  

Set wbDst = Workbooks.Add(xlWBATWorksheet) 

strFilename = Dir(xlsPath & "\*.xls", vbNormal) 

If Len(strFilename) = 0 Then Exit Sub 

Do Until strFilename = "" 

Set wbSrc = Workbooks.Open(Filename:=xlsPath & "\" & strFilename) 

Set wsSrc = wbSrc.Worksheets(1) 

wsSrc.Copy After:=wbDst.Worksheets(wbDst.Worksheets.Count) 

wbSrc.Close False 

strFilename = Dir() 

ActiveWindow.DisplayGridlines = True 

Loop 

' 5 - Remove the working worksheet object  

wbDst.Worksheets(1).Delete 

' 6 - Enable Excel options disabled previously 

Application.DisplayAlerts = True 

Application.EnableEvents = True 

Application.ScreenUpdating = True 

End Sub 

 

 
Figure 3. The Resulting Multi-sheet Excel Workbook for SASHELP.CLASS 

 
AN EXAMPLE THAT USES TWO GROUPING VARIABLES AND TRAFFIC LIGHTING  

Furthermore we show a more complicated illustration. First, we utilize a relatively large data set, 

SASHELP.PRDSAL2, which is also from the SASHELP library. It records the furniture sales in 64 states of the three 

countries from 1995 to 1998, and has total 23,040 observations and 11 variables. Second, instead of one variable, 

we use two variables, STATE and YEAR, to partition SASHELP.PRDSAL2 for individual spreadsheets in an Excel 

workbook. The variable STATE has 16 levels, and the other variable YEAR has 4 levels. Therefore we will create 64 

spreadsheets by all the combination levels. Third, we add the "traffic lighting" or conditional variable highlighting 

feature for one variable PREDICTED that is the predicted sales in this data set. “Traffic lighting” applies distinctive 

colors to the variables to indicate the ranges [3]. In this example, we create a user-defined format to assign three 

colors for the three intervals by the FORMAT procedure (Table 1).  

Coders' CornerSAS Global Forum 2012

 
 



 4  
 

/* 0 - Make a user-defined format for traffic lighting */ 

proc format;                                                                                                    

value range                                                                                              

      2000 - high = '#ffffcc'                                  

      400 -< 2000 = 'yellow' 

      other = '#ff9900'; 

run; 

 
Table 1 shows the background colors corresponding to the values of the PREDICTED variables. 
 

Values of the variable PREDICTED Background color 

More than $2,000  #ffffcc 

Between $400 and $2,000 yellow 

Less than $400 #ff9900 

 
Table 1.  The Variable Values and Their Background Colors 
 

STEP 1 – SPLIT 
 
To accommodate the two grouping variables, we make some modifications to the SAS macro split() used in the first 

illustration. Thus, the 64 XLS files are created according to the location variable STATE and the time variable YEAR 
(Figure 4). 

 
%macro split(data = , dir = , clsvar1 = , clsvar2 = ); 

/* 1 - Find the combination levels of the two grouping variable */ 

proc freq data = &data; 

table &clsvar1 * &clsvar2 / out = _tmp01;        

    run; 

/* 2 - Concatenate all levels of the grouping variables as a macro variable */  

proc sql noprint; 

select cats(&clsvar1, '__', &clsvar2) into: clsvarlist separated by '|'

 from _tmp01; 

select count(*) into: nobs 

from _tmp01; 

quit; 

/* 3 – Set some system options for output */   

footnote; title;                                                                      

options nocenter nodate nonumber ps = 9000;  

/* 4 – Split each level of the grouping variables to a single spreadsheet in a loop  

       and apply the RANGE highlighting format */   

%do i = 1 %to &nobs; 

%let clsvarlevel = %scan(&clsvarlist, &i, '|');           

ods html file="&dir\&clsvarlevel..xls" style = minimal;  

proc print data = &data noobs label;                                                      

where &clsvar1 = "%scan(&clsvarlevel, 1, '__')"  

and &clsvar2 = %scan(&clsvarlevel, 2, '__'); 

var _all_;                                                                           

var predict / style = [background = range.];            

run; 

    %end; 

ods html close; 

%mend; 

/* 5 - Apply the macro to SASHELP.PRDSAL2 by the variables STATE and YEAR */   

%split(data = sashelp.prdsal2, dir = c:\demo2, clsvar1 = state , clsvar2 = year); 

Coders' CornerSAS Global Forum 2012

 
 



 5  
 

 

Figure 4. The 64 XLS Files from SASHELP.PRDSAL2 Created by SAS’s ODS HTML Facility 

 
STEP 2 – MERGE 
 
This time the VBA subroutine Merge() does not need further change, except that we may specify a different directory 

that stores the XLS files, such as “c:\demo2”. The result is showed as Figure 5. 

 

Figure 5. The Resulting Multi-Sheet Excel Workbook for SASHELP.PRDSAL2 

Coders' CornerSAS Global Forum 2012

 
 



 6  
 

Running this VBA subroutine will permanently remove the embedded HTML feature of the single XLS files from 

SAS’s ODS HTML facility, and therefore the resulting Excel workbook is streamlined. The size of the original SAS 

data set, SASHELP.PRDSAL2, is 2,725 KB, and the total size of the 64 XLS files is 10,176 KB (159 KB × 64) after 

running the SAS split() macro. Finally the size of the final Excel 2007 workbook is 1,956 KB after running the VBA 

Merge() subroutine. This speed of the two-step approach is rather fast. In our test, the time cost for splitting and 

merging SASHELP.PRDSAL2 as a multi-sheet Excel workbook is less than 30 seconds on a standard desktop.  

CONCLUSION 

This two-step approach introduced in this paper has a few advantages. First, this “split-then-merge” method works 

with any size of SAS data set. Second, this method only requires SAS/BASE. It is compatible with SAS 9.1 or later. 

And it works with Microsoft Excel 97 or later. Second, it is highly customizable. Any SAS procedure with listing output, 

such as PROC REPORT, PROC TABULATE, PROC SQL and the statistical procedures, can be integrated with the 

split() macro. The styles of the Excel report can be further defined by PROC TEMPLATE [3]. In conclusion, this 

approach may prove to be an efficient way to create multi-sheet Excel workbooks. 

REFERENCES 

1.  Romain Miralles, “Creating an Excel report: A comparison of the different techniques”. SAS Global Forum 

Proceeding 2011.  

http://support.sas.com/resources/papers/proceedings11/074-2011.pdf 

2.  Vincent DelGobbo, “Creating Stylish Multi-Sheet Microsoft Excel Workbooks the Easy Way with SAS”. SAS 

Global Forum Proceeding 2011. 

http://support.sas.com/resources/papers/proceedings11/170-2011.pdf 
3.  Michael Davis, “Traffic Lighting Your Multi-Sheet Microsoft Excel Workbooks the Easy Way with SAS”. SAS 

Global Forum Proceeding 2010. 

http://support.sas.com/resources/papers/proceedings10/153-2010.pdf 
 

ACKNOWLEDGMENTS 
 
We would like to thank Tricia Aanderud, the author of the book “Building Business Intelligence Using SAS: Content 
Development Examples”, for valuable comments and careful revision. 

 
CONTACT INFORMATION 
 

Your comments and questions are valued and encouraged. Contact the author at: 
 
Chao Huang 
Office of Institution Research and Information Management 
221 PIO Building 
Stillwater, OK. 74075 
Email: hchao8@gmail.com 
Web: www.sasanalysis.com 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

 

Coders' CornerSAS Global Forum 2012

 
 

http://support.sas.com/resources/papers/proceedings11/074-2011.pdf
http://support.sas.com/resources/papers/proceedings11/074-2011.pdf
http://support.sas.com/resources/papers/proceedings11/170-2011.pdf
http://support.sas.com/resources/papers/proceedings10/153-2010.pdf
http://www.sasanalysis.com/

	2012 Table of Contents



