

1

ODS Report Writing Interface

Makes Our Reporting Simple and Better

Sijian Zhang, INTERMACS, University of Alabama at Birmingham

ABSTRACT

When we feel that a complex report cannot be generated directly from SAS®, we usually get the data or some
report components prepared in SAS, and then use other software, such as MS Word or Excel, to finish the
reporting job. This situation has been changed since SAS 9.2. Taking one of our routine reports as an example,
this paper will illustrate some useful features that the ODS report writing interface has, how syntaxes are applied,
and how a complicated report can be done with simple code. With this new tool, our complex reports can be
generated by just running the SAS program, which is much smoother and more efficient.

KEYWORDS

Complex reports, ODS report writing interface, inline formatting.

BACKGROND

INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) is a national registry for
patients who receive mechanical circulatory support device therapy to treat advanced heart failure. All the data is
collected online through the United Network for Organ Sharing (UNOS) in Richmond, Virginia; and all the
analyses and reports are processed in the INTERMACS at the University of Alabama at Birmingham. We receive
36 SAS datasets from UNOS periodically, which include all kinds of information regarding mechanical heart
transplantation.

The example used in this paper is the adverse event review report, which is sent to the doctors periodically for a
review to verify if the stated events or causes are valid. The report is composed of two parts, on the top is the
Patient Information Overview, and then followed by the Event Worksheets that correspond to the high-lighted
events listed in the Patient Information Overview.

In a brief view of a sample report (see Appendix 1), you can see that it is not simple, not something which can be
easily generated by SAS before versions 9.1. Besides the fancy layout of the report, some specifications make
the programming interesting, such as:

1) The horizontal and vertical spaces of some items can be dynamically adjusted according to the different
lengths of the values.

2) For certain character strings, special font formats (styles) are assigned according to variable value. And
different font formats can be displayed in one table cell.

Before the ODS report writing interface is available in SAS, for situation like this, we use SAS to prepare the
report data and generate some report components, and then outsource the display jobs to MS Word, or ACCESS
by which the report is generated.

INTRODUCTION

Before showing how the report is generated, let’s have a brief look at the two report writing tools, the ODS report
writing interface (‘the Interface’ in the following text) and the inline formatting.

ODS Report Writing Interface
Every time the Interface is run, you will see a warning message in the log window (Figure 1). Since the Interface
is in the phase of “preproduction” in SAS 9.2, you cannot find relevant documentations in the SAS Help window.
But you can still find a lot of information online. The references of this paper will give you a good starting point.

Paper 071-2012

Figure 1

Coders' CornerSAS Global Forum 2012

2

DATA _NULL_ has been used for report writing in SAS for a long time. The ODS report writing interface is a great
leap further. Its power comes from the combination of DATA _NULL_ and ODS. It fully applies ODS features such
as proportional fonts, colors, images, and so on; while at the same time it provides very flexible placement
capabilities, and takes great advantage of the rich programming features that the data step offers, such as
conditional logic, formatting capabilities, by-group processing, arrays, etc. The Interface is object-oriented, which
provides you with many useful methods to control how you want to display your information so that even the most
rigid reporting requirements can be met easily. In this paper, only the programming points used in the application
SAS code are discussed in detail.

Here is how the basic programming structure of the Interface is used.

ods listing close;
ods pdf notoc startpage=no style=printer_adj file="...\ReportName.pdf";

data _null_;
 set AE_Info;
 declare odsout adj(); ➊

 adj.table_start(); ➋
 adj.row_start();
 adj.format_cell(data: " Patient and Device Information", ➌
 overrides: "just=l font_size=14pt backgroundcolor=cxccffff font_weight=bold");
 adj.row_end();
 adj.table_end(); ➍

 ...
run;

...

ods pdf close;

➊ Declare an ODS object:
 Two ways:

i) declare odsout object;
 object = _new_ object ();

 ii) declare odsout object ();

Here, “declare” (short form: dcl) is the key word for declaring an object; “odsout” is the key word (class
name) for creating a class instance of ODS output object; and “object” is placeholder for any object
variable name. The above two methods have the same effect. In the code above, “adj” is the object
variable name. (The adverse event review process was called “adjudication” initially.)

➋ and ➍ Object methods used to set up a table:
 The syntax for an object to use methods:

 object.method (<optional argument>, ···, <optional argument>);

In the above code, method table_start() starts a table. It is always coupled with method table_end (),
which ends the table; the methods row_start() and row_end() work in the same way; and the method
format_cell() works alone to define a cell.

➌ Method arguments:
 They define what contents and styles are used to display by a method.

Here, the argument “data:” is to show the text ” Patient and Device Information" in the cell; and the
argument “override” indicates that 4 default style values will be reset in this cell.

Coders' CornerSAS Global Forum 2012

3

Inline Formatting

The inline formatting syntax: escape character {function-name <argument-1 <argument-2 ... <argument-n>>>}

The inline formatting is a very useful ODS tool that applies formatting functions to define how the contents are
displayed rather than using global or default styles. This tool is experimental in SAS 8.2, and is in production for
all destinations in SAS 9.2. Here is an example in the report.

ods escapechar='^'; ➊

title "^{style [just=left preimage=’···\INTERMACS_logo_.bmp']}" ➋
 "^{nbspace 35} ^{style [font_size=19pt font_weight=bold font_style=italic] Medical Event Review Worksheet}"
 "^{newline} ^{style [just=right font_face=arial font_size=10pt] Event Date: before 4/1/2010}";

➊ To specify an escape character:
 The syntax: ods escapechar=’escape-character’;

An escape character should not occur for any other uses in the code. For the inline formatting, it indicates
that an inline formatting function follows. The functions and the specified contents are wrapped in curly
brackets. Here, ‘^’ is specified as the escape character.

➋ Inline formatting functions in the above statement:

Style: Modifies the style of the current contents. “preimage=” argument imports an
image at the beginning of the title.

Nbspace: Insert blank spaces.
Newline: Start a new line.

Here is how the title is displayed in the report by running the above title statement:

Figure 2

You can apply the inline formatting to any contents (inserted text or variable value) that you want to display in a
report. The coding is simple, and it will make your report look great.

APPLICATION IMPLEMENTATION

The code to generate the report can be grouped into two parts: data preparation and report writing. The focus in
this paper is the second part. However, to better understand the report writing, a brief description of the first part
is helpful.

Data Preparation

After the data extraction and manipulation from raw datasets, two sets of data are generated: patient overall data
and the adverse event data. Within each folder (see Figure 3 and 4), the small datasets are generated from two
large datasets by Event_ID, which is postfix of each subset dataset name.

For example, the dataset “pt_12.sas7bdat” lists all relevant patient clinical events after the operation with
Event_ID=12, ordered by the event date; while “ae_12.sas7bdat” holds the information of all adverse events
sorted by event date after that operation, which are selected for the doctors to review.

Coders' CornerSAS Global Forum 2012

4

 Figure 3 Figure 4

Report Writing

In the report writing code, DATA _NULL_ is the only SAS step repeatedly used to generate all the pieces of the
report. Instead of going through the statements line by line, several helpful programming points are illustrated in
this section. If you want to find a specific syntax in detail, please view the references.

1. Dynamic Spacing
If a reporting program uses the fixed display setting, sometimes it is not easy to set the right cell sizes or the right
spaces between cells on a report sheet. The trouble is how to display all the values, and in the meantime to have
a fine layout of the report contents if there exit a few extreme long strings for certain variable fields. If you want
the report to look good, you may have to truncate those long values or rephrase them. Using the Interface, given
the report setting and the length of variable value, if it is necessary, a new row will be inserted in the cell
automatically until the entire value is displayed; or the horizontal spaces will be adjusted automatically in an
optimal way.

Comparing the following two figures (Figure 5 and 6), you will see the effect in horizontal and vertical dimensions.

Figure 5

Figure 6

In Figure 6, the spaces between items in the first row are adjusted automatically due to the long Race value; and
a new row is added due to the long Patient Profile Status value. The following is the corresponding code.

Coders' CornerSAS Global Forum 2012

5

%macro insert1(label,var); ➊
adj.format_cell(data: "^{style [foreground=cx0000ff]&label: }"||strip(&var), overrides: "just=l");
%mend insert1;

%macro insert2(label,var,unit); ➋

adj.format_cell(data: "^{style [foreground=cx0000ff]&label: }"||strip(&var)||" &unit", overrides:
"just=l");
%mend insert2;

%macro blkrow(height=1); ➌
adj.row_start();
 adj.format_cell(overrides: "cellheight=&height.mm");
adj.row_end();
%mend blkrow;

data _null_;
...

adj.table_start(overrides: "width=100pct borderwidth=0");
 %blkrow();

 adj.row_start(); ➍
 %insert1(Hospital ID,Hospital_ID);
 %insert1(Patient ID,Patient_ID);
 %insert1(Event ID,Event_ID);
 %insert1(Report ID,Patient_Report_ID);
 %insert1(Gender,Gender);
 %insert1(Race,Race);
 %insert2(Age,Age,yr);
 adj.row_end();
adj.table_end();
...
run;

➊ A macro to insert the label in blue and variable value in black into a cell.

➋ A macro to insert the label in blue and variable value in black plus a unit name into a cell.

➌ A macro to insert a blank row with default height = 1mm.

➍ Putting all the cell into one row without setting “cellwidth” argument. By default, SAS will
 adjust them automatically. If you want to put them in fixed positions, you can do it by setting
 “cellwidth” values.

You do not see the specific coding for the adjusting effect, which is all done by SAS default. These little things
may turn out to be a big programming deal in other software packages, while SAS automatically does these for
you. What a relief!

2. Generating Headers in DATA _NULL_
In SAS, if a procedure generates the resulting tables or lists longer than one page, the column headers will be automatically
added on the top of every new page, but this will not happen in DATA _NULL_ by default. However, we can still do it in the
following code, which inserts the headers as in Figure 7 on the top of every new page.

 Figure 7

Coders' CornerSAS Global Forum 2012

6

%macro Packet(Event_ID,N,pageLines);
...

%macro Pt_Info;
data _null_;
 set Pt_Info end=eof;
 if _n_=1 then declare odsout adj();

 if _n_=1 | mod(_n_,&pageLines)=&pageLines-1 then do; ➊
 adj.table_start(overrides: "borderwidth=2");
 adj.row_start();
 adj.format_cell(data: "Event", inhibit: "LR",
 overrides: "font_weight=bold vjust=m cellwidth=11.2cm");
 adj.format_cell(data: "Event Date", inhibit: "LR",
 overrides: "font_weight=bold vjust=m cellwidth=3.7cm");
 adj.format_cell(data: "Submission|Status", split: "|", inhibit: "LR", ➋
 overrides: "font_weight=bold cellwidth=1.8cm");
 adj.format_cell(data: "Last|Saved", split: "|", inhibit: "LR",
 overrides: "font_weight=bold cellwidth=1.7cm");
 adj.row_end();
 adj.table_end();
 end;
...
run;
%mend Pt_Info;
...
%mend Packet;

➊ The trick here to put the column headers on the top of each page is the MOD() function on _N_ in the IF statement. First, I
 counted the number of rows in one page in a testing run, then set the macro variable &pageLines to that the number+1. So,
 if it is the top row of a page, the column headers will be inserted.

➋ The argument “split” specifies the symbol to break the data argument contents into two rows; the argument “inhibit”
 suppresses the border lines of a cell, for example, inhibit: "LR" means that the left and right border lines of the cell
 are suppressed.

3. Special Symbols
Special symbols are often appeared in reports. In our reports, we used some square check boxes, such as in Figure 8.

Figure 8

Here is the code to use special symbols:
...
 adj.row_start();
 adj.format_cell(data: "^{style [font_size=13pt] ^{unicode 2610}} ^{style ➊
 [font_size=10pt]I find no reason to question the existence of this bleeding}",
 overrides: "just=l cellheight=0.78cm");
 adj.row_end();

 adj.row_start();
 adj.format_cell(data: "^{style [font_size=13pt] ^{unicode 2610}} ^{style ➋

Coders' CornerSAS Global Forum 2012

7

 [font_size=10pt]I ^{style [font_size=9pt font_weight=bold
 foreground=maroon] do} find reason to question the existence of this bleeding ...:}",
 overrides: "just=l cellheight=0.78cm");
 adj.row_end();
...

➊ and ➋ We can use inline formatting UNICODE function to insert whatever special symbols available in
 Unicode list which has various symbols. Here, the Unicode 2610 stands for the square check box.

4. Conditional Formatting
You may have noticed that in the “Event” column of the patient overall information sheet, some events stand out
in a different format (blue and bold). It means that these events are selected for review.

Here is the code:

%macro Pt_Info;
data _null_;
...
 if fmt=1 then do; ➊
 adj.format_cell(data: "^{style [font_weight=bold]"||strip(Event)||"}"||
 ' (Report ID: '||strip(patient_report_id)||')', inhibit: "LTR",
 overrides: "just=l vjust=t foreground=blue font_weight=light ➋
 cellwidth=11.2cm cellpadding=0 url="||strip(LinkTo));
 end;
...
run;
%mend Pt_Info;

➊ The variable fmt is in the Pt_Event_ID datasets (see Figure 3), which indicates whether an event is going to
 be reviewed (fmt = 1: to be reviewed).

➋ By taking the advantage of data step, IF statement is used here to conditionally set the format for
 only the events to be reviewed. The style parameters in “data” and “overrides” arguments define
 the new format.

CONCLUSION

The ODS report writing interface is an excellent tool to handle the complex reports. Comparing with other
approaches, the Interface makes the report generation process smoother and more efficient. It gets all the
programming jobs done in SAS, a one-stop solution. Based on my experiences, the Interface programming is
easy to learn and very productive. The coding process might be tedious sometimes, and proper use of macros
can reduce the repetitions.

I agree with what Daniel O’Connor stated in his paper, “DATA _NULL_ report writing has long been an integral
part of the custom report writing offered by SASsm, but with this newly updated ODS Report Writing technology in
SASsm 9.2, you will have the ability to produce reports that you have only dreamed about.”[2]

Figure 9

Coders' CornerSAS Global Forum 2012

8

REFERENCES

1. Appendix 2: Method Documentation (a list of object method syntaxes with brief examples),
support.sas.com/rnd/base/datastep/dsobject/Power_to_show_documentation.pdf

2. Daniel O’Connor, The Power to Show: Ad Hoc Reporting, Custom Invoices, and Form Letters, Paper 313-
2009, SAS Global Forum 2009, support.sas.com/resources/papers/proceedings09/313-2009.pdf

3. ODS Report Writing Interface, support.sas.com/rnd/base/datastep/dsobject/index.html

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

 Sijian Zhang, MD, MS, MBA

 Database Administrator
 Data Coordinating Center
 INTERMACS
 Division of Cardiothoracic Research

 Department of Surgery
 University of Alabama at Birmingham
 sijian@uab.edu

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. sm indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2012

9

Appendix 1.

Coders' CornerSAS Global Forum 2012

10

Coders' CornerSAS Global Forum 2012

	2012 Table of Contents

