
Paper 077-2012 

 

Using DDE and VBA Techniques to Import Data from Microsoft Word Tables  
in Programming Specification Files into SAS® 

 

Zemin Zeng, Forest Research Institute, Inc., Jersey City, NJ 
Mei Li, Novartis Pharmaceuticals Corporation, East Hanover, NJ  

ABSTRACT 

This paper will introduce a SAS application with Microsoft Word for selecting table data in Word files and importing 
data from Word tables into SAS. Dynamic Data Exchange (DDE) and Visual Basic for Application (VBA) techniques 
used in the application will be presented in great detail. The application significantly improves the efficiency and 
sustainability of automatically converting Word tables to SAS data. The application is widely used at work for 
programmatically retrieving the comments from the programming specification files during the creation of Data 
Definition documentation (define.xml/define.pdf) for New Drug Application (NDA) electronic submissions. 

INTRODUCTION  

In the pharmaceutical industry, Microsoft Word is standard word processing software and widely used to write formal 
documentations, including Clinical Study Protocol, Statistical Analysis Plan with table/listing/graph mock-ups and 
derived analysis dataset Programming Specification. These Word documents are guidelines for SAS programming 
and statistical analysis in clinical trials. Since SAS is the preferred statistical software in the pharmaceutical industry 
as recommended by FDA to perform statistical analysis on clinical trial data, it is highly desirable to find convenient 
and efficient ways to import information from Word files into SAS, especially import tables in Word files into SAS data. 
Regarding developments in this direction, there have been essentially two approaches to import Word tables to SAS 
[See Zhou (2009) for a summary]: 

• One approach is to save Word tables as RTF files, and read the latter as plain text files into SAS, by using 
RTF tagsets to restore the tabulate data structure in SAS [See Hagendoorn, Squire, and Tai (2006)];  

 

• The other approach is to preserve the tabulate structure by copying Word tables to Excel, and then use 
PROC IMPORT to read in data from Microsoft Excel [See Zhou (2009); Chen, Cui and Moseley (2011)]. 

 
In this paper, we shall introduce an alternative approach which was developed when we worked on Data Definition 
documentations (define.xml/define.pdf) for New Drug Application (NDA) electronic submissions. For the creation of 
define.xml/define.pdf, we need to copy the comment column from dataset programming specification tables in Word 
files. A key step to automate the comment filing process is to read Word tables in programming specification files into 
SAS datasets. In this paper, we shall provide all steps with details in our application to automatically import Word 
table data from Word files into SAS datasets by using Data Exchange (DDE) and Visual Basic for Application (VBA) 
techniques. The application is a result of dynamic interactions of SAS software with Microsoft Word. To select tables 
in dataset programming files and convert the Word tables into SAS datasets, users only need to click buttons, 
Specifically, click buttons to select locations of dataset specification files and output datasets, and click button to 
execute SAS program (See Figure 1 for the interface of our application on the next page).   

The organization of the paper shall be the following: 1. Introduce the background of our application including the 
structure of the dataset programming files. 2. Briefly introduce the DDE techniques to read Word tables to SAS 
datasets, and how to overcome the key problems. 3. Briefly introduce the interaction between SAS and VBA, with 
more focus on the integration of SAS programs and VBA macros and how to run a SAS program by simply clicking 
the VBA button. 4. Finally, introduce the design of our application and the overall process flow. 

For the convenience of the interested readers, we include the complete SAS program code of our application in 
Appendix 1, and the key ingredients of the VBA macro code in Appendix 2, so that readers can easily modify them to 
fit individual needs. We hope our paper shows the power and beauty of the dynamic interactions between SAS 
software and Microsoft VBA, and encourages interested users (experienced SAS programmers or VBA experts) to 
develop user friendly new applications in Microsoft Word, through dynamic conversations between SAS programs and 
VBA macros. 

BACKGROUND OF THE APPLICATION 

We developed this application when we created Data Definition documentations (define.xml/define.pdf) for our clinical 
study NDA electronic submissions, In these clinical studies, we first created derived analysis datasets based on 

1 

Coders' CornerSAS Global Forum 2012

 
 



programming specification files, then worked on define.xml/define.pdf. The comment column in define.xml/define.pdf 
file was previously needed to be manually copied from the tables in the programming specification files. Figure 2 is a 
sample of the programming specification file. 

Figure 1: The Interface of Our Application for Converting Tables to SAS Datasets 

 

There are two parts in the programming specification files. The first part is text which provides instructive information 
about the derived analysis datasets (such as purpose of the specifications, source raw SAS datasets structure of the 
target derived analysis dataset, and etc). The second part is a Word table which provides the variable attributes for 
the derived analysis dataset including comment column for the algorithm to derive.   

 

Figure 2: Sample Derived Dataset Specification File 

 
 

The goal of our application is to convert the Word tables in programming specification files to SAS datasets (Once we 
have these datasets, the comment column in define.xml/define.pdf could be programmatically filled from the 
specification files. Also the variables attributes in programming specification files could be used to check or generate 
the corresponding ones in derived analysis datasets), and we shall introduce all the details on how to achieve this 
goal by simply clock buttons in next sections.  

DDE TECHNIQUES FOR READING WORD TABLES TO SAS 

It is well known that we could directly read Word table data into SAS via DDE, below SAS code could be one of the 
sample based on the information stated on SAS support website (which is a good reference place for systematic 
introductions on DDE for both Microsoft Excel and Microsoft Word as DDE servers with live examples in all 
scenarios): http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm#ddeexamples.htm 

2 

Coders' CornerSAS Global Forum 2012

 
 



filename testit dde 'winword|" C:\stat\vba\DDT\DCOPD.doc "!CC' notab; 
data testit; 
  length var1 var2 var3 ... $1000; 
  infile cmds dlm='09'x notab missover dsd LRECL=8000; 
  input var1 $ var2 $ var3 $ ... ; 

run;.  
 
However, there are three critical things needed to take care of in order to run the above SAS code correctly to read 
Word table into SAS: 
 

1. Add bookmark  
We need to add bookmark when use DDE to read Word table into SAS. It is worth to point out that we should first 
highlight the World table then click INSERT->Bookmark (as illustrated in Figure 3) since the bookmark refers to the 
Word table. If forgot to highlight first, then one will get the error message below when run the above DDE SAS infile 
code.  
ERROR: DDE session not ready. 
FATAL: Unrecoverable I/O error detected in the execution of the DATA step program. 
       Aborted during the EXECUTION phase. 
 

Figure 3: The Correct Way to Add Bookmark 
 

 
 
2. Word file need to be open when  
Remember to keep the Word file open when run the above DDE SAS infile code. If not, the below ERROR message 
will occurs:  
ERROR: Physical file does not exist, winword|"C:\stat\vba\DDT\DCOPD.doc"!CC. 
 
3. Replace Special Characters Carriage return and Soft return (Shift+Enter) 
The carriage return (Enter) and soft return (Shift+Enter) in Word table cell will cause unexpected effects of reading 
data. For example in Word table, when there is a carriage return in the table as in Figure 4, the generated SAS 
dataset will be as in Figure 5. The carriage return forces SAS to stop reading in second part of the cell.    
 

 
Figure 4: Word Table with Return Special Character 

 
 

 

Carriage return 

 
 

3 

Coders' CornerSAS Global Forum 2012

 
 



In our application, we use VBA techniques to replace special characters with a single space for simplicity (One may 
replace these special characters with something standard characters, and then replace back in SAS data). In VBA 
language, special characters are represented by Chr Function and constants. For example Soft return (Shift+Enter) = 
Chr(11) and Carriage return = Chr(13).  

 
Figure 5: Sample SAS Dataset from Word Table with Carriage Return 

 

 
 

 
Once we take care of these special characters, we will get the desired SAS dataset as in Figure 6 when we use DDE 
techniques to read Word table into SAS correctly.  

 
Figure 6: Sample SAS Dataset from Word Table with Carriage Return Removed 

 
 

 
 

DYNAMIC INTERACTION BETWEEN SAS PROGRAM AND VBA MACRO 

Visual Basic for Applications (VBA) is a common development environment among all Office applications, we have 
developed papers on VBA with Microsoft Office applications to interact with SAS software to perform post-process of 
SAS output in Microsoft Word [See Zeng & Li  2010 and 2011]. In this paper, we shall introduce new conversations 
between SAS programs and VBA macros. This interaction between SAS and VBA is extremely powerful, especially 
as in our application when SAS program requires actions in Microsoft Word as in using DDE techniques to read Word 
tables into SAS datasets.  
 
The basic idea in our application of interaction between SAS program and VBA macro is that an executive file can be 
opened when one clicks a VBA button. In this executive file, we will call SAS system to run a SAS program. Below are 
key ingredients to execute a SAS program from VBA by just click a button: 
 

Step 1. To use ShellExecute function to open a bat file, below is the sample code modified from the article by 
Michael Suodenjoki (http://www.suodenjoki.dk/us/productions/articles/vbashellexecute.htm): 
 

          ShellExecute(0, "Open", "\\frxwf002\vol2\Csdm-sysshare\SHAREALL\Utility\DataSpec2SAS\BATCH.bat",  
                    "",  0, 1) 
 

Step 2. In the bat file, one need to call SAS system to run the SAS program, below is the sample code of the bat 
file (users may change the SAS program name, output list and log files as necessary). For more ways to execute 
SAS batch jobs, please refer to the note at http://support.sas.com/techsup/technote/ts648/ts648.pdf 

          sas C:\stat\vba\DDT\ddt_las.sas -NOSPLASH -NOICON -PRINT C:\stat\vba\DDT\ddt_las.lst  
                  -LOG  C:\stat\vba\DDT\ddt_las.log 
 

4 

Coders' CornerSAS Global Forum 2012

 
 



THE DESIGN OF OUR APPLICATION AND OVERALL PROCESS FLOW 

In the previous two sections, we introduced both SAS and VBA key techniques in our application for converting Word 
tables in programming specification files into SAS datasets by simply clicking buttons. This converting process is a 
perfect case for demonstrating the beauty of the interaction between SAS software and Microsoft Word via VBA 
macros. In this section, we shall introduce the interface of the application and what these buttons do for us. 

The interface of our application is very simple as in Figure 7. There are essentially 5 buttons to click, specifically: 

 1. Click ‘Browse’ to input the directory of programming specification files; 

 2. Click ‘Run’ to select the output directory (at Forest, we have some default location for this output);  

 3. Click ‘DataSpecTables’ to select the Word table portion in the programming specification files and save 
them as intermediate files to the output directory, furthermore, the click shall trigger the execution of the build-in VBA 
macro to add bookmarks, replace special characters carriage return and soft return (Shift+Enter) in the intermediate 
files; 

 4. Click ‘Word2SAS’ to open the Batch file to trigger the execution of the SAS program. In this step, SAS 
datasets will be created and saved at the output directory, so does the SAS log file; 

 5. Click ‘Exit’ to close and then delete all intermediate Word files and files generated by SAS.  

Figure 7: The Interface of Our Application 

 
 

CONCLUSION  

The paper presents an alternative way to programmatically import Microsoft Word tables into SAS datasets by 
applying Visual Basic for Application (VBA) and Dynamic Data Exchange (DDE) techniques. In addition, the 
application with simply clicking buttons is very convenient and reliable, and demonstrates how VBA along with SAS 
enables us to achieve tremendous efficiencies in our day-to-day use of Microsoft Word. 

REFERENCES 

Michael Hagendoorn, Jonathan Squire, and Johnny Tai (2006). Save Those Eyes: A Quality-Control Utility for 
Checking RTF Output Immediately and Accurately. Proceedings of the Thirty-first SUGI Conference, paper 066-31 
 

Jay Zhou (2009). Importing Data from Microsoft Word into SAS®. Paper CC18, the Proceedings of the PharmaSUG 
2009 
 

Zeng, Zemin and Li, Mei (2010). Using SAS® Software and Visual Basic for Application to Dynamically Manipulate 
SAS List Files, Coders’ Corner Section, Proceedings of the SAS Global Forum 2010.  
 

Zeng, Zemin and Li, Mei (2011). Using Visual Basic for Application to Produce Table Of Contents from SAS Output 
List Files, Applications Development Section, Proceedings of the PharmaSUG 2011 
 

5 

Coders' CornerSAS Global Forum 2012

 
 



Min Chen, Xiangchen (Bob) Cui and Scott Moseley (2011). Automating the Process of Preparing Data Definition 
Document for NDA Electronic Submission from Programming Specification in Word Format, Paper CD02, 
Proceedings of the PharmaSUG 2011 
 
Michael Suodenjoki (2002). Starting Programs from VBAUsing ShellExecute to start any program or shortcut from 
inside. http://www.suodenjoki.dk/us/productions/articles/vbashellexecute.htm 
 
SAS Institute, technique note. Examples of Batch Processing under Windows. 
http://support.sas.com/techsup/technote/ts648/ts648.pdf 
 
SAS Institute, documentations. DDE Examples. 
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm#ddeexamples.htm 
 

CONTACT INFORMATION  

Your comments and questions are valued and encouraged.  Contact the authors at: 
 
     Zemin Zeng, Forest Research Institute, Inc., Jersey City, NJ 
   Email: zengzemin@gmail.com / zemin.zeng@frx.com 
 
              Mei Li, Novartis Pharmaceuticals Corporation, East Hanover, NJ 
   Email: mei-4.li@novartis.com 
 

ACKNOWLEDGMENTS 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are 
trademarks of their respective companies. 

 

6 

Coders' CornerSAS Global Forum 2012

 
 

mailto:zengzemin@gmail.com
mailto:zemin.zeng@frx.com


APPENDIX 1: THE COMPLETE SAS PROGRAM FOR THE APPLICATION 
 
/************************************************************************** 
 * MACRO NAME:    DDE 
 * AUTHOR:        Zemin ZENG 
 * DATE:          03/09/2011 
 * SAS VERSION:   Version 9.0 or 9.1.3  
 * PURPOSE:       To read the data specs to SAS datasets              
 * PARAMETERS:    filepath-- the path of the folder containing list files 
 *                outpath -- the path of the folder to store SAS datasets 
 * CALL SAMPLE:   % DDT(filepath=C:\VBA\LST, outpath=C:\VBA\ddt) 
 *--------------------------------------------------------------------------- 
 * CAUTIONS:      this macro will be called by VBA_buttons_DDT utility in folder: 
                  R:\Utility and could be run any computer with PC SAS installed 
*--------------------------------------------------------------------------*/ 
%macro tosas(filepath=, outpath=); 
OPTIONS noxwait noxsync mprint; 
libname dslib "&outpath"; 
 
data newfile(keep=nlst nfile fexten); 
  length nlst nfile $100; 
  rc=filename('id',"&filepath"); 
  dirid=dopen('id'); 
  numsel=dnum(dirid); 
  do i=1 to numsel; 
    nlst=dread(dirid,i); 
    x=reverse(strip(nlst)); 
    nfile=reverse(substr(x, 5)); 
    fexten=upcase(scan(x, 1, '.')); 
    if fexten='COD' then  do; nfile=substr(strip(nfile), 6); output; end;  
  end; 
  rc=dclose(dirid);   
run; 
 
proc sql noprint; 
  select nfile into :flist separated by ',' 
  from newfile; 
quit; 
 
%let memnum = 0; 
%do %until(%length(%qscan(%quote(&flist), %eval(&memnum+1), %str(,)))=0);  
   %let memnum = %eval(&memnum + 1); 
   %let mem    = %qscan(%quote(&flist), &memnum,  %str(,));  
data _null_; 
  call execute("filename cmds dde 'winword|" || '"' || "&outpath\_DDT_&mem..doc" || '"' || 
"!CC' notab;" ); 
run; 
 
data &mem(rename=(f1=name f2=label f5=code f6=fmtname f7=comment)); 
  length f1 f2 f3 f4 f5 f6 $1000; 
  infile cmds dlm='09'x notab /**/ missover dsd LRECL=8000; 
  input f1 $ f2 $ f3 $ f4 $  f5 $ f6 $; 
  if INDEX(upcase(f3), 'TYPE') and INDEX(upcase(f2), 'LABEL')then delete; 
 label f1="Variable Name" 
       f2="Variable Label" 
       f3="Type" 
       f4="Format Name" 
       f5="Length" 
       f6="Comments"; 
run; 
 
data dslib.&mem; 
  set &mem; 
  length memname $20; 
  memname="&mem"; memname=upcase(memname); 
run; 
 
filename cmds clear; 
%end; 
%mend tosas; 
*to call the macro; 
%tosas(filepath=U:\DDT, outpath=U:\DDT); 

7 

Coders' CornerSAS Global Forum 2012

 
 



  

APPENDIX 2: KEY VBA CODE IN THE APPLICATION 

'* The VBA subroutine to open each Word file to replace special character 
'* and add bookmarks   
Private Sub CommandButton3_Click() 
   Dim path            As String, path1 As String 
    Dim filename        As String 
    Dim tabl As Range 
    Dim atable As Table 
    WordBasic.DisableAutoMacros True 
    path = TextBox1.Value 
    path1 = TextBox2.Value    
    '*** Loop through all List documents and replace special character*** 
    Dim fname As String, fname1 As String 
    filename = Dir(path & "\*.doc", vbNormal) 
     
Do Until filename = "" 
        On Error Resume Next 
        fname = StrReverse(Mid(StrReverse(filename), 5)) & ".doc" 
        fname1 = "_DDT_" & StrReverse(Mid(StrReverse(filename), 5)) & ".doc" 
Dim newdoc As Word.Document 
 
Documents.Open path & "\" & fname 
ActiveDocument.Tables(1).Select 
Selection.Copy 
ActiveDocument.Close SaveChanges:=False 
Set newdoc = Application.Documents.Add 
newdoc.Bookmarks("\EndOfDoc").Range.Paste 
Selection.WholeStory 
'*** replace soft return (Shift+Enter) 
With Selection.Find 
 .ClearFormatting 
 .Text = Chr(11) 
 .Replacement.ClearFormatting 
 .Replacement.Text = " " 
 .Execute Replace:=wdReplaceAll, Forward:=True, _ 
 Wrap:=wdFindContinue 
End With 
'*** replace carriage return 
With Selection.Find 
 .ClearFormatting 
 .Text = Chr(13) 
 .Replacement.ClearFormatting 
 .Replacement.Text = " " 
 .Execute Replace:=wdReplaceAll, Forward:=True, _ 
 Wrap:=wdFindContinue 
End With 
Selection.WholeStory 
With ActiveDocument.Bookmarks 
.Add Range:=Selection.Range, Name:="CC3" 
.DefaultSorting = wdSortByName 
.ShowHidden = False 
End With 
newdoc.SaveAs filename:=path1 & "\" & fname1, FileFormat:=wdFormatDocument 
newdoc.Close 
        
 On Error GoTo 0 
 filename = Dir()         
Canceled: 
    WordBasic.DisableAutoMacros False 
    Application.DisplayAlerts = True 
    Application.ScreenUpdating = True 
 Loop 
End Sub 
 

8 

Coders' CornerSAS Global Forum 2012

 
 



9 

'* The VBA subroutine to run the SAS DDE program for each Word file to read 
'* Word table data   
Private Sub CommandButton4_Click() 
    Dim path1 As String 
    Dim filename        As String 
    WordBasic.DisableAutoMacros True 
    path1 = UserForm.TextBox2.Value    
    '*** Loop through all List documents *** 
   filename = Dir(path1 & "\*.doc", vbNormal) 
     
 Do Until filename = "" 
   On Error Resume Next 
   Documents.Open path1 & "\" & filename        
 On Error GoTo 0 
 filename = Dir()         
 Canceled: 
    WordBasic.DisableAutoMacros False 
    Application.DisplayAlerts = True 
    Application.ScreenUpdating = True         
 Loop 
   Unload UserForm   
   Dim exesas As Long 
   exesas = ShellExecute(0, "Open", _ 
   "\\frxwf002\vol2\Csdm-sysshare\SHAREALL\Utility\DataSpec2SAS\BATCH.bat", "", 0,1)     
End Sub 

Coders' CornerSAS Global Forum 2012

 
 


	2012 Table of Contents



