
1

Paper 069-2012

Splitting Data Sets on Unique Values: a Macro That Does It All
Hans Sempel, Belastingdienst, Apeldoorn, The Netherlands

ABSTRACT
Sometimes it is necessary to split a data set into multiple data sets, depending on the unique values of a variable.
After this task was requested several times at the Belastingdienst in the Netherlands, a macro was developed that
could split every data set based on a variable. The results are a data set for every unique value of that variable. And,
all it took was two DATA steps!

INTRODUCTION
The Belastingdienst (Dutch Tax and Customs Administration) is responsible for:

• levying, monitoring and collecting state taxes

• supervising the inflow, outflow and transit of goods

• supervising compliance with legislation in the fields of economy, health, environment and safety, economic
classification and financial integrity

• levying and collecting national insurance schemes contributions and employee insurance premiums

• allocating and monitoring income-related benefits

• conducting investigations in all of the above areas

To perform these duties the Belastingdienst has databases containing huge tables with billions of records.

About 2008 we started to use SAS® as tooling to extract data and information from these databases.

To facilitate the developers a programming environment was created that contains a toolbox with ready to use
macros for all sorts of tasks.

One of these tasks was the splitting of data sets on the value of a variable. It was decided to create a macro that
could perform this task just by telling him the data set to split and the variable on which it has to be split.

This paper describes that macro.

THE MACRO
After the decision was made to create the macro we found a paper named ‘241 – 31: Data Step Hash Objects as
Programming Tools’ written by Koen Vyverman and Paul Dorfman in which two methods were described. They called
these methods the Pre-V9-hash method and the Hash .OUTPUT() method (see Appendix A for the code).

The Pre-V9-hash method consists of a PROC SQL with a distinct select, followed by a DATA step. The result of the
PROC SQL is stored in two macro variables, one to be used as list of data sets in the DATA statement and the other
to be used as WHEN clauses in a SELECT statement.

The other method is based on the use of the Hash .OUTPUT() Method in combination with the Hash of Hashes. This
method consists of one DATA step that declares a hash table (HOH) that contains hash tables (HH) as data. For
each unique value a HH-hash table is initiated and populated with observations. At the end of the data set an iterator
is used to loop through the table and dump the contents of every HH-hash table into a data set.

We decided to introduce a third method and create our own macro because of problems we experienced with the two
mentioned. One does not have an optimal performance and the other has problems with the memory when splitting
huge data sets.

The macro consists of three parts. To explain the macro the following data set will be used.

data sample;
 input region $ amount number;
 cards;
A 2000 4
C 543 2
B 287 6

Coders' CornerSAS Global Forum 2012

2

C 764 4
A 1098 3
B 456 8
A 982 9
;
run;

PART 1: DETERMINING THE TYPE OF VARIABLE
The macro is called with the keyword parameters dataset (the name of the data set to split), varname (the variable on
which to split) and the optional parameter outlib (the library in which the data sets are put). In this example the
parameter dataset has the value ‘sample’ and the parameter varname has the value ‘region’.

%macro split (dataset=, varname=, outlib=WORK);
 %local sel sets;
 %if %INDEX(&dataset,.) eq 0 %then %do;
 %let libname = WORK ;
 %let setname = &data set ;
 %end;
 %else %do;
 %let libname = %SUBSTR(&dataset,1,%INDEX(&dataset,.)-1);
 %let setname = %SUBSTR(&dataset,%INDEX(&dataset,.)+1) ;
 %end;

Because some statements in the next two parts differ for numeric and character variables, a simple PROC SQL
determines the type of the variable on which the data set must be split. The type is put into the macro variable
vartype. In the case of this example the value is ‘char’.

 proc sql noprint;
 select type into :vartype
 from sashelp.vcolumn
 where libname = upcase("&libname")
 and memname = upcase("&setname")
 and memtype = "DATA"
 and upcase(name) = upcase("&varname")
 ;
 quit;

PART 2: DETERMINING THE UNIQUE VALUES
Here the data set is read and the values of the variable are put into a hash table. Because this hash-table has the
variable as key, the return code is 0 when the variable doesn’t already exist in the hash-table.

If the return code is 0 a new data set name is added to the sets-variable and a new WHEN clause is added to the sel-
variable.

At the end of the data step the variables sel and sets are put in the macro variables sel and sets. Using the example
database, sets gets the value ‘WORK.setA WORK.setC WORKsetB’and sel the value ‘select (region); when (‘A’)
output WORK.setA; when (‘C’) output WORK.setC; when (‘B’) output WORK.setB; otherwise; end;’.

 data _null_;
 retain sel sets;
 format sel sets $20000.;
 if _n_=1 then do;
 dcl hash members (ordered: 'a');
 rc = members.definekey("&varname");
 rc = members.definedone();
 sel="select (&varname);";
 sets='';
 end;
 set &data set (keep=&varname) end = eof;
 rc=members.add();
 if rc eq 0 then do;
 flag+1;

Coders' CornerSAS Global Forum 2012

3

 sets=trim(sets)||" &outlib..set"||trim(left(&varname.));
 if "&vartype" eq "num" then
 sel=trim(sel)||" when ("||trim(left(&varname.))||
 ") output &outlib..set"||trim(left(&varname.))||";";
 else
 sel=trim(sel)||" when ('"||trim(left(&varname.))||
 "') output &outlib..set"||trim(left(&varname.))||";";
 end;
 if eof then call symputx('sel',trim(sel)||' otherwise; end;','L');
 if eof then call symputx('sets',trim(sets),'L');
 run;

PART 3: THE SPLITTING
 data &sets;
 set &dataset;
 &sel.
 run;
%mend split;

This code resolves into:

 data WORK.setA WORK.setC WORK.setB;
 set sample;
 select (region);
 when ('A') output WORK.setA;
 when ('C') output WORK.setC;
 when ('B') output WORK.setB;
 otherwise;
 end;
 run;

PERFORMANCE
So now we have three methods, each with its own advantages and disadvantages. To determine which method is fit
for purpose, we did some tests with data sets varying from 10,000 to 10,000,000 observations on a Windows platform
and on z/OS (mainframe). We measured the CPU time and the elapsed time.

The results on Windows platform are:

Number of
observations

Pre-V9-Hash method Hash .OUTPUT() method The macro %split

cpu time elapsed time cpu time elapsed time cpu time elapsed time

10,000 0.06 0.28 0.06 0.07 0.04 0.37

100,000 0.34 8.85 0.29 2.04 0.12 2.92

1,000,000 3.12 28.09 2.28 10.67 0.88 25.65

10,000,000 31.68 264.80 30.84 118.28 9.03 250.67

100,000,000 413.83 2236.00 Memory Error 93.67 1539.67

Table 1. Performance Measurements on Windows

On the mainframe we didn’t test with 100,000,000 because the Hash .OUTPUT() method here also went into and
abend due to memory errors:

Number of
observations

Pre-V9-Hash method Hash .OUTPUT() method The macro %split

cpu time elapsed time cpu time elapsed time cpu time elapsed time

10,000 0.08 0.74 0.06 0.63 0.06 0.60

100,000 0.41 1.77 0.22 1.29 0.16 1.63

Coders' CornerSAS Global Forum 2012

4

1,000,000 3.95 28.67 2.10 13.72 1.23 15.43

10,000,000 41.84 194.81 25.12 153.23 12.44 162.38

Table 2. Performance Measurements on Mainframe

An examination of the results of the measurements shows:

• On both platforms the Hash .OUTPUT() method doesn’t work with big data sets (exactly how big depends on the
configuration of your system).

• The Pre-V9-Hash method has by far the worst performance on both platforms.

• The Hash .OUTPUT() method uses more cpu time than the %split macro, but the elapsed time is less.

CONCLUSION
There isn’t a best method.

The intention of this paper is to give the programmer an alternative and an insight in the advantages and
disadvantages of the three methods. It depends on the situation which method fits the needs of the developer and
hopefully this paper helps to choose the best one.

REFERENCES
Dorfman, Paul M. and Vyverman, Koen. March 1, 2006 “Data Step Hash Objects as Programming Tools.” SUGI 31.
San Francisco Available at http://www2.sas.com/proceedings/sugi31/241-31.pdf.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Hans Sempel
Enterprise: Belastingdienst
Address: Hoofdstraat 21
City, State ZIP: 7311 JT Apeldoorn, The Netherlands
E-mail: hans@sempel.eu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2012

5

APPENDIX A
The Pre-V9-hash method and the Hash .OUTPUT() method as they are described in paper 241-31.

In this code a data set ‘sample’ is split on the variable ‘id’.

Pre-V9-hash:

proc sql noprint ;
 select distinct 'OUT' || put (id, best.-l)
 into : dslist
 separated by ' '
 from sample
 ;
 select 'WHEN (' || put (id, best.-l) || ') OUTPUT OUT' || put (id, best.-l)
 into : whenlist
 separated by ';'
 from sample
 ;
quit ;

data &dslist ;
 set sample ;
 select (id) ;
 &whenlist ;
 otherwise ;
 end ;
run ;

Hash .OUTPUT():

data _null_ ;
 dcl hash hoh (ordered: 'a') ;
 dcl hiter hih ('hoh') ;
 hoh.definekey ('id') ;
 hoh.definedata ('id', 'hh') ;
 hoh.definedone () ;
 dcl hash hh () ;
 do _n_ = 1 by 1 until (eof) ;
 set sample end = eof ;
 if hoh.find () ne 0 then do ;
 hh = _new_ hash (ordered: 'a') ;
 hh.definekey ('id','transid', '_n_') ;
 hh.definedata ('id','transid', 'amt') ;
 hh.definedone () ;
 hoh.replace () ;
 end ;
 hh.replace() ;
 end ;
 do rc = hih.next () by 0 while (rc = 0) ;
 hh.output (dataset: 'out'|| put (id, best.-L)) ;
 rc = hih.next() ;
 end ;
 stop ;
run ;

Coders' CornerSAS Global Forum 2012

	2012 Table of Contents

