
1

Paper 039-2012

One Flip, Two Flip, Fat File, Flat File
Ethan Miller, SRI International, Menlo Park, Ca

ABSTRACT
Tired of getting data sets with multiple records per ID when you need a flat file for analysis? Tired of struggling with
one-too-many merges? With just a small investment of time you too can easily create a flat file with one record per ID.
Through the use of PROC SORT, PROC TRANSPOSE, SAS® MACRO, and the DATA step, this paper examines
how to create a flat file with customized variable names and labels for multiple time intervals. Through the use of SAS
MACRO, the code shown in this paper creates a flat file, and your friends will be amazed at how easy it is. This paper
was written for those with beginner-to-intermediate skills; the code was written using SAS® 9.2 on a Windows
operating system.

INTRODUCTION
Many times, it is desirable to have a flat file for the purpose of doing an analysis or to avoid a many-to-many merge.
The macro discussed in this paper creates a flat file from a data set that contains multiple observations per entity,
where each observation is for a different interval. The flat file that it creates contains one record per entity where the
variables associated with different intervals are renamed to correspond to those intervals. The interval could be time,
treatment number, or any other event that happens more than once. It could also be distinct categories, such as type
of service.

A SIMPLE EXAMPLE
The goal is to take the data in Table 1 and produce the data structure of Table 2. (Note: The code to generate the
data in Table 1 is included in Appendix A.) Notice that Table 1 has multiple observations for a given entity (in this
case, student ID), with each record having an interval variable and two score variables. Table 2 has one record per
entity, with two score variables for every interval.

Table 1: Data with Multiple Records per Entity

Student
ID

Test
Interval

Test
Score 1

Test
Score 2

1 1 0.822 0.43738
1 2 0.93793 0.00613
1 3 0.8349 0.53064
1 4 0.59342 0.91467
1 5 0.36768 0.99229
2 1 0.43057 0.97496
2 2 0.00666 0.1605

Table 2: Data with One Record per Entity

Student
ID

Interval 1
Test

Score 1

Interval 1
Test

Score 2

Interval 2
Test

Score 1

Interval 2
Test

Score 2

Interval 3
Test

Score 1 …
1 0.822 0.43738 0.93793 0.00613 0.8349 …
2 0.43057 0.97496 0.00666 0.1605 . …

Coders' CornerSAS Global Forum 2012

2

To begin the process, a sort is performed. This sort must include a combination of BY variables that will make each
observation in the data set unique. In our example, we use ID and INTERVAL as the BY variables.

proc sort data = d;
 by id interval;
 run;

Next, the first PROC TRANSPOSE is run to transform the data. The BY variables will be the same as the sort. The
variables in the VAR statement will be the variables that you want to analyze as the interval changes. In this example,
it is the two test score variables.

 proc transpose data = d out = dt1_1;
 by id interval;
 var s1 s2;
 run;

The result is a data set with one observation per BY variable combination (i.e., ID and INTERVAL) for every variable
included in the VAR statement (i.e., test scores contained in S1 and S2).

In Table 3 below, the first observation from Table1 became the first two observations in Table 3. The variables
NAME ,COL1, and _LABEL_ are created by PROC TRANSPOSE:

 _NAME_ contains the names of the variables included in the VAR statement.
 COL1 contains the value of the variable specified in the _NAME_ column.
 _LABEL_ contains the labels of the variables included in the VAR statement.

A COL variable is created for every BY variable combination. In order for the code presented here to work, you must
have a BY variable combination that is unique so that only one column is produced.

Table 3: After One Flip

ID INTERVAL _NAME_ COL1 _LABEL_
 1 1 s1 0.822 Test Score 1
1 1 s2 0.43738 Test Score 2
1 2 s1 0.93793 Test Score 1
1 2 s2 0.00613 Test Score 2
1 3 s1 0.8349 Test Score 1
1 3 s2 0.53064 Test Score 2
1 4 s1 0.59342 Test Score 1
1 4 s2 0.91467 Test Score 2
1 5 s1 0.36768 Test Score 1
1 5 s2 0.99229 Test Score 2
2 1 s1 0.43057 Test Score 1
2 1 s2 0.97496 Test Score 2
2 2 s1 0.00666 Test Score 1
2 2 s2 0.1605 Test Score 2

Coders' CornerSAS Global Forum 2012

3

The next step is to use the _NAME_ and _LABEL_ variables to create new variable names and labels for our flat file.
This is accomplished using a DATA step:

 data dt2_1 ;
 length nvarname $32
 nvarlabel $200;
 set dt1_1;

 nvarname = trim(left(_name_)) || "_" || trim(left(interval));
 nvarlabel = "Interval " || trim(left(interval)) || " " || trim(left(_label_));
 run;

This DATA step creates two variables: NVARLABEL (which will become the label in our final data set) and
NVARNAME (which will become the variable name in our final data set).

NVARNAME is a concatenation of the old variable name with an underscore and an interval number added as a
suffix. For example, in the final data set, S2 for interval 3 will have a variable name of “S2_3.”

The same technique is used for the label, which becomes a concatenation of the word “Interval” followed by the
appropriate interval number with the original label placed at the end. For example, in the final data set, S2 for interval
3 will have a label of “Interval 3 Test Score 2.”

Table 4: New Variable Names and Labels Added to Data Set

NVARNAME NVARLABEL
Student

ID
Test

Interval

Name of
Original
Variable

Label of
Original
Variable COL1

s1_1 Interval 1 Test Score 1 1 1 s1 Test Score 1 0.822
s2_1 Interval 1 Test Score 2 1 1 s2 Test Score 2 0.4374
s1_2 Interval 2 Test Score 1 1 2 s1 Test Score 1 0.9379

…

Now, the final transpose is performed to produce our flat file, and following code is used:

proc transpose data = dt2_1 out = done;
 by id;
 idlabel nvarlabel;
 id nvarname;
 var col1;
run;

Notice that this time we have only one BY variable (ID) on the TRANSPOSE. This will give us one record per ID. The
IDLABEL option is used to assign the value of NVARLABEL as the label to its corresponding variable. Likewise, the
ID option assigns the value of the variable NVARNAME to be the variable name. Now the flat file is complete.

Table 5: Two Flip, Fat File, Flat File (or Data with One Record per Entity)

Student
ID

Interval 1
Test

Score 1

Interval 1
Test

Score 2

Interval 2
Test

Score 1

Interval 2
Test

Score 2

Interval 3
Test

Score 1 …
1 0.822 0.43738 0.93793 0.00613 0.8349 …
2 0.43057 0.97496 0.00666 0.1605 . …

Coders' CornerSAS Global Forum 2012

4

A NOT-QUITE-SO-SIMPLE EXAMPLE—
TRANSPOSING A DATA SET WITH CHARACTER AND NUMERIC VARIABLES
Sometimes it is desirable to create a flat file that contains both character and numeric data. This process is a little
more complicated. The reason is that after the first PROC TRANSPOSE, the COL1 variable will contain strings
making COL1 a character variable. To get around this, the use of a MACRO and MACRO variables are employed.

%macro flipthatstuff;
The MACRO FLIPTHATSTUFF loops through and performs
the double transpose twice, once for the numeric variables and
once for the character variables.

 proc contents data = d
 out = dcont noprint;
run;

The first step in this process is to identify which variables are
character and which are numeric. This information is attained
by using a PROC CONTENTS using the OUT option.

 proc sql noprint;
 select name into: type1
 separated by ' '
 from dcont where type =1;
 select name into: type2
 separated by ' '
 from dcont where type =2;
quit;
proc sort data = d;
 by id interval;
run;

PROC SQL is used to create two MACRO variables from the
contents data set: TYPE1 and TYPE2. TYPE1 and TYPE2 are
space-delimited strings containing all of the numeric and
character variables, respectively. At this point, we want to
create a MACRO containing the code discussed above.

 %let i = 1; To loop through the MACRO, a DO UNTIL is used.
 %do %until (&i = 3);

 proc transpose data = d
 out = dt1_&i;
 by id interval;
 var &&type&i;
 run;

The VAR statement in the first PROC TRANSPOSE now
contains the MACRO variables containing the strings of our
variable names.

 data dt2_&i;
 length nvarname $32
 nvarlabel $200;
 set dt1_&i 
 (where=(_name_ not in
 ("id","interval")));

 nvarname = trim(left(_name_)) ||
 "_" || trim(left(interval));

 nvarlabel = "Interval " ||
 trim(left(interval)) || " " ||
 trim(left(_label_));
 run;
 proc sort data = dt2_&i;
 by id;
 run;
 proc transpose data = dt2_&i
 out = wide&i;
 by id;
 idlabel nvarlabel;
 id nvarname;
 var col1;
 run;
 proc sort data = wide&i;
 by id;
 run;
 %let i = %eval(&i + 1);
%end;

The BY variables used here are both numeric; therefore,
they will be included when the MACRO variable TYPE1
resolves. As a result of their inclusion in the VAR statement on
the first PROC TRANSPOSE, there will be a row of data
created for both of them for any BY variable combination.
Carrying them through is meaningless to the final data set
since ID will not change over time and interval will always be
the same within a given interval. The easiest place to drop
them seemed to be after the first transpose.

 data flat;
 merge wide1 wide2;
 by id;
run;
%mend flipthatstuff;

Finally, the flat numeric data set is merged with the flat
character data set.

Coders' CornerSAS Global Forum 2012

5

Variables that do not change across your unique BY variables should be dropped from the data set that is passed to
the MACRO; otherwise, there will be redundancy. One solution is to drop them when you run the PROC CONTENTS
and then merge them back on to the final flat file.

CONCLUSION
One downside of creating the flat file is that it is tougher to report across variables than over observations. For
example, you can group over observations to get a mean, but your only option for getting the mean across variables
is explicit coding or use of a colon after the root (e.g. mean(of S1_:) - to calculate the mean of all variables with a
prefix S1_). A major upside to the syntax to create the flat file with PROC TRANSPOSE is that is data driven. The
number of intervals in the data dictates the naming and creation of new variables.

ACKNOWLEDGMENTS
A huge thank you to the Sultan of SAS, Patrick “P-Ditty” Thornton for his never-ending patience, time, and
encouragement. Thank you to Cyndi C-Dubs Williamson, Doris Perkins, and Mary McCracken for being Awesome.
And to Sue Douglas and Erik Tilanus for accepting my paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Ethan Miller
SRI International
333 Ravenswood Ave BS159
Menlo Park, Ca 94025
Work Phone: (650) 859-5726
E-mail: ethan.miller@sri.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2012

6

APPENDIX A
The code to generate the data used in this paper:

data d (drop = k);
 do id = 1 to 10;
 k = round(ranuni(12309)*7);
 do interval = 1 to k;
 s1 = ranuni(1343987);
 s2 = ranuni(8581235);
 output;
 end;
 end;

 label
 s1 = "Test Score 1"
 s2 = "Test Score 2"
 id = "Student ID"
 Interval = "test interval"
 ;
run;

Coders' CornerSAS Global Forum 2012

	2012 Table of Contents

