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ABSTRACT 

Distributions of healthcare utilization such as hospital length of stay and inpatient cost are generally 
right skewed. The extremes represent legitimate observations on patients who, because of the 
severity of their illness and need for medical intervention, have long in-stays and incur large costs. In 
this context we demonstrate the application of several parametric models for fitting heavy tailed 
data. Both maximum likelihood and Bayesian methods are used for estimation in certain Coxian 
phase-type models, mixtures of exponential distributions, and for comparison, the lognormal, log-
logistic, Weibull, generalized gamma and generalized Pareto —including the standard Pareto and 
Burr distributions. We focus on the mean and percentiles of the response, and illustrate our methods 
with an empirical example on fitting models to hospital stays for acute myocardial infarction in the 
Nationwide Inpatient Sample of the Healthcare Utilization Project.  A suite of SAS procedures is 
used in all computations, specifically the procedures GENMOD, LIFEREG, MCMC, NLMIXED, 
FMM and SEVERITY.  

 

1. INTRODUCTION 

 Heavy-tailed parametric distributions have many applications in analyses of economic, financial 
and physical systems. The stochastic model specifies a conditional distribution of positive random 
variable T given exogenous covariates x. In health care applications T represents utilization such as 
hospital length of stay (LOS) or hospital cost. Right-skewness, heteroscedasticity and heterogeneity 
are often observed in patient samples of LOS and cost. The challenge faced by the analyst is to posit 
a suitable model that captures the essential features of the entire distribution and to estimate 
covariate effects (e.g., patient and hospital characteristics) on summary statistics such as the mean 
and percentiles of the distribution.  Commonly used parametric families include the lognormal, log- 
logistic, Weibull, generalized gamma, Pareto, and Burr. The latter two distributions are used 
extensively in models for claim size in insurance and in models for income (Klugman et al, 2004). 

 A distribution of T is said to be heavy-tailed if ( )TE eλ = ∞ for all λ>0, or in other words, the 
moment-generating function is not finite on the positive real line (Foss et al, 2011).This does not 
preclude the existence of finite moments.  Equivalently, a distribution is heavy-tailed if its survival 
distribution S satisfies λ →∞( )te S t  as t→∞ for all λ>0.  In section 2 we describe the Burr, Pareto, 
log-logistic and lognormal distributions which are all heavy-tailed. The Weibull distribution is heavy-
tailed if and only if its shape parameter <1.  The gamma distribution and in particular the 
exponential and mixtures of exponential distributions are not heavy-tailed. Sections 3 and 4 describe 
our analyses of an empirical example to LOS. Additional details are in Gardiner et al, 2012. We 
conclude with a discussion and summary in section 5.  
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2.  MODELS 

 We outline here some of the parametric models that can be fitted with SAS procedures. 

 

2.1 Accelerated Failure Time (AFT) Model 

 The accelerated failure time (AFT) model log transforms T to a location-scale family 
logT µ σε= +  where the parameters ( , )µ σ are modeled by , logµ β σ δ′ ′= =x x  and the random 
variable ε  has a fully specified distribution. The Weibull distribution ( ) [ ] exp( ( / ) )S t P T t t γθ= > = − , 

0, 0θ γ> > , has AFT form with 1log ,µ θ σ γ −= = and ε  has the extreme value distribution. The 
lognormal, log-logistic, generalized gamma are also in the AFT class, although in the generalized 
gamma the distribution of ε  has an additional parameter. Extensive applications are found in the 
fields of biostatistics and reliability. Procedures LIFEREG and RELIABILITY are the engines for 
analysis of the AFT model.  These procedures also permit incomplete observation of the response 
by allowing for left, right and interval censored data. The SEVERITY procedure provides additional 
functionality for left and right truncated data. It does not use a location-scale formulation for the 
response T but requires a scale parameter in its distribution in order to model covariates.  Several 
pre-programmed distributions are available including the Pareto, standard gamma, and inverse 
Gaussian distributions that cannot be expressed in AFT form.  Additionally it has the capability of 
fitting any continuous distribution by defining their distribution and density through functions and 
subroutines that call the FCMP procedure. 

 

2.2 Mixed Proportional Hazards Model 

 An alternative to AFT models is the class of proportional hazards (PH) models used widely in 
biostatistics (Lawless, 2003). The cumulative hazard function ( | )H t x of T is expressed as 

0( | ) ( )exp( )H t H t β′=x x where 0( )H t is a cumulative baseline hazard function which is left 
unspecified in the semi-parametric Cox regression model. Specifying 0( )H t t γ= yields the Weibull 
with survival distribution ( )( | ) exp exp( )S t t γβ′= −x x . The Weibull is the only continuous distribution 
with both the AFT and PH forms. 

 To incorporate unobserved heterogeneity a positive random effect (frailty)ν, independent of x is 
incorporated as 0( | , ) ( )exp( )H t H tν ν β′=x x . This is the mixed proportional hazards (MPH) model. 
The unconditional survival function is ( )0( | ) exp( ( )exp( )S t E H tν β′= −x x  where the expectation is 
with respect to the mixing distribution of  ν . With specific assumptions on ν  and 0( )H t we obtain 
some of the aforementioned distributions. For example, choosing the gamma distribution for ν  
(shape α and scale 1/α) so that the mean is 1 leads to ( )1

0( | ) 1 ( )exp( )S t H t
α

α β
−− ′= +x x . The Weibull 

hazard 0( )H t t γ=  returns the Burr distribution. With exponential mixing (α=1) we get the log- 
logistic distribution. The standard Pareto distribution is obtained by gamma mixing of the 
exponential hazard 0( ) .H t t=  Proc PHREG is the workhorse for analysis of the PH model. With the 
addition of a lognormal random effect ν its reach is extended to the MPH whilst maintaining the 
semi-parametric feature of the Cox model.  
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2.3 Coxian Phase-type Distribution 

 A single parametric distribution coupled with a covariate model might be insufficient to capture 
variability and heterogeneity.  Finite mixtures of distributions have many applications where the 
focus is on identifying and eliciting the characteristics of the heterogeneous subgroups.  Continuous 
mixtures as described above for the MPH model are structurally different in that they involve 
continuous random effects that are meant to incorporate unobserved heterogeneity.  

 A phase-type distribution is the distribution of the time to absorption T in a continuous time 
finite state homogenous Markov process. (Fackrell, 2009) Suppose there are m transient states 
labeled 1,2,…,m and a single absorbing state with label ‘m +1’ . Coxian phase-type (CPH-m) 
distributions result when the process begins in state 1 and only forward transitions are allowed, 
1→2, 2→3,…, m−1→ m  and exit to the absorbing state m +1 can occur from any transient state,  
1→ m +1, 2→ m +1,…. m→ m +1. The explicit form of the survival distribution is ( ) exp( )S t t= e Q 1  
where 1 is the m×1 vector whose elements are all equal to 1, e=(1,0,…,0) (1×m vector) and 

0
exp( ) ( ) / !k

k
t t k∞

=
=∑Q Q  is the matrix exponential (Golub and van Loan, 1996). The density 

function is ( ) exp( )( )f t t= −e Q Q1 . The m×m matrix Q has the transition intensities in the transient 
states.  It is upper triangular and single-banded.  It turns out that T can be represented in 
distribution as 

1

m
k kk

T Z W
=

=∑  with 1 2k kW T T T= + + + , the sum of independent exponential 
variables, ~ ( )k kT EXP λ  with hazard rate kλ , and 1 2( , , , )mZ Z Z  is independent of { : 1 }kT k m≤ ≤

with multinomial distribution and probabilities 1 2( , , , )mη η η , η
=

=∑ 1
1m

kk
. Then 

1
( ) ( )m

k kk
S t S tη

=
=∑

is a finite mixture of survival distributions, where ( )kS t is the survival distribution (Erlang) of .kW
The CPH-m has 2m−1 parameters. 

 To incorporate covariate effects we impose an order restriction 1 2 mλ λ λ≥ ≥ and map 
1 2( , , , )mλ λ λ  to 1 2( , , , )mλ ν ν  where 1 2k kλ λν ν=  , 0 1kν< ≤ . If we regard 1λ as an inverse-scale 

parameter covariate effects may be incorporated via the model 1 exp( )λ β′= −x . We can use the 
programming features of SEVERITY to fit the CPH-m.  

 

2.4 Finite Mixture of Distributions 

 The survival distribution of a finite mixture is 
1

( | ) ( | )m
k kk

S t S tη
=

=∑x x  where the kS ’s are 

component survival distributions and ηk ’s are mixing probabilities with η
=

=∑ 1
1m

kk
. Covariates x are 

entered through parameterization of the mean (or a function of the mean) in kS  and in the 
multinomial probabilitiesηk , e.g., a generalized logit model.  A homogenous finite mixture has the 
component distributions kS in the same parametric family and the mixing probabilities do not 
depend on covariates. A finite mixture distribution of exponentials (FME-m) is

η λ
=

= −∑ 1
( | ) exp( ( ) )m

k kk
S t tx x  with λ β′= −( ) exp( )k kx x . The CPH-m is a homogenous finite mixture 

of (generalized) Erlang distributions with the same βk  across components but different intercepts. 
The first component is an exponential distribution. We can fit the FME-m using the FMM 
procedure.  
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 Table 1 summarizes the functional form of the survival function for some selected distributions. 
Absent are the generalized gamma which is a parent for the lognormal, Weibull, and standard 
gamma distributions, and the generalized Pareto which is a parent for the Pareto distribution. Details 
are found in the documentation for LIFEREG and RELIABILITY for the generalized gamma and 
in SEVERITY for the generalized Pareto. For regression models covariates enter through 
parameterization of the scale parameter θ.  The formulae for the mean ( | )E T x and 100×p-th 
percentile ( )pt x  are functions of all the parameters of the distribution. The maximum likelihood 
method is used in estimation.  Construction of a confidence interval for these summary statistics is 
carried out for the log-transformed quantity and then back-transformed. 

 

Table 1: Some parametric distributions 

Distribution 
Name 

Survival Distribution Mean and 100×p-th percentile 

Weibull 

0, 0θ γ> >  
( ) exp( ( / ) ),S t t γθ= −  

1log , .θ β σ γ −′= =x  

( | ) exp( ) ( 1))E T β σ′= Γ +x x  

( )( ) exp( ) log(1 )pt p σβ′= − −x x  

Lognormal 

0, 0θ γ> >  
( )( | ) log( / ) ,S t t γθ= Φ −x

1log , .θ β σ γ −′= =x  

2( | ) exp( ½ )E T β σ′= +x x  

{ }1( ) exp ( )pt pβ σ −′= + Φx x  

Burr, 0,α >  

0, 0θ γ> >   
( )( ) 1 ( / ) ,S t t

αγθ
−

= +  

1log , .θ β σ γ −′= =x  

( | ) exp( ) (1 ) ( )/ ( )E T β σ α σ α′= Γ + Γ − Γx x , σ α<  

{ }1/( ) exp( ) (1 ) 1pt p
σαβ −′= − −x x  

Pareto 

0α >  
( )( ) 1 ( / ) ,S t t αθ −= +  

log .θ β′= x  

( )1( | ) ( 1) expE T α β− ′= −x x , 1α >  

{ }1/( ) exp( ) (1 ) 1pt p αβ −′= − −x x  

Log-logistic 

0, 0θ γ> >  
( ) 1

( ) 1 ( / ) ,S t t γθ
−

= +  

1log , .θ β σ γ −′= =x  

( | ) exp( ) (1 ) (1 )E T β σ σ′= Γ + Γ −x x , 1σ <  

{ }( ) exp( ) / (1 )pt p p σβ′= −x x  

†Gamma 

0, 0θ α> >  
( ) ( )1 1 /( ) ( ) / ,tf t t eα θθ α θ− − −= Γ

log .θ β′= x  

( | ) exp( )E T α β′=x x  
1( ) exp( ) ( , )pt pβ α−′= Γx x  

‡CPH-2, 1 0λ >  

2 20 , 1η ν< <  { }

1

2 1 1

2

2
2

2

( ) (1 )

1

t

t t

S t e

e e

λ

ν λ λ

η

η ν
ν

−

− −

= − +

 
− − 

1log .λ β′= −x  

( )1
2 2( | ) exp( ) 1E T β η ν −′= +x x  

( )pt x is the solution to ( )( ) 1pS t p= −x  

† 1( , )p α−Γ is the inverse gamma function with shapeα ; f  is the density of the Gamma distribution. 
‡ For 2 1ν = , ( )1

2 1( ) 1tS t e tλ η λ−= + . 
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3. APPLICATION 

 We use a data set of N=11,749 hospital admissions for acute myocardial infarction drawn from 
the 2003 Nationwide Inpatient Sample of the Healthcare Utilization Project which samples annually 
healthcare utilization (LOS and hospital charges) in approximately 1,000 community-based hospitals 
in the US (HCUP Overview, 2009). The range of LOS is 1 to 142 days, mean 5.51 (SD=5.90). 
Covariates include patient age at admission (18 to 84 years), gender (37% female), and presenting 
comobidity as assessed by the Charlson Comorbidity Index (CCI). (Charlson et al, 1987) The CCI is 
a weighted sum of the presence of disease or medical conditions. It includes diabetes, with or 
without complications, renal disease, pulmonary disease, congestive heart failure, and peripheral 
vascular disease. The CCI is categorized into 4 subgroups: 1, 2, 3 and ≥4.  These subgroups 
represent respectively 38%, 29%, 17%, and 16% of the sample. Patients are categorized by the most 
complex procedure that they underwent (percent of sample in parenthesis): CABG=coronary artery 
bypass surgery (12%), PTCA=percutaneous transluminal coronary angioplasty (40%), 
CATH=cardiac catheterization (19%), OTHER=other procedures performed (16%), or NONE=no 
procedure performed (13%). Additional characteristics of the sample include factors at the hospital-
level: geographic region (Northeast, South, Midwest, and West), bed size (small, medium, large), and 
location/teaching status (urban teaching, urban non-teaching, rural). In this application we use LOS 
as outcome. Observations are complete: there are no censored values. 

 

 3.1 Maximum Likelihood Estimation 

 In table 1 the regression model for the scale parameter is 0( ) exp( )θ θ β′=x x  or equivalently 
0log ( ) logθ θ β′= +x x  so that 0logθ  serves as intercept. For the CPH-2 distribution we use the 

parameterization  

 

{ }2
2 1 1 2 2 1

2

2 2
1 1 2

2 2

( ) (1 )exp( ) exp( ) exp( )
1

1 exp( ) exp( )
1 1

S t t t t

t t

ηη λ λν ν λ
ν

η ηλ λν
ν ν

 
= − − + − − − − 
   

= − − + −   − −   

 

where 1( ) 1/ ( )λ θ=x x and 2 2,ν η are additional parameters with 2 20 1, 0 1ν η< < < < . The second line 

has the same form as a FME-2 except that we cannot guarantee that 2

21
η
ν

 
 − 

<1. 

 Using the SEVERITY procedure table 2 reports maximum likelihood (ML) estimates 0̂
ˆ( , )θ β and 

estimates of additional non-scale parameters such as shape parameters for the CPH-2, Burr and log-
logistic distributions The Burr distribution is pre-programmed. Accepting all defaults the syntax is: 

 
proc severity data=losami outcdf=cdf; 
LOSS LOS; 
scalemodel age female type_cabg type_ptca type_cath type_other CCI2-CCI4 
      region_NE region_MW region_SO LOC_RUR LOC_UNT SIZE_SML SIZE_MED; 
dist burr; 
run; 
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 With the exception of age which is continuous, all other covariates in table 2 are dummy 
indicators. Together with the intercept θ0 there are 17 parameters, excluding the shape parameters in 
lines 2 and 3. The log-logistic is a special case of the Burr distribution with α=1. A Wald test or 
likelihood ratio test will reject the log-logistic model. The Pareto model restricts γ =1 in the Burr 
distribution. Fitting a Pareto distribution was problematic because of non-convergence for the shape 
parameter α . One reason might be noticed from the estimates of α, γ in the Burr distribution. A 
Wald test of γ =1 will be rejected. To compare the model CPH-2 with either the Burr or log-logistic 
models we use Vuong’s test for strictly non-nested models (Vuong, 1989). It assumes that neither 
model is correct. Based on this test we might prefer the Burr or log-logistic models. The similarity of 
these two models is also seen in their fit statistics. 

 Fit statistics shown in table 2 are computed from the empirical distribution function (EDF) 
( )nF t and the fitted cumulative distribution function (CDF) ˆ( )F t . Our KS-statistic does not apply the 

sample size n scaling factors used by SEVERITY. The CDF estimate plugs in the ML estimates 
for all model parameters and is the average 1

1
ˆˆ ˆ( ) ( | ( ), )n

ii
F t n F t θ ω−

=
= ∑ x  where 0

ˆ ˆ ˆ( ) exp( )i iθ θ β′=x x  
and ω̂  denotes estimates of non-scale parameters ω. The OUTCDF= option creates a dataset of 
both the EDF and CDF estimates. PLOTS=(CDF PP) gives graphical output with a P-P plot.  

 
Table 2: Maximum likelihood estimates for Coxian, Burr and Log-logistic distributions 

Distribution Coxian, CPH-2 Burr Log-logistic 
Parameter† Estimate Standard 

Error 
Estimate Standard 

Error 
Estimate Standard 

Error 
θ0 1.53486 0.10093 1.34376 0.06290 1.27024 0.05383 
 ν2  0.13305 0.04487 α 1.11027 0.04056 … … 
 η2  0.00132 0.0006225 γ  2.63337 0.03720 γ  2.72608 0.02108 
AGE 0.00878 0.000788 0.00863 0.000502 0.00858 0.000502 
FEMALE 0.07852 0.01994 0.07738 0.01262 0.07721 0.01262 
Procedure, CABG 1.16301 0.03720 1.20262 0.02324 1.21225 0.02301 
PTCA 0.21516 0.03008 0.23427 0.01949 0.23912 0.01946 
CATH 0.29992 0.03266 0.27796 0.02101 0.27941 0.02106 
OTHER 0.48632 0.03602 0.34789 0.02448 0.33728 0.02432 
Comorbidity, 
CCI=2 

0.26551 0.02360 0.19680 0.01480 0.19181 0.01469 

CCI=3 0.43590 0.02862 0.37578 0.01832 0.36993 0.01822 
CCI≥4 0.62285 0.02975 0.58678 0.01895 0.58486 0.01894 
Fit Statistics       
–2log L 60889  55598  55606  
KS 0.2410  0.0939  0.0950  
AD 850.12  1011.91  1022.16  
CVM 28.55  49.72  49.76  
†Covariate model includes 7 additional parameters for hospital region, location/teaching status and bed size. 

CABG=coronary artery bypass surgery, PTCA=percutaneous transluminal coronary angioplasty, 
CATH=cardiac catheterization, OTHER=other procedures, NONE=no procedure (referent); 
CCI=Charlson Comorbidity Index; CCI=1 as referent. KS= Kolmogorov-Smirnov, AD=Anderson-Darling, 
CVM=Cramer-von Mises. 
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3.2  The CPH-2 and Log-logistic models  

 Since the log-logistic model is in the AFT class it can be estimated using the LIFEREG 
procedure. However, SEVERITY has the capability of fitting a continuous parametric distribution 
through functions and subroutines written in the FCMP procedure. We demonstrate this feature for 
the CPH-2 model. The syntax is in the Appendix. At a minimum we must define two functions for 
the probability density and cumulative distribution (or survival) of the CPH-2. Although defaults 
exist for initial values of the parameters 0 2 2( , , )θ ν η and the regression coefficients β, initialization of

0 2 2( , , )θ ν η was informed by the method of moments. 

 Any distribution G on the positive real line is said to be well-represented by a phase-type distribution if 
its first three moments can be matched with those of the phase-type distribution. Telek and Heindl 
(2002) supply necessary and sufficient conditions for G to be well-represented by a CPH-2. Using 
this approach (without covariates) we found suitable initial values for 0 2 2( , , )θ ν η which we used in the 
INIT= option of the DIST statement. Lower and upper bounds of the parameters are supplied via 
the LOWERBOUNDS and UPPERBOUNDS functions. For output and display the functions 
DESCRIPTION and PARMCOUNT are useful, but not required. 

 

 3.3  The FME-2 model 

 A 2-component mixture of exponential distributions has survival function 

1 1 1 2( | ) exp( ( ) ) (1 )exp( ( ) )S t t tπ λ π λ= − + − −x x x where λ β′= −( ) exp( )k kx x ,  k=1, 2 and 0< 1π <1. 

By keeping covariate effects specific to each component we get a monstrous model with 35 
parameters that we fitted using proc FMM (results not shown). Note that proc FMM models the 
mean ( )kµ x  of the component exponential distribution as log ( )k kµ β′=x x . An intercept is included.  

 The translation to the CPH-2 model restricts 2 2 1( ) ( )λ ν λ=x x  where 0< 2ν <1. This equates the 
covariate effects and results in the same CPH-2 model with 1

1 2 21 (1 )π η ν −= − − provided the bounds 
on 1π are satisfied. The syntax is 

 
proc fmm data=Losami gconv=0; 
model LOS=age female type_: CCI2-CCI4 region_: LOC_: SIZE_: 
  /k=2 dist=exponential link=log 
 equate=effects(age female type_: CCI2-CCI4 region_: LOC_: SIZE_:); 
restrict int 1, int -1< -1; 
probmodel/cl; 
run; 

 

Table 3 summarizes the results of ML estimation: 2 1 2log log ( ) log ( ) intcpt1 intcpt2ν µ µ= − = −x x . Also 
logit Prob refers to ( )1 1log / (1 )π π− . Hence 2ν = exp(0.4284−2.4455)=0.1330, 2 1 2(1 )(1 )η π ν= − −

=(1−.9985)(1−.1330)=.00131. This results in the same point estimates. The small difference in 
standard errors is because SEVERITY makes by default an adjustment to the estimated covariance 
matrix: 1( / )n d −=V H where H is the Hessian, n=#observations, d=n−#parameters. The adjustment 
can be turned off with the VARDEF=N option in the proc severity statement. 
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Table 3: Maximum likelihood estimates for 2-component exponential model with equated   
 covariate effects in components 

Parameter Estimate StdError 
Intcpt 1 0.4284 0.06571 
Intcpt 2 2.4455 0.3421 
Logit Prob 6.4855 0.4994 
AGE 0.008783 0.000788 
FEMALE 0.07852 0.01992 
Procedure, CABG 1.1630 0.03717 
PTCA 0.2152 0.03005 
CATH 0.2999 0.03264 
OTHER 0.4863 0.03599 
Comorbidity, CCI=2 0.2655 0.02358 
CCI=3 0.4359 0.02860 
CCI≥4 0.6229 0.02973 
†Covariate model includes 7 additional parameters for hospital region, location/teaching status and bed size. 
 
CABG=coronary artery bypass surgery, PTCA=percutaneous transluminal coronary angioplasty, 
CATH=cardiac catheterization, OTHER=other procedures, NONE=no procedure (referent); 
CCI=Charlson Comorbidity Index; CCI=1 as referent.  
 

3.4 Estimation of the mean and percentiles 

 Given a covariate profile x the formulae shown in table 1 may be used to estimate the mean and 
percentiles after estimation of all model parameters, and subsequently 95% confidence intervals (CI). 
Although our methods depend on the asymptotic distribution of the ML estimates, it is more 
accurate to transform the corresponding CIs for log ( | )E T x  and log ( )pt x . For the CPH-m and 
FME-m distributions we do not have an explicit expression for the percentiles ( )pt x .  Instead a 

100(1−δ)% confidence interval for ( )pt x  is obtained from the values of t that satisfy  

 
( )

( ){ }
1 /2 1 /2

ˆ( | ) (1 )

ˆ( | )

g S t g p
z z

Var g S t
δ δ− −

− −
− ≤ ≤

x

x
   

where ˆ( | )S t x is the ML estimator of the survival distribution and 1 /2z δ−  is the 100×(1−½δ) percentile 
of the standard normal distribution. The transformation g is either the arcsine-square-root, log, or 

log(−log), and the variance is approximated by ( ) { }2ˆ ˆ( | ) ( | )g S t Var S t ′
 x x where g ′  is the derivative 

of  g.  If g is the identity function then a transformation is not applied.  

 For the CPH-2 the mean LOS is 2

2

( ) ( ) 1
ηµ θ
ν

 
= + 

 
x x . We use the NLMIXED procedure to 

estimate the parametric function ( )0 2 2log ( ) log log 1 exp(log log )µ θ β η ν′= + + + −x x and obtain a 95% 
CI for ( )µ x  by back transformation.  The NLMIXED procedure uses a COXIAN_PDF subroutine 
written in FCMP. Percentile estimates ˆ

pt  are obtained from the survival estimate ˆ( | )S t x by solving 
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the equation 2 2
ˆˆ ˆ ˆ ˆ( | ( ), , ) 1pS t pθ ν η = −x .  The SOLVE statement in proc MODEL can be used for this 

purpose. To obtain 95% CIs we could use the aforementioned approach with the complementary 

log(−log) transformation. Because ˆ ˆ( | ), ( | )S t Var S tx x  are computed only for values of t in the input 
data set in NLMIXED, it might be necessary to compute the above ratio at additional values of t in 
order to derive a more accurate CI.  

 

4. BAYES METHODS 

 Recent enhancements to the several SAS procedures permit Bayesian analyses. For distributions 
in the AFT class LIFEREG could be used and GENMOD for models formulated as generalized 
linear models.  Proc MCMC is dedicated to fitting Bayesian models. The likelihood may be 
constructed using the original untransformed data, or the log-transformed data. This affects the 
numerical value of the DIC statistic, the difference is a constant

1
( log )n

ii
LOS

=
=∑ . There is a slight 

difference in the sampling strategy used by MCMC and by LIFEREG and GENMOD. MCMC 
applies the Metropolis-Hastings algorithm to draw samples from the target distribution via adaptive 
rejection sampling that uses the normal distribution as the proposal distribution. The distributions 
considered in LIFEREG and GENMOD exploit the log-concavity of the posterior densities to 
construct a proposal distribution. There is an additional sampling step if log-concavity is not met.  

 For the log-logistic model in AFT form the covariate vector β  includes an intercept.  Priors 
were specified as 17~ (0, ), 1 6N c c E=β I , scale ~ ( 1 3, 1 3)Gamma shape E iscale Eσ = − = − . Starting values 
were their MLEs in table 2. Proc LIFEREG was used to obtain a posterior sample for ( , )θ σ= β of 
size B=10000 by thinning 50000 iterations after a burn-in of 2000. The syntax is 

 
proc lifereg data=losami; 
model los=dage female type_cabg type_ptca type_cath type_other CCI2-CCI4 
 region_NE region_MW region_SO LOC_RUR LOC_UNT SIZE_SML 
 SIZE_MED/dist=llogistic; 
bayes seed=81011 nmc=50000 nbi=2000 thin=5 outpost=post_sampleLL initialmle 
 coeffprior=normal(var=1E6) scaleprior=gamma(shape=1E-3, iscale=1E-3); 
run; 

 

 We performed a Bayes analysis of the CPH-2 model using MCMC. Our model has structural 
parameters 0 2 2( , , )θ ν η and the regression coefficient vector .β  We chose priors 16~ (0, ), 1 6N c c E=β I , 

2 ~ (0,1),uniformν and 2 ~ (0,1)uniformη .  For 0θ  we experimented with the prior (i) lognormal, 
0log ~ (0,1 6)N Eθ and (ii) inverse Gamma, 01/ ~ ( 0.30, 3.33)IGamma shape scaleθ = = . The joint prior of 

0 2 2( , , , )θ ν η=θ β was taken as the product of the four priors. For all parameters starting values were 
their MLEs in table 2. In (i) convergence was unsatisfactory for some parameters even after thinning 
50000 iterations by 5 and a burn in of 5000. In (ii) we increased the number of iterations to 150000, 
retaining 30000 posterior samples after thinning by 5. The burn in was 5000. Posterior summaries 
for the comparable parameters were approximately the same in both scenarios, but trace-
autocorrelation-density plots were better in (ii). Results are summarized in table 4 and figure 1. 
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 All statistics are based on random samples ( ){ : 1 }b b B≤ ≤θ drawn from the posterior distribution 

π(θ|y) of θ given the data y. For example, the posterior mean is calculated as 1 ( )
1

B b
b

B−
=

= ∑θ θ and an 

equal-tail 95% credible interval for a one-dimensional  θ is the interval spanned by the 2.5-th and 
97.5-th percentiles of the sample. The 95% highest posterior density (HPD) interval is derived as the 
smallest in width amongst 95% credible intervals.  

 Because non-informative priors are used for parameters, the posterior means are as expected, 
close to their ML counterparts (compare tables 3 and 4). The theoretical posterior means for the 
CPH-2 distribution is extremely difficult to derive in closed-form.  We conjecture that improved 
accuracy could be achieved with good approximations of integrals (such as the Laplace 
approximation).  

Table 4: Posterior Summaries for the CPH-2 distribution 

Parameter Mean STD 
DEV 

Percentiles Posterior Intervals 
25% 50% 75% Equal-Tail  HPD 

01/θ  0.3751 0.0163 0.3639 0.3747 0.3862 0.3441 0.4077 0.3442 0.4078 

2ν  0.1549 0.0481 0.1208 0.1511 0.1843 0.0731 0.2613 0.0646 0.2491 

2η ×10 0.0167 0.00724 0.0115 0.0157 0.0209 0.00579 0.0335 0.00432 0.0309 

AGE∗ 0.00874 0.000798 0.00820 0.00875 0.00928 0.00718 0.0103 0.00721 0.0103 
FEMALE 0.0800 0.0198 0.0666 0.0797 0.0933 0.0413 0.1193 0.0411 0.1197 
Procedure, 
CABG 

1.1683 0.0373 1.1430 1.1687 1.1937 1.0956 1.2415 1.0944 1.2399 

PTCA 0.2199 0.0301 0.1995 0.2201 0.2401 0.1605 0.2786 0.1631 0.2810 
CATH 0.3041 0.0326 0.2819 0.3039 0.3260 0.2408 0.3687 0.2406 0.3684 
OTHER 0.4895 0.0362 0.4649 0.4897 0.5138 0.4176 0.5602 0.4195 0.5619 
Comorbidity, 
CCI=2 

0.2674 0.0236 0.2516 0.2675 0.2834 0.2206 0.3132 0.2216 0.3142 

CCI=3 0.4380 0.0285 0.4188 0.4382 0.4570 0.3817 0.4940 0.3827 0.4946 
CCI≥4 0.6256 0.0298 0.6054 0.6258 0.6452 0.5667 0.6838 0.5678 0.6842 

∗Age centered at 64.56 years; DIC(unlogged response)=60928; Effective #parameters=18.85; 
†Covariate model includes 7 additional parameters for hospital region, location/teaching status and bed size. 
CABG=coronary artery bypass surgery, PTCA=percutaneous transluminal coronary angioplasty, 
CATH=cardiac catheterization, OTHER=other procedures, NONE=no procedure (referent); 
CCI=Charlson Comorbidity Index; CCI=1 as referent.  

 

 The current experimental version (in SAS 9.3) of proc FMM has some Bayesian capabilities. 
However, in the Bayes context it does not support the RESTRICT statement and EQUATE= 
option that we used to fit the CPH-2 model in section 3.3. Proc FMM performed very well in a 
Bayes analysis of a simpler FME-2 model with fewer covariates (age and gender from table 4) but we 
encountered problems with more complex covariate models. 

proc fmm data=losami gconv=0 seed=30812 ; 
model LOS=dage female/k=2 dist=exponential link=log; 
bayes initial=mle nbi=2000 nmc=10000 betapriorparms=(0,1E6);  
run; 
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Figure 1: Trace, autocorrelation and posterior density plots of selected parameters of the 
CPH-2 distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. DISCUSSION 

 We demonstrated the use of SAS procedures to fit parametric models for heavy-tailed 
distributions, in particular the Burr and log-logistic distributions. For comparison we fitted the 
Coxian 2-phase (CPH-2) distribution which is similar to a 2-component mixture of exponential 
distributions. Parameter estimation is via the maximum likelihood method. Where feasible, a 
Bayesian analysis can be carried out with in-built features in LIFEREG and FMM. To estimate the 
CPH-2 model we used the programming features in SEVERITY, and for Bayesian analysis the 
MCMC procedure. All models allow examination of the influence of covariates on the mean and 
percentiles of the distribution by positing a covariate model for the underlying scale parameter of the 
distribution. 

 

 

L0=1/ 0θ ; b1=(AGE−64.56). 
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 Our empirical example was on hospital LOS for patients with a primary diagnosis of acute 
myocardial infarction (AMI). Previously we used this data set in a Bayesian analysis that determines 
dynamically the number of phases m in a series of CPH-m models. (Tang et al, 2012) In general a 
CPH-m distribution is a finite mixture of Erlang distributions. In our example the CPH-2 was 
rewritten as a proper mixture of two component exponentials. However, it cannot be guaranteed 
that the mixing coefficients are between 0 and 1, although they sum to 1.  This allows for the 
possibility of fitting a series of CPH-m models using the feature in FMM to rank multiple models. 

 Although our application is focused on a completely observed non-negative continuous 
response T, the methods would extend to situations where T might be left or right censored, left or 
right truncated, or both. Estimation of parameters is based on constructing the likelihood function 
in four parts: for the subsample that is fully observed (not censored or truncated); for observed 
responses from a truncated sample; for censored data from a truncated sample; and for censored 
data from a sample that is not truncated. The SEVERITY procedure can handle this situation. 

 Our data set of AMI hospital stays has several covariates. Computational time for Bayes analyses 
performed in MCMC increases appreciably with the complexity of the parametric distribution and 
the number of covariates. Good starting values of parameters in ML estimation can aid considerably 
in this respect. With a completely observed response T, starting values for the covariate parameters 
are readily obtained from a linear regression model on the logged response. In all our models 
covariates enter through a single index function for the underlying scale θ  in the distribution of T.  
In SEVERITY starting values for non-scale parameters are informed by moment matching, 
percentile matching or ML methods, as feasible. For the CPH-2 we used moment-matching 
following methods for well-representation of a general non-negative distribution by a member in 
CPH-m. (Bobbio et al, 2005; Osogami and Harchol-Balter, 2006) For some heavy-tailed distributions 
the data might not support moment-matching.   

 Parametric distributions are indispensible when interest lies in quantifying the influence of 
covariates on some summary features of the distribution. Currently the state of empirical research is 
heavily concentrated on the impact of covariates on the mean. With heavy tailed distributions 
covariate effects on the mean of the distribution might be less important than their influence on the 
tails of the distribution. Upper percentiles are more appropriate. We found proc NLMIXED very 
convenient in this regard, after having obtained the model’s ML estimates through SEVERITY, and 
using these estimates are starting values in NLMIXED.  In future enhancements to SAS procedures 
it is of value to develop methods that can identify characteristics exerting influence on the tail of 
heavy tailed distributions. Such methods will have application in several fields where heavy tailed 
distributions are typical. For example with budgetary constraints facing healthcare expenditure, in 
studies of healthcare resource use methods for identifying drivers of high utilization could have 
useful policy and interventional implications.       
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APPENDIX 

To fit the CPH-2 distribution the following FCMP program should be first invoked and saved in the 
OUTLIB= library. The primary components are the COXIAN_PDF and COXIAN_CDF 
functions. 

proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;  
function COXIAN_DESCRIPTION() $32;  
        length model $32;  
        model = "COXIAN Distribution";  
        return(model);  
    endsub;  
  
    function COXIAN_PARMCOUNT();  
        return(3);  
    endsub;  
 
/*--------------Coxian PDF----------------*/ 
 function COXIAN_PDF(t,theta, nu2, eta2); 
 lam1=(1/theta); lam2=lam1*nu2; 
  
  z1=exp(-lam1*t); z2=exp(-lam2*t); 
  if lam1>lam2 then ft=(1-eta2)*lam1*z1+(eta2*lam1*lam2/(lam1-lam2))*(z2-z1); 
else ft=.; 
   
 return (ft); 
endsub; 
 
/*-------------------Coxian CDF --------------------*/  
 function COXIAN_CDF(t,theta, nu2, eta2); 
  lam1=(1/theta); lam2=lam1*nu2; 
  
  z1=exp(-lam1*t); z2=exp(-lam2*t); 
  if lam1>lam2 then St=(1-eta2)*z1+ (eta2/(lam1-lam2))*(lam1*z2-lam2*z1); 
else St=.; 
   
 return (1-St); 
endsub; 
 
/*-------------------Coxian LOWERBOUND --------------------*/  
 subroutine COXIAN_LOWERBOUNDS(theta, nu2, eta2); 
 outargs theta, nu2, eta2; 
 theta=0; nu2=0; eta2=0; 
 endsub; 
 
/*-------------------Coxian UPPERBOUND --------------------*/  
subroutine COXIAN_UPPERBOUNDS(theta, nu2, eta2); 
 outargs theta, nu2, eta2; 
 theta=.; nu2=1; eta2=1; 
 endsub; 
 
quit; 

 

Statistics and Data AnalysisSAS Global Forum 2012

 
 



SAS Global Forum  Statistics and Data Analysis 
 

15 
 

 Maximum likelihood estimation of the CPH-2 can be performed using the following syntax 
which calls the SEVERITY procedure and the above utilities saved in the library 
CMPLIB=work.sevexmpl.  The data set name is losami with the response LOS declared in the 
LOSS statement.  

 Some options in the SEVERITY statement are also shown. In particular the OUTCDF= creates 
a dataset of the estimated cumulative distribution function (CDF) and the empirical distribution 
function (EDF). 

 
options cmplib=work.sevexmpl; 

ods output statisticsoffit=fitstat; 
proc severity data=losami print=(statistics estimates initialvalues)   
    covout outcdf=cdf outest=est; 
LOSS LOS; 
dist Coxian(init=(theta=5.3 nu2=.10 eta2=.001)); 
run; 

 To fit a model with covariates an additional SCALEMODEL statement is required. The model 
is 0( ) exp( )θ θ β′=x x where x are the covariates listed below.  

scalemodel age female type_: CCI2-CCI4 region_: LOC_: SIZE_:; 
 

 Because of the equivalence in parameterization between the CPH-2 and FME-2, proc FMM can 
be used to fit a 2-component exponential mixture model with the same covariate effects for the 
mean parameters of the two components. Intercepts differ. The data set is Losami, the response is 
LOS and there are 7 covariates. The model has 19 parameters. 

 
proc fmm data=Losami gconv=0; 
model LOS=age female type_: CCI2-CCI4 region_: LOC_: SIZE_: 
  /k=2 dist=exponential link=log 
 equate=effects(age female type_: CCI2-CCI4 region_: LOC_: SIZE_:); 
restrict int 1, int -1< -1; 
probmodel/cl; 
run; 

 To fit a general 2-component mixture to exponentials, with component-specific covariates, the 
EQUATE= option should be removed. Finally, note that the PROBMODEL statement serves to 
generate the mixing probability estimate and 95% confidence interval on the logit scale. 
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