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ABSTRACT 

SAS data sets and programs that reside on a local network are most often stored using a simple file system with 
no version control, no audit trail of changes, and none of the benefits. In this presentation, we show you how to 
capitalize on the capabilities of Subversion and other simple, straightforward conventions to provide version 
control and an audit trail for SAS data sets, standard macro libraries, and programs without changing the SAS 
environment. Extending the interaction with Subversion using a standard SAS macro is also explored. 

INTRODUCTION 
Most organisations will use the benefits of a local network drive, a mounted share or a dedicated SAS server file 
system to store and archive study data in multiple formats, analytical programs and their respective logs, outputs 
and deliverables. 

A manual process is most often implemented to retain versions and snapshots of data, programs and 
deliverables with varying degrees of success. Although not perfect, the process is sufficient to a degree. The step 
from a local file system to enterprise environments can be a fair investment and a high degree of change 
management if you already have an evolving analytics environment. 

Off-the-shelf software, both Open Source and commercial, exist that provide simple source code control with 
versioning, audit trail and other features such as electronic signatures that can complement or even be combined 
with the current file system storage with little or no change to the current IT infrastructure. 

Subversion is one of the popular Open Source version control systems that would allow version control and audit 
trail to easily be implemented. Additional features such as electronic signatures and business controls can also 
be added, dependent on and specific to an organisation’s requirements. 

A complete discussion is beyond the scope of this paper, but we shall discuss general considerations for version 
control of SAS programs, data sets and outputs, deploying Subversion and examples how SAS processes and 
tools can be integrated to draw upon Subversion functionality and facilities. The result is a very functional 
environment that allows both simple and quick implementations for a SAS analytics environment as well as 
advanced integration with formal compliance controls. 

 

VERSION CONTROL 

We perform some form of version control when creating documentation, a SAS program, publishing a SAS data 
set or creating an output. The simplest form is an implied draft versus final. In some cases, it is a manual step of 
creating a back-up copy of a single program, multiple files or an entire directory structure to allow for reverting to 
a previous version. Others would rely on an IT back-up in order to restore a deleted item, a previous version or 
reset a directory structure to some arbitrary point in the past. 

 

VERSION LABELS 
Versions and version numbering are frequent in daily activities, in both software and standard project 
documentation.  A popular convention is to identify a version with a major and minor reference, such as 1.2 or 
5.1. The first number could indicate a major revision or release while the second number would be a minor 
revision with corrections, fixes, tweaks, additions, etc.  

Some software would have more intricate version numbers, such as 17.0.963.78, that would only apply to a 
certain style of process. In almost all cases, version numbers are a label applied according to a set of evolving 
rules and not defined by some universal standard.  

Version labels do have one thing in common regardless of standard and convention; they denote some level of 
revision.  
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SAS PROGRAMS 
SAS analytics programs tend to go through a simple revision cycle with an initial 
program and major or minor updates replacing the previous version until a final 
version is created (Figure 1). Each revision is either driven by a step-wise 
development or based on new data or changes to the specification. Seldom are 
multiple versions of a SAS program retained in parallel.  

 

DATA SETS 
Data sets tend to follow the same revision principle driven by incremental data updates, snapshots or extracts 
with the exception that it may be of interest to retain multiple snapshots or revisions in parallel such that they can 
be compared or used independently (Figure 2).  

 

 

 

 

 

 

In our example above, the three snapshots March, May and November would be managed independently with 
each containing only the relevant number of revisions. There are also no requirements that the different 
snapshots have to be sequential as the context for each snapshot may be dictated by process and activities. For 
example, the March snapshot could be an interim analysis and May a safety review while November is 
associated with the final report being populated continuously throughout the project. 

  

OUTPUTS 
Output created by a SAS program using an input data source (Figure 3) are similarly impacted by some form of 
revision with the addition of formal dependencies, e.g. an output is dependent on the SAS program that created it 
and the data that was used (colour shades in each of the three stacks). If either the program or data is updated, a 
new version of output could possibly be required. The vagueness is a product of process controls rather than 
formal relationships. 

This iterative process would continue until the final output is produced. Throughout this process, the output is 
dependent on both the version of the program and data, which may be independent of each other. In our 
example below, our data has six revisions before final, our program has three and we have four revisions of our 
output.  

There is also a potential workflow dependency. The workflow or a formal quality assurance process may rely on 
the chronological sequence of events whereby if a program recreated output, its time stamp would change and 
therefore any prior quality control or downstream events would have to be performed once again, perhaps 
initiating a parallel or sequential set of revisions and tasks. 

Version control of SAS programs, data sets and outputs can become very complex as there are undoubtedly 
complexities, relationships and dependencies that extend beyond the three entities mentioned, but those 
highlight the basic issues faced when considering version control of SAS analytics environments.  

We will revisit these factors throughout the paper below.  

 

March May November 

Figure 2.  Versions of SAS data sets 

OutputSAS Data 

Figure 3.  Versions of outputs 

Figure 1.  Versions of a 
SAS program 
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CONTROLLING COMMITS 
The commit operation in Subversion is one of the more critical operations. 

If you recall the brief encounter with Subversion revisions and commit transactions, the commit is valid for the 
entire repository and can essentially include all or any selection of files in the repository. This also implies that the 
comment associated with the commit is valid for the entire repository and simply stating “fixed missing” in the 
commit comment may not be the most practical summary. 

Subversion provides a very simple, flexible and inherently powerful mechanism to take control of the commit to 
add simple rules surrounding the commit and any associated comment. Subversion provides hooks, small 
program scripts, that are executed in association with commits, one prior to the commit (pre-commit hook), during 
the actual commit transaction (start-commit hook) and one after the commit has completed successfully (post-
commit hook). Hooks are also available for a subset of other Subversion events and actions beyond the commit, 
but we will focus on the commit hooks within the scope of this paper.  

A commit does not by default require a comment and there are no rules that govern that the commit, and not just 
the comment, has to be sensible. A set of business rules can be added to the commit hook in order to assert 
some control. Prior to considering some examples, one important note is that the commit hook is executed on the 
commit transaction and can control if the commit is allowed to proceed or fails with an informative message. This 
implies that the commit hook can “inspect” the comment, the repository and even the files being committed. 

The list of possible business rules are practically endless, but there are a few that can be very useful for a SAS 
environment and the requirements imposed on SAS environments from an industry and organisations point of 
view.  

 

Scope of the commit 

One simple business rule may be to control the scope of a commit. It is allowed to commit the entire working 
copy with all changes, which can be an issue if the working copy is shared. Subversion only really understands 
that a file or folder is new or has changed, but not the business context and rules that govern. Restricting the 
commit to only be allowed for a specific directory level or context, e.g. a single or group of related SAS program 
and associated logs and output, may provide a simple control to ensure sensible commits. 

 

Commit comment  

A rule may be imposed that the comment associated with the commit consists of a minimum of 5 words from a 
business process dictionary, which would eliminate the single period or some garbled text such as “The quick 
brown fox jumps over the lazy dog”. At the same time, a business rule may require that the word “new” is 
included for the first commit of a file and one of the words “update”, “updated” and “fixed” be required for any 
updates.  

A comment for a SAS environment may also require a reference to include any SAS program names, if they are 
included in the commit. For example, a shortcut keyword #programs could be expanded to the list of SAS 
programs as a means to make comments more user friendly. 

 

Commit files 

Subversion does not understand SAS and SAS files by default, but simple rules can be added to the commit 
hook to ensure that associated SAS files are included in a commit. For example, a SAS log file can be required if 
a data set or another output such as an RTF file from a specific subdirectory is included in the commit. Further 
compliance checks can be added if business rules exist on the naming and location of SAS files to ensure that 
not just any file is included to satisfy the requirement. 

Another interesting possibility is to use the file suffix to determine if a file type is allowed to exist in a specific 
folder. For example, a folder dedicated to data sets may refuse a SAS program, log or output file to be added to 
the data directory in the repository. To accommodate that extraordinary special case that will always occur, the 
user information in the commit transaction can be used to allow an override. 

It is possible to keep adding rules and additional compliance checks. One important note is that the commit hook 
is not restricted to the repository or repository server. The post commit hook could forward the comment and 
additional details about the transaction to other systems and applications, which makes integrating Subversion 
with current systems and tools fairly easy.   
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REVISION IN A FOOTNOTE 
Adding the revision of a SAS program to the standard footnote of output that it generates is a good example of 
querying the working copy or repository and using information in a SAS program.  The approach can be wrapped 
in a SAS macro as a standard utility, but for clarity we will use regular SAS code.  

The approach used is the standard command line utility svn with first parameter info, e.g. svn info <something>, 
to query the local working copy and some simple string parsing to extract the required information, essentially all 
wrapped into two DATA steps. You can equally interrogate a remote repository by specifying the item URL and 
any required credentials. If you query the local working copy, no username and password credentials are 
required as it is assumed that if you can see the file, you are granted access. To add security restrictions within a 
working copy, this is accomplished by the standard local file server mechanisms. 

The svn info command can return the requested information as an XML structure with the command line switch --
xml, which is very useful. Output 1 contains an excerpt that we will process to obtain the revision, author and last 
committed date of our example SAS program.   

The first of our two data steps is to interrogate the working copy, read in the svn info output and isolate the 
commit XML node, which contains the three properties revision, author and date we wish to retain. 
data work.svninfo ( keep = str_line ) ; 
   length str_line $ 1024 ; 
   retain keep_line 0 ;  * commit xml block may be more than one line; 
 
   infile "svn info X:\mypath\myprogram.sas --xml " pipe; 
   input str_line $ 1-1024; 
 
   *  identify <commit ...>  ; 
   if ( index( str_line, "<commit" ) > 0 ) then keep_line = 1; 
 
   *  if in commit block ... keep lines for later processing; 
   if ( keep_line = 1 ) then output;   
 
   *  end of commit block, e.g. </commit>; 
   if ( index( str_line, "</commit>" ) > 0 ) then keep_line = 0; 
run; 
The second data set will parse the XML node using regular string manipulation. You can equally rely on an XML 
Map to more efficiently extract the required information. 
data work.properties (keep = revision author date); 
   set work.svninfo   end = eof ; 
   length revision author date $ 200; 
   retain revision author date ;  * keep properties as we inspect and parse each line of xml ; 
 
   *  obtain revision – note the compress() function to clean up our string ; 
   if ( index( compress(str_line, " "), "revision=" ) > 0 ) then  
      revision = compress( scan( substr( str_line, index( str_line, "revision" )), 2, "="), 
                          '"<>'); 
 
   *  obtain committer ; 
   if ( index( str_line, "<author>" ) > 0 ) then  
      author = scan( substr( str_line, index(str_line, "<author>") + 8 ), 1, "<");  
 
   *  obtain date ; 
   if ( index( str_line, "<date>" ) > 0 ) then 
      date = scan( substr( str_line, index(str_line, "<date>") + 6 ), 1, "<");  
 
   if eof then output; 
run; 
 

The result is a data set PROPERTIES with the character variables REVISION, AUTHOR and DATE. How and 
where those details are further used will most probably be dictated by business process, but as an example, the 

… 
<commit 
   revision="2"> 
<author>mmr</author> 
<date>2012-02-17T08:49:01.157176Z</date> 
</commit> 
… 

Output 1.  Example XML output from the svn info  command 
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standard system footnote in an output that makes note of the SAS programs used to generate the table, listing, 
figure, etc. could be extended to include the revision rather than just the program name (Output 2). 

There is no restriction that this approach cannot be extended to more than one file and to other dependencies, if 
we consider the output’s dependency on a SAS program and any input data sets discussed previously. Similarly, 
if your footnote includes reference to say analysis data sets or source listings, it is possible to query their revision 
and add that as well given that the data set and listing files follow some standard convention on naming and 
location. 

 

CONTROLLING SAS LIBRARIES 
A more rigorous example of how the Subversion utilities can be used in compliance is simply to verify that 
specified input data sets or other input files in the working copy or executing environment is of the latest or a pre-
specified revision and fail with an error if this constraint is violated.  

This highlights one of the minor nuances of Subversion and the working copy as users have to ensure that the 
working copy remains up-to-date with the latest or pre-specified revision.  

The svn status --show-updates --xml will verify that there are no changes in the working copy that needs to be 
committed to the repository and conversely that the working copy has the latest updates. The example in Output 
3 shows that the DM data set has been added to the SDTM folder. Not the revision number -1, which recognises 
that the DM data set has not been committed to the repository. 

By wrapping the call to svn status in a SAS macro, say %svn_library(), the program can verify that specified data 
sets or the entire library folder is up-to-date. 

%svn_library( library = sdtm, select = DM AE LB, revision = HEAD ); 
 

The macro as defined above will verify that the working copy revisions of the data sets DM, AE and LB are in the 
repository and that the working copy contains the latest, e.g. the revision HEAD. The HEAD revision is a 
Subversion keyword reference to the latest revision. If we would like to use revision 945 instead, the revision 
number would be specified for the revision parameter value. 

This check could simply be circumvented by not calling the %svn_library() macro. One programming trick to 
avoid this is to have the macro create a new library VSDTM with one SAS data view for each data set specified in 
the select statement. If the input data set is not specified, a corresponding view is not created and any reference 
would result in standard SAS errors. As the program and log should refer to the library VSDTM and not SDTM, a 
simple log checker can assert that the convention is followed.  

This compliance approach can of course be extended to other input files and environments that do not use 
Subversion, but that is beyond the scope of this paper. 

________________________________________________________________________ 
Age is the subject age at informed consent. 
 
Program: myprogram.sas (rev 10236) 

Output 2.  Footnote in output that includes SAS program revision 

<?xml version="1.0" encoding="UTF-8"?> 
<status> 
<target 
   path="sdtm"> 
<entry 
   path="sdtm\dm.sas7bdat"> 
<wc-status 
   props="none" 
   item="added" 
   revision="-1"> 
</wc-status> 
</entry> 
</target> 
</status> 

Output 3.  Output from svn status in XML format 

Systems Architecture and AdministrationSAS Global Forum 2012

 
 



Simple Version Control of SAS Programs and SAS Data Sets, continued 

 

11 

 

THE DIFF 
One of the most powerful features with 
Subversion is the ability to easily identify the 
differences between two files. For SAS 
programs and other text files, the default setup 
will produce a very informative difference. Both 
the standard command line utility and clients 
like TortoiseSVN (Figure 12) accept custom 
scripts for identifying differences, most often 
referred to as diffs. 

We can therefore create a custom script to 
create and display a diff on SAS data sets or 
any other file type where we want to generate 
and display a custom diff. The later versions of 
TortoiseSVN come with diff viewers for files such as Word, PowerPoint and Excel, but not for RTF and PDF files 
(TortoiseSVN version 1.7.6). 

 

MOVING, RENAMING AND DELETING FILES 
One of the last, but still important nuances faced by users is the procedure to move, rename or delete files. The 
best, and strongly recommended approach, is to use the Subversion utilities and clients such as TortoiseSVN 
rather than to just delete a file with file system menu options and commands and then have to try and fix it with a 
full repository commit. If a file is moved, renamed and deleted using the utility and tools, comments will be 
associated to the action as you would expect. 

 

CONCLUSION 
The basic nature, flexibility and simple features make Subversion a very elegant and efficient repository for SAS 
data sets, programs, logs, outputs and other associated files. The different options for deployment and the almost 
endless possibilities for process integration, will allow a quick, simple and an appropriately customized 
environment with minimal effort. Add the many available user interfaces along with simple command line utilities 
and the environment can continue to evolve and further be integrated with SAS, analytics environments and other 
supporting business systems, tools and utilities as requirements change.   
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Figure 12.  TortoiseSVN custom diff setting dialog 
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