
1

Paper 365-2012

Simple Version Control of SAS® Programs and SAS Data Sets
Magnus Mengelbier, Limelogic Limited, London, United Kingdom

ABSTRACT

SAS data sets and programs that reside on a local network are most often stored using a simple file system with
no version control, no audit trail of changes, and none of the benefits. In this presentation, we show you how to
capitalize on the capabilities of Subversion and other simple, straightforward conventions to provide version
control and an audit trail for SAS data sets, standard macro libraries, and programs without changing the SAS
environment. Extending the interaction with Subversion using a standard SAS macro is also explored.

INTRODUCTION
Most organisations will use the benefits of a local network drive, a mounted share or a dedicated SAS server file
system to store and archive study data in multiple formats, analytical programs and their respective logs, outputs
and deliverables.

A manual process is most often implemented to retain versions and snapshots of data, programs and
deliverables with varying degrees of success. Although not perfect, the process is sufficient to a degree. The step
from a local file system to enterprise environments can be a fair investment and a high degree of change
management if you already have an evolving analytics environment.

Off-the-shelf software, both Open Source and commercial, exist that provide simple source code control with
versioning, audit trail and other features such as electronic signatures that can complement or even be combined
with the current file system storage with little or no change to the current IT infrastructure.

Subversion is one of the popular Open Source version control systems that would allow version control and audit
trail to easily be implemented. Additional features such as electronic signatures and business controls can also
be added, dependent on and specific to an organisation’s requirements.

A complete discussion is beyond the scope of this paper, but we shall discuss general considerations for version
control of SAS programs, data sets and outputs, deploying Subversion and examples how SAS processes and
tools can be integrated to draw upon Subversion functionality and facilities. The result is a very functional
environment that allows both simple and quick implementations for a SAS analytics environment as well as
advanced integration with formal compliance controls.

VERSION CONTROL

We perform some form of version control when creating documentation, a SAS program, publishing a SAS data
set or creating an output. The simplest form is an implied draft versus final. In some cases, it is a manual step of
creating a back-up copy of a single program, multiple files or an entire directory structure to allow for reverting to
a previous version. Others would rely on an IT back-up in order to restore a deleted item, a previous version or
reset a directory structure to some arbitrary point in the past.

VERSION LABELS
Versions and version numbering are frequent in daily activities, in both software and standard project
documentation. A popular convention is to identify a version with a major and minor reference, such as 1.2 or
5.1. The first number could indicate a major revision or release while the second number would be a minor
revision with corrections, fixes, tweaks, additions, etc.

Some software would have more intricate version numbers, such as 17.0.963.78, that would only apply to a
certain style of process. In almost all cases, version numbers are a label applied according to a set of evolving
rules and not defined by some universal standard.

Version labels do have one thing in common regardless of standard and convention; they denote some level of
revision.

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Version Control of SAS Programs and SAS Data Sets, continued

2

SAS PROGRAMS
SAS analytics programs tend to go through a simple revision cycle with an initial
program and major or minor updates replacing the previous version until a final
version is created (Figure 1). Each revision is either driven by a step-wise
development or based on new data or changes to the specification. Seldom are
multiple versions of a SAS program retained in parallel.

DATA SETS
Data sets tend to follow the same revision principle driven by incremental data updates, snapshots or extracts
with the exception that it may be of interest to retain multiple snapshots or revisions in parallel such that they can
be compared or used independently (Figure 2).

In our example above, the three snapshots March, May and November would be managed independently with
each containing only the relevant number of revisions. There are also no requirements that the different
snapshots have to be sequential as the context for each snapshot may be dictated by process and activities. For
example, the March snapshot could be an interim analysis and May a safety review while November is
associated with the final report being populated continuously throughout the project.

OUTPUTS
Output created by a SAS program using an input data source (Figure 3) are similarly impacted by some form of
revision with the addition of formal dependencies, e.g. an output is dependent on the SAS program that created it
and the data that was used (colour shades in each of the three stacks). If either the program or data is updated, a
new version of output could possibly be required. The vagueness is a product of process controls rather than
formal relationships.

This iterative process would continue until the final output is produced. Throughout this process, the output is
dependent on both the version of the program and data, which may be independent of each other. In our
example below, our data has six revisions before final, our program has three and we have four revisions of our
output.

There is also a potential workflow dependency. The workflow or a formal quality assurance process may rely on
the chronological sequence of events whereby if a program recreated output, its time stamp would change and
therefore any prior quality control or downstream events would have to be performed once again, perhaps
initiating a parallel or sequential set of revisions and tasks.

Version control of SAS programs, data sets and outputs can become very complex as there are undoubtedly
complexities, relationships and dependencies that extend beyond the three entities mentioned, but those
highlight the basic issues faced when considering version control of SAS analytics environments.

We will revisit these factors throughout the paper below.

March May November

Figure 2. Versions of SAS data sets

OutputSAS Data

Figure 3. Versions of outputs

Figure 1. Versions of a
SAS program

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Ver

SUBVE
Apache S
initially de
througho
simple fe
outputs a

THE BA
Subversio
regular fil
Subversio

The repo
changes.

The work
copy, or a
committe

THE RE
The Subv
described
dimensio
the same
and Unix

The seco
version id
repository

One impo
one item,
in Figure
that are p

The revis
denotes t
revision f
folder and
Note that
content a

Another p
the repos
example
well as th
update to
until revis

One very
for repos
include m
be interru
updated i
inconsiste

PROJEC
A Subver
certainly
certain fo

The majo
are define

rsion Control of S

ERSION
Subversion, so
esigned as a r
ut Open Sour

eatures also m
and other asso

ASICS
on is extreme
le server, whil
on usually con

ository is the ce
. Each reposit

king copy is th
a download, th

ed to the repos

EPOSITORY
version reposi
d as a two dim

on of the direct
e principles as
.

ond dimension
dentifier and is
y.

ortant aspect o
, e.g. a single
4 includes tw

part of revision

sion is used in
the revision of
for each folder
d file was add
t a parent fold
added or upda

perspective on
sitory. For exa
would include

he initial versio
o File B would
sion 6.

y powerful feat
itory commits

many files in yo
upted or the co
in the reposito
ent and some

CTS AND DI
rsion repositor
not a directory

olders and dire

ority of the rec
ed as either th

SAS Programs an

ometimes refe
replacement fo
ce projects, so

make Subversio
ociated files.

ly simple. It is
le at the same
nsist of two en

entral databas
ory is treated

e directory str
hat can be upd
sitory.

itory ”file syste
mensional dire
tory structure
 folders and d

n is the revisio
s simply a cou

of the revision
file or folder,

wo files, File A
n 6.

 two contexts,
f the last comm
r and file, whic

ded to the repo
er revision do

ated.

n revision is th
ample, the rep
e the folders B
on of file File B
not be include

ture of Subver
, e.g. saving c
our commit, sa
ommit of any o
ory. In CVS, th
times corrupt

IRECTORY
ry is empty by
y or folder stru
ectories to exis

commendation
he entire repos

nd SAS Data Sets

erred to as SV
or the popular
oftware comm
on a very eleg

a system that
e time keeping
nvironments, t

se with all the
independently

ructure where
dated without

em” (Figure 4)
ctory structure
is a path refer

directories in W

n, which is the
unter unique to

n is that it is no
in the reposito
and File B in t

, the repositor
mit. The secon
ch is the revisi
ository or the f
es not increm

hat it denotes a
pository at rev
Branches, Tags
B. Note that Fi
ed since they

rsion is the us
content to the
ay 10 files, all
one of those f
he interrupted
repositories.

TREES
y default and d
ucture conven
st.

ns and docume
sitory or repre

s, continued

3

VN, is a centra
r CVS and is t

munities and co
gant and efficie

t manages rep
g track of chan
he repository

version-contr
y with its own

all the actual
impacting the

) is most often
e. The first
rence that follo
Windows, Linu

e Subversion
o the entire

ot restricted to
ory. The exam
the folder Trun

ry revision whi
nd context is t
ion when the
file’s last upda
ent when it ha

a slice in time
ision 5 in our

gs and Trunk a
ile A and the
were not add

se of transactio
repository. If y
 those files ar

files would fail
commit opera

does not requi
ntion to functio

entation do ho
esented by fold

lized version a
today actively
ommercial app
ent repository

positories of fi
nges. Analytics
and the worki

olled files inclu
directory struc

changes are
e central repos

n

ows
ux

o
mple

nk,

ich
the

ate.
as

e for

as

ed

ons
you
e associated w
, the entire tra

ations would s

re any specific
on, although so

owever highlig
ders in the roo

Sou

Figure

and revision c
developed an
plications. The
for SAS data

les and folder
s environment
ng copy.

uding the com
cture, history a

performed. Th
sitory until cha

with the revisio
ansaction fails
ometimes cau

c directory or f
ome workflow

ht two simple
ot of the repos

urce: Apache Sub

4. Subversio

control system
nd widely used
e basic nature
sets, program

rs, not much u
ts that employ

mplete history o
and permissio

he working cop
anges are exp

on. If the com
and no items

use serious iss

folder structur
based tools d

conventions.
sitory. Subvers

bversion – Wikipe

on "file syste

that was
d
e and
ms, logs,

unlike your
y

of
ons.

py is a
licitly

mit would
 are
sues with

re, and
do expect

Projects
sion does

edia.org

m"

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Ver

not impos
establish

The docu
Branches
this pape
Subversio

Translate





The conc
active bra

The conc
as well. A
concept t
Tables, L

Softwar
Trunk

Branche
Tags

Table 1.

The appr
Standard
though th

The Repo
Investiga
particular
applicabl
deliverab

The Snap
extracts,
dictate ho
items from
unless se

For exam
productio

A data se
final, it is

Figure 5.

rsion Control of S

se to select on
ed.

umentation an
s and Tags. Th
er, but we brief
on.

e this into a dir

Trunk is esse
Branches cou
Tags would c
locking a dire

cept is to strive
anch is merge

cept behind th
As an abbrevia
to Trunk – Bra
Listings and Fi

re Developme

es

 Data Manag

roach in Table
ds directory tre
hey are most o

orts directory t
ational New Dr
r report would
e. The Report

bles.

pshots directo
draft outputs

ow SAS data s
m Tags, or the
everely restrict

mple, an organ
on.

et or program
committed to

 Trunk, Bran

SAS Programs an

ne approach o

d examples a
he discussion
fly consider a

rectory structu

ntially the ma
uld contain the
ontain the diff
ctory tree to d

e for as much
ed into the trun

e common Tru
ated example,
anches – Tags
igures for clini

ent Da
Sta
Re
Sn

ement and B

e 1 is based on
ee. This can e
often separate

tree would inc
rug application
only reside in

ts directory is

ory tree would
sent for review
sets and prog
e Snapshot in
ted, closely go

nisation implem

under develop
the Standard

nches, Tags a

nd SAS Data Sets

over another, b

lso note that e
on how to use
common appr

ure and each d

in developmen
e development
ferent releases
disallow chang

of the develop
nk as often as

unk – Branche
, Data Manage
s (Table 1) wh
cal trial report

ata Manageme
andards
eports
napshots

iostatistics p

n a process w
ncompass bot

e but depende

clude all individ
ns, interim ana
n the appropria
not restricted

include the de
w to the Clinic
rams are adde
our example,

overned and a

ments a classi

pment resides
s tree or an ap

and merging

s, continued

4

but it may faci

each project c
e these direct
roach to highl

directory has a

nt area
t areas for the
s, e.g. a Branc

ges and updat

pment to be p
possible as s

es – Tags dire
ement and Bio

hen executing
ts.

ent & Biostat

project root

where common
th Data Mana

ent processes.

dual reports, s
alysis, clinical
ate branch an
to Biostatistic

eliverables for
cal team memb
ed and remov
 is either rigor

audited.

ic workflow wi

s in the workin
ppropriate QC

ilitate for the e

contains the th
tories is comp
ight some ver

a defined role

e different vers
ch frozen in tim
es.

performed thro
shown in Figur

ectory structur
ostatistics with
a clinical trial

tistics

n effort across
gement and B

such as intern
study reports
d only merged

cs as it is equa

r both groups,
bers, the final
ved from branc
rously discour

th developme

ng copy until fin
C branch in the

end users if a c

ree project roo
rehensive and
y useful conce

.

sions, such as
me, similar to

ough the trunk
re 5.

e can be adap
hin Life Scienc
and subseque

all reports is p
Biostatistics re

al reviews, Inv
, etc. Any repo
d into the Stan
ally relevant to

which could b
reports, etc. W

ches and tags
aged and enfo

nt, quality con

nal. When the
e repository. If

Source: Apache

consistent app

ot directories
d beyond the s
epts and attrib

s “1.0”, “1.1”, “2
taking a snap

and any chan

pted to specifi
ces could use
ently generatin

performed und
eporting activit

vestigator Bro
orting specific
ndards tree wh
o Data Manage

be validated d
Workflow may
s, although rem
orced or frown

ntrol (QC) and

e data set or p
f a data set or

 Subversion – Wik

proach is

Trunk,
scope of
butes of

2.0”, etc.
pshot or

nge to an

c cases
a similar

ng

der the
ies, even

ochures,
to a

hen
ement

ata
y also
moving
ned upon

rogram is
r program

kipedia.org

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Ver

passes q
program

At the tim
release p

ONE OR
Subversio
to both, b










The coor
with regio
greatly si
repositori

There are
Source S
make ma
Subversio
Administr
integrated
standard
(Figure 6

DEPLO
Subversio
Beyond t
source al

One very
file system
relational
Server, b
friendly a

Figur
Wind

rsion Control of S

uality control
is removed fro

me of delivery,
process. Only

R MANY REP
on can manag
but a conventio

Simplified acc
Less revisions
1,236,425 or
Revision is sp
project
Greater contr
compliance
Easy to migra
standard

rdination of lar
onal Subversio
mplified with p
ies, which we

e several com
Subversion adm
anagement of
on repositorie
ration of Subv
d into existing
Subversion u

6).

OYING SUB
on is a server
he standard O
lternatives suc

y important asp
m for all config
l database is r

but for the mos
as most organi

re 8. Tortoise
dows File Exp

SAS Programs an

steps and act
om the branch

data sets, pro
tagged data s

POSITORIE
ge a single ve
on of one repo

cess control
s to track, e.g
1,431

pecific to effort

ol over proces

ate to a new p

rger distributed
on repositories
project specifi
will discuss fu

mmercial and O
ministration to
one or more
s a simple exe

version can als
g process tools
utilities with litt

BVERSION
application th

Open Source A
ch as VisualSV

pect of Subve
guration and c
required. Addi
st basic config
isations alread

eSVN in Micr
plorer

nd SAS Data Sets

ivities, it is mo
h.

ograms and an
sets and progr

S
ry large repos
ository per pro

. revision

t on a

ss

rocess

d groups
s is also
c
urther on.

Open
ools that

ercise.
so be
s using the
le effort

hat can easily
Apache Subve
VN and Subve

rsion is that it
content storag
tional features

guration this is
dy have deplo

F

rosoft

s, continued

5

oved to the Pro

ny associated
rams are used

sitory or many
oject or integra

and quickly be
ersion packag
ersionEdge.

 is primarily in
ge, which grea
s can be adde

s not necessar
oyed at least 2

Figure 6. Cus

oduction read

d inputs and ou
d to create deli

smaller repos
ated projects c

e deployed on
es, there exis

nstalled on reg
atly simplifies d
ed using a We
ry. Subversion
2 of the 3 stand

stom adminis

Figure 7. C

y branch. Oth

utputs are tagg
iverables to be

sitories effectiv
can have bene

n Windows, Lin
t several comm

gular file serve
deployments a
b server, such

n has been ref
dard compone

tration conso

linical Data In

erwise, the da

ged as part of
e shared.

vely. There ar
efits.

nux and Unix
mercial and o

er and uses th
and configurat
h as Apache H
ferred to as IT
ents.

ole

ntegration St

ata set or

f the

e benefits

systems.
pen

e regular
tion as no
HTTP
 support

tudio

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Ver

The Subv
above or
Subversio
Explorer

One of th
have one
applicatio
project di
difficult to
shared w

EXISTIN
A very co
version c
environm
existing in
SAS and
environm

The appr
each proj
(Figure 9
existing d
Subversio
comprehe
utilities an
a new an

The Subv
status an
server, w

An additio
unchange
and no m
Subversio
file serve
existing s

SUBVER
The Subv
Subversio
Subversio

There are
command
flag that c

rsion Control of S

version server
including sma

on access is a
(Figure 8) or S

he most comm
e central repos
on developme
irectory and b
o justify. Howe

working copy a

NG ENVIRON
ommon and qu
control feature
ment is simply t

nfrastructure,
 a file server o

ments.

roach will store
ject on the exi

9) with no real
directory struc
on style work
ensive update
nd macros tha

nalysis environ

version server
nd other comp
which with toda

onal benefit w
ed as the Sub

major change o
on when new

er serving the w
standard opera

RSION BEH
version progra
on into new or
on into a work

e several exam
d line client to
can be consum

Fig

SAS Programs an

r does not incl
all utilities can
also already o
SAS Clinical D

mon configurat
sitory and eac
nt application
usiness proce

ever, it is not u
and local priva

NMENTS
uick approach
s to a SAS an
to add Subver
whether it is b

or larger SAS

e the shared w
isting file serv
requirement t

cture beyond a
flow. This kind

es to standard
at are common
nment.

r can be deplo
liance process

ay’s virtualizat

with this implem
bversion featur
or new softwa
versions are r
working copy,
ating procedu

HIND THE SC
amming interfa
r existing tools
kflow and the w

mples, even a
ols as the clie
med by the pa

gure 10. Wor

nd SAS Data Sets

ude a default
 provide simp
r can be integ

Data Integratio

ions for workin
h workstation
such as Eclip

ess developed
uncommon tha
te working cop

 for adding
nalytics
rsion to the
based on PC
server

working copy o
er or share
o change the

adapting to a
dly eliminates
configuration

n for migrating

oyed to the exi
ses. Often a s
ion technology

mentation is th
res are all man
re on the file s
released as th
is minimal. Ex
res, work instr

CENES
aces and com
s, either by pro
workflow tools

 few with Micr
ent tools readil
arent system o

rkflow tool wi

s, continued

6

graphical inte
ple and efficien
grated into too
on Studio (Fig

ng with a Sub
with a local p

pse. As SAS a
d for that mode
at the busines
pies managed

of

g to

isting file serv
second file ser
y may reside

hat the existing
naged through
server is requi
he impact on t
xperience has
ructions and w

mand line too
oviding the pr
s (Figure 10).

rosoft Excel st
ly produce XM
or application.

ith Subversio

Figure
environ

erface, but the
nt interfaces d
ls and utilities
ure 7).

version repos
rivate working

analytics enviro
el, migrating to
s process and

d through a de

ver, but this co
rver is deploye
on the same h

g business pro
h the workstat
ired. This wou
he working en
s also shown t
workflows are

ols also provide
imary user int

tatus sheets, i
ML structure ou

on as a backg

9. Subversio
nment

commercial a
epending on y
, such as Micr

itory in applica
g copy manage
onments tend
o private work
d tools allow a
evelopment ap

uld have impli
ed dedicated to
hardware as th

ocess tools ca
tions and the n
ld also simplif

nvironment, e.g
that only smal
required in mo

e a mechanism
erface or simp

ntegrating wit
utput with a si

Subvers

ground servic

on added to t

applications m
your requirem
rosoft Window

ation developm
ed through an
 to use a shar

king copies cou
and benefit fro
pplication.

ications on va
to host the Su
he file server.

an be retained
new Subversio
fy upgrading
g. workstation
l adaptations
ost cases.

m to integrate
ply integrating

th Subversion
mple comman

File server

sion

ce

the existing a

mentioned
ents.

ws File

ment is to
n
red
uld be
m both a

alidation
bversion

d virtually
on server,

ns and the
to

e

via the
nd line

r

Subversion

analysis

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Ver

REGION
Subversio
analysis e
implemen
regional e
round-rob
equivalen
logistics o
on a cent

The Subv
mechanis
regions a

The appr
repository
general s
will replic
is presen
to the ma

The mast
as the lin
adaptatio
would im
repository

In practic
where yo
are stand

An organ
region; ei
physically
than a sin
Each reg

Smaller o
parties, s
repository
CRO.

SUBVE
SAS and
both syst
as atomic

There are
posting c
through a

ACCESS
Subversio

The read
user is al
back into

Most Ope
Removin

Access is
access w
inheritanc

rsion Control of S

NAL SUBVE
on also includ
environments
ntations introd
environments
bin or other re
nt in most cas
of a central m
tral administra

version standa
sm to synchro
as a cost effec

roach used wit
y and one or m

sense, all com
cate the comm
nt. If the maste
aster and othe

ter-slave relat
k may disconn

ons of Subvers
plement an ex
y.

ce, the svnsyn
ou wish to elim
dard code libra

nisation may re
ither by busine
y reside in a n
ngle large rep
ion subscribe

organisations
such as Contra
y for their proj

ERSION AN
 Subversion w
tems and envi
c artefacts.

e essentially th
content to the r
a SAS program

S CONTROL
on has only tw

 will allow a u
lowed to crea

o the repository

en Source pro
g anonymous

s granted or re
with permission
ce.

SAS Programs an

ERSION SER
des built-in sup

with local SA
duce one mast

(Figure 11) ra
eplication sche
es, global org
aster reposito

ation and proje

ard svnsync u
onise a read/on
ctive back-up a

th svnsync inc
more synchron

mmits are redire
mit to each slav
er is not reach
er slaves when

tionships imple
nect, but the a
sion actions si
xternal replica

c utility is use
minate continuo
aries or data re

equire that not
ess requireme

named region.
ository for all
s to the projec

may opt to im
act Research
jects which wo

ND SAS
work extremely
ronments. SA

hree primary f
repository and
mming examp

L
wo permission

ser to browse
te a local wor
y. The write pe

ojects have an
 read access

evoked for a u
n defined on b

nd SAS Data Sets

RVERS
pport for large
S environmen
ter repository
ather than atte
emes. Althoug
anisations ma
ry easier to m

ect team level.

tility provides
nly repository
and fail-over m

cludes a single
nised slave re
ected to the m
ve, which also
able, the com

never the mas

emented with
approach is pr
ince the comp
tion script, ea

ful to manage
ous transfers o
epositories wh

t all content w
ent or possibly

A simple app
projects, and e
ct repositories

plement mirro
Organisations
ould allow the

y well in the sa
AS is a file-bas

functions in Su
d getting inform
le, but let us f

s; read and w

the repository
king copy doe
ermission gra

onymous read
is a simple ad

user through in
both the entire

s, continued

7

global
nts. Most
with local

empt to do
h both are

ay find the
manage both

.

a simple
to different

mechanism.

e master
epositories, so
master reposito
o interestingly
mit can be pe

ster is updated

svnsync do re
referable to ex
plete history is
ach replication

e a set of regio
of a largely st
here the conte

within a reposit
y that a busine
proach is for al
each project r

s that it needs

or repositories
s (CROs). A C
Sponsor to re

ame environm
sed analysis e

ubversion; rea
mation for a sp
first consider t

write.

y, view conten
es not necessa
nts a user the

d access and
dministrative e

ndividual acce
e repository an

metimes refer
ory by design
includes the lo

erformed to the
d with the lates

equire some s
xternal replicat
 retained with
would be trea

onal read-only
atic content vo

ent is static wit

tory or project
ess agreemen
ll projects to im
repository to b
and thereby e

as redundanc
CRO may have
etain an active

ment, primarily
nvironment. S

ading content
pecific file or f
the read and c

nt and retrieve
arily mean tha

e right to comm

a tightly contr
exercise.

ess rights or th
nd on individua

Figure 11. A
slaves

rred to as mirr
and then on s
ocal regional s
e local reposito
st changes.

upervision and
tion scripts or
in the master

ated as a com

Subversion m
olume. Good c
th periodic upd

is replicated t
t dictates that

mplement a pr
be synchronise
eliminates unn

cy or even wh
e a dedicated
e copy of all wo

because of th
Subversion ma

from the repos
folder . The lat
commit.

e a working co
at the same us
mit to the repos

rolled and sma

rough group m
al directories a

A master repo

rors or sinks. I
successful com
slave reposito
ory and only r

d active admi
other custom
and each slav
mit to each sl

mirror reposito
candidates for
dates.

to another spe
t data should n
roject reposito
ed with the ma
necessary repl

en working wi
Subversion m
ork performed

he simple natu
anages folder

sitory, the com
tter will be hig

opy. Just beca
ser can post a
ository.

all group of co

membership w
and both supp

ository with r

n a
mpletion,
ory if one
replicated

nistration

ve. If you
ave

ories
r svnsync

ecific
not
ory, rather
aster.
lication.

ith third
mirror
d by the

ure of
and files

mmit of
hlighted

use a
n update

ommitters.

with group
port

regional

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Version Control of SAS Programs and SAS Data Sets, continued

8

CONTROLLING COMMITS
The commit operation in Subversion is one of the more critical operations.

If you recall the brief encounter with Subversion revisions and commit transactions, the commit is valid for the
entire repository and can essentially include all or any selection of files in the repository. This also implies that the
comment associated with the commit is valid for the entire repository and simply stating “fixed missing” in the
commit comment may not be the most practical summary.

Subversion provides a very simple, flexible and inherently powerful mechanism to take control of the commit to
add simple rules surrounding the commit and any associated comment. Subversion provides hooks, small
program scripts, that are executed in association with commits, one prior to the commit (pre-commit hook), during
the actual commit transaction (start-commit hook) and one after the commit has completed successfully (post-
commit hook). Hooks are also available for a subset of other Subversion events and actions beyond the commit,
but we will focus on the commit hooks within the scope of this paper.

A commit does not by default require a comment and there are no rules that govern that the commit, and not just
the comment, has to be sensible. A set of business rules can be added to the commit hook in order to assert
some control. Prior to considering some examples, one important note is that the commit hook is executed on the
commit transaction and can control if the commit is allowed to proceed or fails with an informative message. This
implies that the commit hook can “inspect” the comment, the repository and even the files being committed.

The list of possible business rules are practically endless, but there are a few that can be very useful for a SAS
environment and the requirements imposed on SAS environments from an industry and organisations point of
view.

Scope of the commit

One simple business rule may be to control the scope of a commit. It is allowed to commit the entire working
copy with all changes, which can be an issue if the working copy is shared. Subversion only really understands
that a file or folder is new or has changed, but not the business context and rules that govern. Restricting the
commit to only be allowed for a specific directory level or context, e.g. a single or group of related SAS program
and associated logs and output, may provide a simple control to ensure sensible commits.

Commit comment

A rule may be imposed that the comment associated with the commit consists of a minimum of 5 words from a
business process dictionary, which would eliminate the single period or some garbled text such as “The quick
brown fox jumps over the lazy dog”. At the same time, a business rule may require that the word “new” is
included for the first commit of a file and one of the words “update”, “updated” and “fixed” be required for any
updates.

A comment for a SAS environment may also require a reference to include any SAS program names, if they are
included in the commit. For example, a shortcut keyword #programs could be expanded to the list of SAS
programs as a means to make comments more user friendly.

Commit files

Subversion does not understand SAS and SAS files by default, but simple rules can be added to the commit
hook to ensure that associated SAS files are included in a commit. For example, a SAS log file can be required if
a data set or another output such as an RTF file from a specific subdirectory is included in the commit. Further
compliance checks can be added if business rules exist on the naming and location of SAS files to ensure that
not just any file is included to satisfy the requirement.

Another interesting possibility is to use the file suffix to determine if a file type is allowed to exist in a specific
folder. For example, a folder dedicated to data sets may refuse a SAS program, log or output file to be added to
the data directory in the repository. To accommodate that extraordinary special case that will always occur, the
user information in the commit transaction can be used to allow an override.

It is possible to keep adding rules and additional compliance checks. One important note is that the commit hook
is not restricted to the repository or repository server. The post commit hook could forward the comment and
additional details about the transaction to other systems and applications, which makes integrating Subversion
with current systems and tools fairly easy.

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Version Control of SAS Programs and SAS Data Sets, continued

9

REVISION IN A FOOTNOTE
Adding the revision of a SAS program to the standard footnote of output that it generates is a good example of
querying the working copy or repository and using information in a SAS program. The approach can be wrapped
in a SAS macro as a standard utility, but for clarity we will use regular SAS code.

The approach used is the standard command line utility svn with first parameter info, e.g. svn info <something>,
to query the local working copy and some simple string parsing to extract the required information, essentially all
wrapped into two DATA steps. You can equally interrogate a remote repository by specifying the item URL and
any required credentials. If you query the local working copy, no username and password credentials are
required as it is assumed that if you can see the file, you are granted access. To add security restrictions within a
working copy, this is accomplished by the standard local file server mechanisms.

The svn info command can return the requested information as an XML structure with the command line switch --
xml, which is very useful. Output 1 contains an excerpt that we will process to obtain the revision, author and last
committed date of our example SAS program.

The first of our two data steps is to interrogate the working copy, read in the svn info output and isolate the
commit XML node, which contains the three properties revision, author and date we wish to retain.
data work.svninfo (keep = str_line) ;
 length str_line $ 1024 ;
 retain keep_line 0 ; * commit xml block may be more than one line;

 infile "svn info X:\mypath\myprogram.sas --xml " pipe;
 input str_line $ 1-1024;

 * identify <commit ...> ;
 if (index(str_line, "<commit") > 0) then keep_line = 1;

 * if in commit block ... keep lines for later processing;
 if (keep_line = 1) then output;

 * end of commit block, e.g. </commit>;
 if (index(str_line, "</commit>") > 0) then keep_line = 0;
run;
The second data set will parse the XML node using regular string manipulation. You can equally rely on an XML
Map to more efficiently extract the required information.
data work.properties (keep = revision author date);
 set work.svninfo end = eof ;
 length revision author date $ 200;
 retain revision author date ; * keep properties as we inspect and parse each line of xml ;

 * obtain revision – note the compress() function to clean up our string ;
 if (index(compress(str_line, " "), "revision=") > 0) then
 revision = compress(scan(substr(str_line, index(str_line, "revision")), 2, "="),
 '"<>');

 * obtain committer ;
 if (index(str_line, "<author>") > 0) then
 author = scan(substr(str_line, index(str_line, "<author>") + 8), 1, "<");

 * obtain date ;
 if (index(str_line, "<date>") > 0) then
 date = scan(substr(str_line, index(str_line, "<date>") + 6), 1, "<");

 if eof then output;
run;

The result is a data set PROPERTIES with the character variables REVISION, AUTHOR and DATE. How and
where those details are further used will most probably be dictated by business process, but as an example, the

…
<commit
 revision="2">
<author>mmr</author>
<date>2012-02-17T08:49:01.157176Z</date>
</commit>
…

Output 1. Example XML output from the svn info command

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Version Control of SAS Programs and SAS Data Sets, continued

10

standard system footnote in an output that makes note of the SAS programs used to generate the table, listing,
figure, etc. could be extended to include the revision rather than just the program name (Output 2).

There is no restriction that this approach cannot be extended to more than one file and to other dependencies, if
we consider the output’s dependency on a SAS program and any input data sets discussed previously. Similarly,
if your footnote includes reference to say analysis data sets or source listings, it is possible to query their revision
and add that as well given that the data set and listing files follow some standard convention on naming and
location.

CONTROLLING SAS LIBRARIES
A more rigorous example of how the Subversion utilities can be used in compliance is simply to verify that
specified input data sets or other input files in the working copy or executing environment is of the latest or a pre-
specified revision and fail with an error if this constraint is violated.

This highlights one of the minor nuances of Subversion and the working copy as users have to ensure that the
working copy remains up-to-date with the latest or pre-specified revision.

The svn status --show-updates --xml will verify that there are no changes in the working copy that needs to be
committed to the repository and conversely that the working copy has the latest updates. The example in Output
3 shows that the DM data set has been added to the SDTM folder. Not the revision number -1, which recognises
that the DM data set has not been committed to the repository.

By wrapping the call to svn status in a SAS macro, say %svn_library(), the program can verify that specified data
sets or the entire library folder is up-to-date.

%svn_library(library = sdtm, select = DM AE LB, revision = HEAD);

The macro as defined above will verify that the working copy revisions of the data sets DM, AE and LB are in the
repository and that the working copy contains the latest, e.g. the revision HEAD. The HEAD revision is a
Subversion keyword reference to the latest revision. If we would like to use revision 945 instead, the revision
number would be specified for the revision parameter value.

This check could simply be circumvented by not calling the %svn_library() macro. One programming trick to
avoid this is to have the macro create a new library VSDTM with one SAS data view for each data set specified in
the select statement. If the input data set is not specified, a corresponding view is not created and any reference
would result in standard SAS errors. As the program and log should refer to the library VSDTM and not SDTM, a
simple log checker can assert that the convention is followed.

This compliance approach can of course be extended to other input files and environments that do not use
Subversion, but that is beyond the scope of this paper.

__
Age is the subject age at informed consent.

Program: myprogram.sas (rev 10236)

Output 2. Footnote in output that includes SAS program revision

<?xml version="1.0" encoding="UTF-8"?>
<status>
<target
 path="sdtm">
<entry
 path="sdtm\dm.sas7bdat">
<wc-status
 props="none"
 item="added"
 revision="-1">
</wc-status>
</entry>
</target>
</status>

Output 3. Output from svn status in XML format

Systems Architecture and AdministrationSAS Global Forum 2012

Simple Version Control of SAS Programs and SAS Data Sets, continued

11

THE DIFF
One of the most powerful features with
Subversion is the ability to easily identify the
differences between two files. For SAS
programs and other text files, the default setup
will produce a very informative difference. Both
the standard command line utility and clients
like TortoiseSVN (Figure 12) accept custom
scripts for identifying differences, most often
referred to as diffs.

We can therefore create a custom script to
create and display a diff on SAS data sets or
any other file type where we want to generate
and display a custom diff. The later versions of
TortoiseSVN come with diff viewers for files such as Word, PowerPoint and Excel, but not for RTF and PDF files
(TortoiseSVN version 1.7.6).

MOVING, RENAMING AND DELETING FILES
One of the last, but still important nuances faced by users is the procedure to move, rename or delete files. The
best, and strongly recommended approach, is to use the Subversion utilities and clients such as TortoiseSVN
rather than to just delete a file with file system menu options and commands and then have to try and fix it with a
full repository commit. If a file is moved, renamed and deleted using the utility and tools, comments will be
associated to the action as you would expect.

CONCLUSION
The basic nature, flexibility and simple features make Subversion a very elegant and efficient repository for SAS
data sets, programs, logs, outputs and other associated files. The different options for deployment and the almost
endless possibilities for process integration, will allow a quick, simple and an appropriately customized
environment with minimal effort. Add the many available user interfaces along with simple command line utilities
and the environment can continue to evolve and further be integrated with SAS, analytics environments and other
supporting business systems, tools and utilities as requirements change.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Magnus Mengelbier
Limelogic Limited
Regent House, 316 Beulah Hill
London SE19 3HF, United Kingdom

Phone: +44 208 144 5701
E-mail: mmr@limelogic.com
Web: www.limelogic.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Figure 12. TortoiseSVN custom diff setting dialog

Systems Architecture and AdministrationSAS Global Forum 2012

	2012 Table of Contents

