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Paper 333-2012 
The Steps to Follow in a Multiple Regression Analysis 

Theresa Hoang Diem Ngo, La Puente, CA 

ABSTRACT 
Multiple regression analysis is the most powerful tool that is widely used, but also is one of the most abused statistical 

techniques (Mendenhall and Sincich 339). There are assumptions that need to be satisfied, statistical tests to 

determine the goodness fit of the data and accuracy of the model, potential problems that may occur in the model, 

and difficulties of interpreting the results. The first challenge is in the application of the techniques – how well analysts 

can apply the techniques to formulate appropriate statistical models that are useful to solve real problems. The 

second challenge is how to use a suitable statistical software package – such as SAS® – to deploy the correct 

procedures and produce the necessary output for assessing and validating the postulated model.   

INTRODUCTION 
In order to apply the techniques shown in this paper, analysts must have taken an undergraduate course in applied 

regression analysis and have well-rounded understanding of the statistical tests and terms. It would help to review the 

concepts before applying the techniques. Analysts will develop an ability to build appropriate multiple regression 

models and to interpret the results of their analyses. For other statisticians who have experience in model building, it 

is still beneficial to explore and practice different procedures. The five steps to follow in a multiple regression analysis 

are model building, model adequacy, model assumptions – residual tests and diagnostic plots, potential modeling 

problems and solution, and model validation.  

DATA SET  
Using a data set called Cars in SASHELP library, the objective is to build a multiple regression model to predict the 

invoice of a vehicle. The invoice     is modeled as a function of cylinders, engine, horsepower, length, MPG city, 

MPG highway, weight, wheelbase, drive train, make, and type.                 

                            

Response variable     = invoice 

Independent Variables      = cylinders, engine, horsepower, length, MPG city, MPG highway, weight, wheelbase, 

drive train, make, and type. 

 

STEP 1. MODEL BUILDING  
Building a model is rarely a simple or straightforward process (Mendenhall and Sincich 339). Analysts must have a 

prior knowledge of the variables to identify as independent variables to be included in the model. The independent 

variables can be first-order or second-order terms, interaction terms, and dummy variables.  The following variable 

screening methods, stepwise regression and all-possible-regressions selection procedure, can help analysts to select 

the most important variables that contribute to the response variable. 

1) Stepwise Regression determines the independent variable(s) added to the model at each step 

using t-test.  

CODE 

 

DATA cars ; 

SET sashelp.cars ; 

     IF DriveTrain = 'All'   THEN dummy1=1 ; ELSE dummy1=0 ; 

     IF DriveTrain = 'Front' THEN dummy2=1 ; ELSE dummy2=0 ; 

     IF Make = 'Acura'       THEN dummy3=1 ; ELSE dummy3=0 ; 

/* Also create dummy variables for classification variables: Make and Type*/ 

------------------------------------- OMITTED CODES ------------------------------------------- 

RUN ; 

 

PROC REG DATA = cars ; 

MODEL invoice = Cylinders EngineSize Horsepower Length MPG_City  

                MPG_Highway  Weight Wheelbase dummy: / SELECTION=stepwise; 

/* The colon after dummy: lists all the dummy variables for MAKE, TYPE, DRIVETRAIN */ 

RUN ; 
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Note: The REG Procedure does not have a CLASS statement to specify classification or categorical independent 

variables.  Therefore the number of dummy variables is created and specified in the MODEL statement will be one 

less than the number of levels for each classification independent variable.  For example, DRIVETRAIN has three 

distinct values: All, Front, Rear. Let “Rear” be the base level; therefore only two dummy variables are created for “All” 

and “Front”. Dummy variables are also created for MAKE and TYPE. Ford and SUV are the base levels.  

OUTPUT  
 

                                  Summary of Stepwise Selection 

 

     Variable      Variable                      Number  Partial   Model 

Step Entered       Removed                       Vars In R-Square R-Square  C(p)   F Value Pr > F 

 

  1  Horsepower                                      1    0.6791   0.6791  308.950  897.31 <.0001 

  2  _MercedesBenz                                   2    0.0412   0.7203  217.174   62.26 <.0001 

  3  _Porsche                                        3    0.0334   0.7537  143.014   57.29 <.0001 

------------------------------------- OMITTED RESULTS ------------------------------------------- 

 16                _Sedan                           14    0.0008   0.8157  23.8055    1.88 0.1708 

 17  _Toyota                                        15    0.0021   0.8178  20.9379    4.81 0.0289 

 18  _Honda                                         16    0.0023   0.8202  17.6483    5.28 0.0221 

 19  _GMC                                           17    0.0013   0.8214  16.7245    2.93 0.0875 

 20  _Audi                                          18    0.0012   0.8227  15.9221    2.82 0.0936 

 21  _Acura                                         19    0.0015   0.8241  14.6178    3.35 0.0680 

 22  _Cadillac                                      20    0.0011   0.8253  14.0453    2.62 0.1065 

 23  _Lincoln                                       21    0.0013   0.8265  13.1659    2.94 0.0870 

 24                _GMC                             20    0.0008   0.8257  13.0851    1.96 0.1621 

------------------------------------- OMITTED RESULTS ------------------------------------------- 

 29                _Honda                           21    0.0008   0.8280   9.6793    1.81 0.1793 

 30                _Toyota                          20    0.0006   0.8274   9.0773    1.44 0.2305 

 31  _Sports                                        21    0.0016   0.8291   7.3594    3.86 0.0502 

 32                _Infiniti                        20    0.0008   0.8283   7.1926    1.90 0.1686 

------------------------------------- OMITTED RESULTS ------------------------------------------- 

 
2) All-Possible-Regressions Selection Procedure gives all possible models at each step with the 

suggested independent variable(s) that are associated with the following criteria. Based on these 

criteria, the analyst subjectively decides the potential independent variables to be included in the 

model.  

    Criterion–    represents the fraction of the sample variation of the y values that is explained by 

the independent variables. One drawback of    is adding more independent variables in the model 

will increase     eventually to 1.  

 Adjusted    or MSE Criterion –     
  takes into account the sample size and the number of   

parameters in the model.     
  increases only if MSE decreases. The largest     

  or smallest MSE 

indicates the best fit of the model.  

    Criterion – A small value of    indicates that the total mean square error and the regression bias 

are minimized.  

 PRESS Criterion – A small PRESS (small differences          ) value indicates the model has a 

well predictive ability (Mendenhall and Sincich 328 – 329).  

 

CODE 

 
PROC RSQUARE DATA = cars CP ADJRSQ MSE JP ; 

MODEL invoice = Cylinders EngineSize Horsepower Length  

                MPG_City MPG_Highway Weight Wheelbase; 

RUN ; 
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OUTPUT 
 

Number in            Adjusted 

  Model    R-Square  R-Square      C(p)        J(p)          MSE  Variables in Model 

 

       1     0.6791    0.6783   91.7749   101008007    100536007  Horsepower 

       1     0.4163    0.4149  512.5191   183726183    182867649  Cylinders 

------------------------------------- OMITTED RESULTS ------------------------------------------- 

       2     0.7137    0.7123   38.4397  90553268.6     89920029  Horsepower Wheelbase 

       5     0.3316    0.3236  656.2243   214394792    211417086  Length MPG_City MPG_Highway 

                                                                  Weight Wheelbase 

------------------------------------- OMITTED RESULTS ------------------------------------------- 

       6     0.7394    0.7357    5.1854  83966859.4     82609427  Cylinders EngineSize Horsepower 

------------------------------------- OMITTED RESULTS ------------------------------------------- 

       8     0.7395    0.7346    9.0000  84721616.0     82968755  Cylinders EngineSize Horsepower 

                                                                  Length MPG_City MPG_Highway 

                                                                  Weight Wheelbase 

 
At each step, there is the number of suggested independent variable(s) that contribute to the response variable 

based on the criteria (        
     ,      ). 

 
Caution: Stepwise regression and all-possible-regressions selection procedure typically do not include interactions 

and higher-order terms in the model (Mendenhall and Sincich 333). These variable screening methods should only be 

used to assist in identifying the potentially important independent variables for predicting y.  

STEP 2. MODEL ADEQUACY 
The following criteria are important for checking the utility of the model: 

1) Global F test: To test the significance of the independent variables as a group for predicting the 

response variable.  

2)           Confidence intervals and t-tests: Inferences about the   parameters.  

3)     
 : The total sample variation of the response variable y that is explained by the model after 

adjusting for the sample size and the number of parameters. Both    and     
  are indicators of how 

well the prediction equation fits the data.  

4) Root MSE or s: The estimated standard deviation of the random error. The interval     is an 

approximation of the accuracy in predicting y based on a specific set of independent variables. 

5) Coefficient of variation (CV): The ratio of the estimated standard deviation of   to the sample mean 

of the response variable   . Models with CV values of 10% or smaller usually lead to accurate 

predictions (Mendenhall and Sincich 108). 

CODE  

 

PROC GLM DATA = cars ; 

CLASS DriveTrain Make Type ; 

MODEL invoice = Cylinders EngineSize Horsepower Length MPG_City MPG_ Highway     

                Weight Wheelbase DriveTrain Make  Type /   SOLUTION CLPARM;  

RUN ; 

OUTPUT 
 

                                               Sum of 

       Source                      DF         Squares     Mean Square    F Value    Pr > F    

 

       Model                       52    111086480371    2136278468.7      36.63    <.0001 

       Error                      373     21752475640    58317629.061 

       Corrected Total            425    132838956010 

 

                       R-Square     Coeff Var      Root MSE    Invoice Mean 

                         0.836249      25.42088      7636.598        30040.65 
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                                                           Standard 

     Parameter                         Estimate             Error    t Value    Pr > |t| 

 

       Intercept                     -24522.29832 B     12679.92304      -1.93      0.0539 

       Cylinders                        590.26309         783.01737       0.75      0.4514 

       EngineSize                     -1137.65881        1305.37059      -0.87      0.3840 

       Horsepower                       172.61109          13.86506      12.45      <.0001 

       Length                           202.01271          86.25760       2.34      0.0197 

       MPG_City                         794.44503         354.83407       2.24      0.0258 

       MPG_Highway                      -46.41969         314.19327      -0.15      0.8826 

       Weight                             4.84787           1.69433       2.86      0.0045 

       Wheelbase                       -455.96249         148.61460      -3.07      0.0023 

       DriveTrain  All                 -511.08911 B      1577.12766      -0.32      0.7461 

       DriveTrain  Front               -271.35939 B      1488.93592      -0.18      0.8555 

       DriveTrain  Rear                   0.00000 B          .             .         . 

 

                    Parameter                       95% Confidence Limits 

 

                     Intercept                     -49455.39268    410.79605 

                     Cylinders                       -949.41864   2129.94482 

                     EngineSize                     -3704.46683   1429.14921 

                     Horsepower                       145.34761    199.87458 

------------------------------------- OMITTED RESULTS ------------------------------------------- 

 

 Global F test (P-value < .0001) indicates that model                              is significant for 

predicting invoice based on a group of independent variables in the model.  
 The value of R-square is 0.836249, which means approximately 84% of the variation of invoice is explained by the 
independent variables. Given Root MSE (s) is 7636.598, approximately 95% of the sampled invoice values fall within 
two standard deviations (2s = $15,273.20) of their respective predicted values.  
Based on t-test with the significant level     equals 0.10, the p-values for Horsepower, Length, MPG City, Weight, 

and Wheelbase are less than 0.10 indicating sufficient evidence for predicting the vehicle invoices. Each     

parameter represents the mean change in the response variable     for every 1-unit increase in the corresponding     

when all the other x’s are held fixed. For example, the invoice of a vehicle increases $172.61 for every 1-horsepower 
increase.  
 A 95% confidence interval for Horsepower is (145.34761, 199.87458). This means that we are 95% confident that 
the invoice increases between $145.35 and $199.87 for every 1-horsepower increase. Note: A zero in the 95% 
Confidence Intervals can also indicate that the independent variable is insignificant.  

 

STEP 3. MODEL ASSUMPTIONS  

                           

                                             

Using the data to obtain the least squares estimates              , the error value can be estimated to detect the 

deviation between the observed and the predicted value of y:  

A regression model:                          

Solve for the error term:                           

Estimate the error value:                                     for each observation.  

The least squares prediction equation:                           (Mendenhall and Sincich 366). 

When assumptions are violated, certain inferences and predictions from the regression analysis may be unreliable 

and inaccurate. 

RESIDUAL TESTS AND DIAGNOSTIC PLOTS  
Residual tests and diagnostic plots are commonly used to detect violations in regression modeling assumptions.  

Such tests and diagnostic plots can also help indicate when a model transformation or modification is needed. 

Several graphical tools and statistical tests can be applied to detect model “lack of fit”, violation of assumptions, 

invalidity of the inferences, and outliers and influential observations.  
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1) Residuals and Partial Residuals Plots: Detect model lack of fit and unequal variances. 

Any trends or patterns in the plots indicate lack of fit and potential problems in the model.  

2) Normal Probability Plot: Check the assumption of normality. 

A linear trend in the plot suggests that the normality assumption is nearly satisfied; nonlinear trend 

indicates that the assumption is likely violated.  

3) Standardized Residual: An observation with a standardized residual that is larger than absolute 

value of 3 is considered to be a potential outlier.  

4) Influential Observations: Observations that have high impacts on the response variable. 

 Leverage: Measures the influence of    on its predicted value     . The observed value    is 

influential if     
      

 
 where    is the leverage for the     observation and   is the number of  ’s in 

the model (excluding   ).  

 Cook’s Distance: An influential observation has a value of at least 50th percentile of the F 

distribution.  

 Dffits: If         is greater than   
   

 
, the     observation is influential.   

Note: Analysts need to check whether the outlier and influential observations are either correct or 

entry errors. If the observations are entry errors, either correct it or remove it from the data set for 

modeling. If the observations are correct, run the model again without those observations to see if 

the parameter coefficients are unstable. If so, analysts need to decide whether to keep or remove 

those influential observations for modeling.   

5) The Durbin – Watson Test (d): Detect residual correlation.  

Properties of the d statistic: 

         

                                     

                                                                             

                                                                              

Note: A time series regression model should be considered whenever residuals exhibit strong 

temporal correlation (Mendenhall and Sincich 369 – 417). 

CODE  
 

ODS GRAPHICS ON ; 

    PROC GLM DATA = cars PLOTS=all ; 

    CLASS DriveTrain Make Type ; 

    MODEL invoice = Cylinders EngineSize Horsepower Length MPG_City  

    MPG_Highway Weight Wheelbase DriveTrain Make Type / P ;  

    OUTPUT OUT = stat  

    P=pred R=Residual RSTUDENT=r1 DFFITS=dffits 

    COOKD=cookd H=hatvalue PRESS=res_del ; 

    RUN ; 

ODS GRAPHICS OFF ; 

 

OUTPUT 

 
                           Sum of Residuals                                 -0 
                       Sum of Squared Residuals                21752475640 

                       Sum of Squared Residuals - Error SS              -0 

                       First Order Autocorrelation                       0 

                     Durbin-Watson D                                   2   
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 
 
 The Durbin-Watson Test (d) = 2 indicating that the residuals are uncorrelated and the independent error 
assumption is satisfied.  
 The SAS graphs are a quick way to check the assumptions and to look for outliers and influential observations. 
The residuals plotted against the predicted values (Row 1, Col 1) show no trends or patterns. If there are any patterns 
such as the “cone” or “sphere” shapes, this indicates the lack of model fit and unequal variances. We will explore this 
problem further in STEP 4. Potential Modeling Problems and Solutions. Of all the assumptions, the normality 

assumption is the least restrictive. The Q-Q plot (Row2, Col 1) shows a linear trend with a slight deviation at the tail, 
which suggests that the normality assumption is satisfied. The histogram (Row 3, Col 1) shows the distribution is 
mound-shaped with a slightly skewed right tail. Studentized Residual vs. Levarage graph (Row 1, Col 3) shows some 
potential outliers and influential observations outside of the reference lines. Cook’s D graph (Row 2, Col 3) also 
shows an influential observation that is at least above 50th percentile.  
 

STEP 4. POTENTIAL MODELING PROBLEMS AND SOLUTIONS  

When building a multiple regression model, analysts should be cautious of potential problems, many of which are 

caused by the violation of assumptions. Some of these problems can only be minimized, while others can be fixed to 

improve the accuracy of the model.  

1) Assumptions Violation 

Problem: There are patterns and trends in your residual diagnostics.  

Solution: You may need to transform the response variable to satisfy the assumptions.  

Transformations are typically used to either (i) help induce the homogeneous (constant) variance 

assumption, (ii) transform a nonlinear model into an approximately linear model, and/or (iii) change 

multiplicative effects into additive effects using natural log transformation. The Box-Cox method 

shown below is helpful in identifying an appropriate transformation for the response variable based 

on a set of independent variables.  

CODE 

 

ODS GRAPHICS ON; 

  PROC TRANSREG DATA = cars TEST; 

  MODEL BOXCOX(invoice) = IDENTITY(Cylinders EngineSize Horsepower Weight 

                        Length MPG_City MPG_Highway Wheelbase dummy: ); 

  RUN; 

ODS GRAPHICS OFF; 
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OUTPUT 

 

                   The TRANSREG Procedure Hypothesis Tests for BoxCox(Invoice) 

 

                         Root MSE           0.01002    R-Square    0.9350 

                         Dependent Mean     3.68434    Adj R-Sq    0.9260 

                         Coeff Var          0.27188    Lambda     -0.2500    

 

 
 Based on the Recommended Transformation Chart below, Lambda equals -0.2500 suggesting natural log 
transformation for invoice      
 

Recommended Transformation Equation Lambda  

Square Y
2
 1.5 to 2.5 

None Y 0.75 to 1.5 

Square-root Y
1/2

 0.25 to 0.75 

Natural log Ln(Y) -0.25 to 0.25 

Inverse square-root 1/Y
1/2

 -0.75 to -0.25 

Reciprocal 1/Y -1.5 to -0.75 

Inverse square  1/Y
2
 -2.5 to -1.5 

                                                                                                                                                       (“Box-Cox Method”) 
 

 

 
2) Parameter Estimability  

Problem: Highly correlated classification independent variables. 

Solution:  Remove one of the correlated classification independent variables in the model. 

 

CODE  
 

PROC GLM DATA = sashelp.cars  ; 

CLASS DriveTrain Make Type ; 

MODEL invoice = Cylinders EngineSize Horsepower Length MPG_City                                                                         

                MPG_Highway Weight Wheelbase DriveTrain Make  Type / E ;  

RUN ; 
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OUTPUT 

General Form of Estimable Functions 

 
Case 1 Case 2 

Effect Coefficients Coefficients 

Intercept L1 L1 

Cylinders L2 L2 

EngineSize L3 L3 

Horsepower L4 L4 

Length L5 L5 

MPG_City L6 L6 

MPG_Highway L7 L7 

Weight L8 L8 

Wheelbase L9 L9 

DriveTrain All L10 L2-L10 

DriveTrain Front L11 L2-L11 

DriveTrain Rear L1-L10-L11 L2-L10-L11 
 

 
In PROC GLM, A letter “B” always appears next to each parameter estimate that is associated to a categorical 
variable indicating the estimates are not uniquely estimable. The analyst needs to look at the estimable functions to 
determine whether or not a linear dependence exists between the categorical variables. In CASE 1, all parameters, 
including the linear combination of parameters, are estimable. In CASE 2, the parameters for Drivetrain (All, Front, 
Rear) and Cylinders are not jointly estimable. Either Cylinders or Drivetrain needs to be removed from the model.  
 

3) Multicollinearity  

Problem: When independent variables are highly correlated in the model, the results from t-test and 

F test may contradict each other and the parameter estimates may have opposite signs from what 

are expected.   

Solution: Calculate the coefficient of correlation between each pair of numeric independent 

variables in the model. If one or more correlation coefficients are close to 1 or -1, the variables are 

highly correlated and a severe multicollinearity problem may exist; remove one of the correlated 

independent variables in the model.  

CODE 

 
PROC CORR DATA = cars ; 

VAR Cylinders EngineSize Horsepower Length MPG_City MPG_Highway Weight Wheelbase ; 

RUN ; 

 

OUTPUT 

 

  Cylinders Engine           
Size 

Horse 
power 

Length MPG       
City 

MPG         
Highway 

Weight Wheel              
base 

Cylinders 1 0.908 0.81 0.548 -0.684 -0.676 0.74 0.547 

Engine 
Size 

0.908 1 0.787 0.637 -0.709 -0.717 0.81 0.637 

Statistics and Data AnalysisSAS Global Forum 2012

 
 



9 
 

Horse 
power 

0.81 0.787 1 0.382 -0.677 -0.647 0.63 0.387 

Length 0.548 0.637 0.382 1 -0.502 -0.466 0.69 0.889 

MPG     
City 

-0.684 -0.709 -0.677 -0.502 1 0.941 -0.74 -0.507 

MPG 
Highway 

-0.676 -0.717 -0.647 -0.466 0.941 1 -0.79 -0.525 

Weight 0.742 0.808 0.631 0.69 -0.738 -0.791 1 0.761 

Wheel 
base 

0.547 0.637 0.387 0.889 -0.507 -0.525 0.76 1 

 

 
In Step 2. Model Adequacy, the parameter estimate for MPG Highway is -46.41969. It should be positive because 
MPG supposedly adds values to a vehicle. In the correlation matrix, it shows that MPG City and MPG Highway are 
highly correlated (0.941) because both variables measure mileage per gallon (MPG). 

 

  A severe multicollinearity problem exists if the variance inflation factors (VIF) for the     are greater 

than 10. 

CODE 

 
PROC REG DATA = cars ; 

MODEL invoice = Cylinders EngineSize Horsepower Length MPG_City  

                MPG_Highway  Weight Wheelbase dummy: / VIF ; 

RUN ; 

OUTPUT 
 

                                         Parameter     Standard                        Variance   

   Variable       Label            DF     Estimate        Error  t Value  Pr > |t|    Inflation 

 

   Intercept      Intercept         1       -32811        12311    -2.67    0.0080            0 

   Cylinders                        1    590.26309    783.01737     0.75    0.4514     10.85209 

   EngineSize     Engine Size (L)   1  -1137.65881   1305.37059    -0.87    0.3840     15.12228 

   Horsepower                       1    172.61109     13.86506    12.45    <.0001      7.26089 

   Length         Length (IN)       1    202.01271     86.25760     2.34    0.0197     11.19161 

   MPG_City       MPG (City)        1    794.44503    354.83407     2.24    0.0258     25.27722 

   MPG_Highway    MPG (Highway)     1    -46.41969    314.19327    -0.15    0.8826     23.80516 

   Weight         Weight (LBS)      1      4.84787      1.69433     2.86    0.0045     12.07993 

   Wheelbase      Wheelbase (IN)    1   -455.96249    148.61460    -3.07    0.0023     11.16877 

   _Acura                           1   9236.02746   3464.72512     2.67    0.0080      1.41723 

------------------------------------- OMITTED RESULTS ------------------------------------------- 

 
In addition to the correlation matrix, MPG City and MPG Highway have the highest variance inflation (25.27722 & 
23.80516) indicating a severe multicollinearity. One of the MPG variables should be removed from the model. 

 

4) Extrapolation 

Problem: Predicting y outside of the range of the independent variables may give inaccurate 

results.  
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5) Data issues 

Problem: Missing and/or invalid data values for certain days.  

Solution: Use dummy variables in the model to account for those days.  

STEP 5. MODEL VALIDATION  
Models that fit the sample data well may not be statistically useful when applied to a new data set because of 

changes or unexpected events that may occur in the future. In addition to checking the model adequacy, it is 

important to validate the model’s performance in practice. The following techniques have been proposed for the 

model validation. 

1) Examine the predicted values: If the predicted values seem unreasonable such that the values are 

extremely outside of the range of the response variable, this indicates that either the model is 

incorrect or the parameter coefficients are poorly estimated. If the predicted values seem 

reasonable, continue to check the model validity.  

2) Examine the model parameters: Coefficients are poorly estimated and/or multicollinearity exists if 

they are opposite signs to what are expected, have unusual large or small values, and/or are 

inconsistent when applied to new data.  

3) Apply the model to the new data for prediction: Use            
          to measure the model 

validity.  

4) Perform data-splitting: The sample data can be split into two parts with one part used to estimate 

the model parameters and other part used to validate the predictions.  

5) Perform Jackknifing for data sets with small sample sizes: Use           
          to measure the 

model validity (Mendenhall and Sincich 307 – 309). 

CONCLUSION 
A multiple regression model is commonly used because it is not as complex as other statistical models. Yet it is the 

most abused model because analysts overlook the assumptions, fail to minimize or fix potential problems in the 

model, and do not validate the model’s predictions. It is crucial to follow all these steps as a check list when building a 

multiple regression model. However, even following all these steps may still not produce the best most useful 

regression model when the underlying data does not meet the conditions that make linear regression the appropriate 

model to fit the data. For example, a time series regression equation is often more appropriate for modeling seasonal 

data. Likewise, a logistic regression model should be used for modeling binary, ordinal, or nominal response 

variables. The rule of thumb is analysts need to check the assumptions, look for potential problems, and validate the 

model accuracy and prediction reliability for all statistical models.  
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APPENDIX  

The CORR Procedure computes Pearson correlation coefficients, which measure a linear relationship between two 

numeric variables.  

 
PROC CORR DATA = dataset1 ; 

VAR numeric variables ; 

RUN ; 

 
The GLM Procedure uses the method of least square to fit general linear models. 

 
ODS GRAPHICS ON ; 

    PROC GLM DATA = dataset1 PLOTS=all ; 

    CLASS classification independent variables; 

    MODEL dependent variable = independent variable(s)/ SOLUTION E CLPARM P ;  

    OUTPUT OUT = dataset2  

    P=pred R=Residual RSTUDENT=r1  

    DFFITS=dffits COOKD=cookd H=hatvalue PRESS=res_del ; 

    RUN ; 

ODS GRAPHICS OFF ; 
 
PROC GLM <options> ; 

 
DATA = SAS data set 

              Specifies the SAS data set used for GLM procedure. 
PLOTS = all 

               Plots all of the default plots such as residual, histogram, and normality plots. ODS graphics must     
               be enabled to produce the plots. For example, 
 
                                ODS GRAPHICS ON ; 
                                         PROC GLM  PLOTS = ALL ; 
                                         MODEL dependent variable = independent variables ; 

                                         RUN ; 
                               ODS GRAPHICS OFF; 

 
MODEL dependent variable = independent variables </ options> ; 

 
CLPARM          Produces confidence intervals for parameter estimates. 
E                       Displays the general form of all estimable functions. 
P                       Displays observed, predicted, and residual values for each observation given  

                          that the independent variables do not have missing values. Most importantly,  
                          the Durbin-Watson statistic is also displayed. 
SOLUTION       Produces parameter estimates.  

 
Output statement creates a new SAS data set that contains all of the variable in the original data set and new 

variables for the specified statistics. 
 
OUTPUT < OUT = SAS data set > <statistics> ; 
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COOKD            Cook’s D influence statistic 
DFFITS             Standard influence of observation on predicted value 
H                       Leverage 
P                       Predicted values 
PRESS             Residual for the ith observation that results from dropping it and predicting it based on all  

                          other observations. 
R                       Residuals 
RSTUDENT      A studentized residual with the current observation deleted. 

 
The REG Procedure is used for regression analysis. 

 
PROC REG DATA = dataset1 ; 

MODEL dependent variable = independent variable(s)/ VIF SELECTION=stepwise ; 

RUN ; 

 
SELECTION = method 

                        Specifies the method used to select the model;  a selection method can  be  FORWARD, 
                        BACKWARD, STEPWISE, MAXR, MINR, RSQUARE, ADJRSQ, or CP. 
VIF                  Computes variance-inflation factors. 

 

The RSQUARE Procedure computes the statistics for each model selection.  

 
PROC RSQUARE DATA = dataset1 CP ADJRSQ MSE JP; 

MODEL dependent variable = independent variable(s) ; 

RUN ; 

 

CP                   Computes Mallows’    statistic for each model selected. 

JP                   Computes the mean square error of prediction for each model selected. 
MSE                Computes the mean square error for each model selected. 
ADJRSQ         Computes adjusted r-square for each model selected. 

 

The TRANSREG Procedure fits many types of linear models with many options of transformations.   

 

ODS GRAPHICS ON; 

  PROC TRANSREG DATA = dataset1 TEST; 

  MODEL BOXCOX(dependent variable) = IDENTITY(numeric independent variables); 

  RUN; 

ODS GRAPHICS OFF; 
 
The MODEL statement specifies the dependent and independent variables along with the transformation applied to 
each variable. In this case, a Box-Cox transformation is only applied to the numeric response variable based on the 
numeric independent variables specified in the IDENTITY transformation. Note that IDENTITY is used for the purpose 
of no transformations applied to the independent variables. TEST option displays the ANOVA table.  
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