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ABSTRACT 
Standardized educational assessments test students in specific subject areas or measure certain core competencies. 
Educational researchers regularly use exploratory factor analysis (EFA) to understand a test’s internal structure 
related to its design. PROC PRINCOMP may be used; yet, it has limitations in dealing with the potentially complex 
structure of standardized test data. This paper will demonstrate how PROC FACTOR is more useful in two ways. 
First, chi-square hypothesis tests can determine whether a specified number of factors fit the data, particularly when 
no a priori hypotheses exist about the test’s internal structure. Secondly, rotation of multiple factors can be employed 
to account for inherent inter-factor correlations. This paper is intended for those with good knowledge of multivariate 
statistics and moderate levels of SAS® programming experience. 

INTRODUCTION 
There has been a significant increase in large-scale state K-12 standardized testing due to federal legislation (e.g. No 
Child Left Behind). This has generated increasing interest among educational researchers to explore the relationships 
among the items on these tests for various sub-groups (e.g. students with disabilities and English language learners) 
and content areas (e.g. mathematics, science, and English). In analyzing large-scale assessment data as is generally 
true with any large data set, univariate procedures in SAS® such as PROC FREQ and PROC MEANS, are useful 
diagnostic tools to run initial checks on the data set to ensure that basic results make sense. PROC CORR would 
also be useful, but as is often the case with test data where test questions are marked as right (1) or wrong (0), the 
correlations need to be treated differently to account for guessing or perhaps difficulty factors. A discussion about 
what types of correlations are appropriate can be found in Steinberg, Cline, and Sawaki (2011).   

Large-scale K-12 assessments often contain a large range in the number of items administered according to grade 
level and/or subject area. Examples of this variability have been reported in Young, Holtzman, and Steinberg (2011). 
Students often receive sub-scores that are aligned with state standards. There are complex issues regarding the 
advisability of reporting sub-scores (Haberman, Sinharay, & Puhan, 2006), but this will not be discussed here. 
Educational researchers often employ factor analysis as a useful data reduction technique to understand the test’s 
internal structure in relation to its design. This is important to investigate because test developers will create items or 
item sets to measure specific content. Factor analysis can help answer questions such as how many underlying 
dimensions are present in the data, whether those dimensions are comparable across different populations, and 
whether there are as many underlying dimensions in the data as reported sub-scores. The common input data for this 
kind of analysis is either a correlation matrix or a variance-covariance matrix, depending on the nature of the data. 

There are two steps to answer these types of research questions: exploratory factor analysis (EFA) and confirmatory 
factor analysis (CFA). EFA methods try to suggest what the hypotheses should be about the internal structure of the 
test, and CFA methods later test those hypotheses. However, if a priori hypotheses exist about the underlying 
structure of the data, CFA can be attempted first to confirm those hypotheses, and EFA will only then be performed if 
those hypotheses cannot be confirmed. Bollen (1989) also discussed the recommended practice of splitting the 
sample for the two different types of analyses for cross-validation purposes.  

There are several methods for extracting factors to perform EFA. This paper focuses on two common extraction 
techniques available in SAS to perform EFA. PROC PRINCOMP performs principal component analysis (PCA). This 
technique allows the researcher to understand the dimensionality of a complex multivariate data set at a rudimentary 
level without accounting for the inter-correlations of the items (Bentler & Kano, 1990). This method allows for easy 
exploration into how many dimensions may exist in the data based on how much variance is accounted for by each 
factor and the degree to which test items or sub-scores relate to those dimensions, as expressed by the magnitudes 
of factor loadings. A factor loading represents the correlation between an observed variable and an unobserved factor 
(Tabachnick & Fidell, 1989). As many components as variables are extracted, but with PROC PRINCOMP these 
components are all treated as orthogonal, or uncorrelated, to each other.  

Sub-scores on a standardized test usually exhibit at least moderate inter-correlations because on subject-area tests 
such as mathematics, items pertaining to numerical operations and algebra for example will be grouped in different 
sub-scales, but will often have some similar characteristics. Findley, Turnbull and Conrad (1947) raised concerns 
about this phenomenon in test construction. Nonetheless, these inter-correlations often need to be considered in 
doing factor analysis of administered assessments, so the functionality of PROC PRINCOMP for specific kinds of 
educational research is limited.  
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Another commonly-used method of factor extraction is maximum likelihood (ML) estimation. This method is preferred 
in analyzing survey or assessment data because the additional option of oblique factor rotations is possible, which 
allows the factors to be correlated with each other. As more dimensions are extracted, it is desired to perform a 
statistical test to see if each additional dimension in the data adds or detracts from its explanatory value. These 
options are not available using PROC PRINCOMP, but rather with PROC FACTOR.  

The remainder of this paper will utilize a hypothetical example to walk the reader through each of the required steps 
to conduct an EFA using PROC FACTOR. Maximum likelihood estimation will be used for factor extraction and an 
oblique form of factor rotation, known as promax, will be employed so that multiple factors can be correlated within 
the underlying measurement model (Hendrickson & White, 1964). PROC FACTOR is limited though since items 
cannot be allocated to designated factors. However, the insights gained from the EFA with PROC FACTOR can be 
insightful in shaping a CFA approach later in the potential analysis. 

DESCRIPTION OF A HYPOTHETICAL EXAMPLE 
The reader is asked to consider a hypothetical large-scale standardized test that contains 65 multiple-choice items 
that are marked as right or wrong. Each of these 65 items corresponds to one of five sub-scales based on the test 
specifications. There are various populations who took the test, ranging from 500 to 30,000 students. The large 
disparity in sample sizes discourages the analysis of the data using the individual items because of (a) concerns with 
positive definite correlation matrices (Mislevy, 1986) and (b) non-linear relationships between binary scored items that 
can create more factors than are really present (Rock, Bennett, & Kaplan, 1985).  

As an alternative approach, groups of items within each of the sub-scales can be put together into mini-tests, called 
item parcels. These parcels generally consist of items with similar content and on average, have a similar level of 
difficulty. This type of approach was undertaken by Cook, Dorans, and Eignor (1988) using data from the SAT®. A 
generic description of the pros and cons of item parceling can be found in Little, Cunningham, Shahar, and Widman 
(2002). Consider in this example that 12 of these smaller units have been created each containing 4 to 7 items, which 
will minimize potential non-normality concerns with the binary item data. This approach also allows for greater 
comparability between the test-taking populations by selecting random samples of student test records equal to the 
size of the smallest population and comparing the results across the samples. More information can be found in 
Steinberg, Cline, and Sawaki (2011). The factor analysis presented here will utilize a variance-covariance matrix of 
the sums of scores obtained by students on each of these 12 item parcels for one example test-taking population. 

CREATING A DATA STEP 
Since a variance-covariance matrix of the parcel scores will be used, in creating the DATA Step, _TYPE_ = COV is 
coded to describe the data set and the matrix of scores used as the input. Next, the number of observations is coded 
using the _N_ = syntax. The variable names are then entered following the introductory text input _name_. After a 
cards statement, the lower triangle of the variance-covariance matrix of the parcel scores is sufficient. The variable 
names are included along with the matrix. Figure 1 summarizes these steps.
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Figure 1. Example DATA Step for Exploratory Factor Analysis Based on Item Parcel Scores 

The matrix displayed in Figure 1 could also be generated directly from PROC CORR for a correlation matrix and also 
for a variance-covariance matrix with the COV option added. PROC CORR would be appropriate in this instance 
because the underlying data now contain variables with values that are not just 0 or 1, but range between 0 and the 
number of items in the respective parcels. 

THE PROC FACTOR STATEMENT 
The PROC FACTOR statement requires several initial arguments including: a valid data set (DATA=), the variables 
to be analyzed (VAR), the number of observations in the data set (NOBS=), and the number of factors to extract (N= 
or NFACT=) when testing whether that number of factors is sufficient to fit the data provided in the variance-
covariance matrix. The N= or NFACT= specifications are only one way that SAS allows the analyst to specify the 
number of factors. The number of factors to extract can also be designated by a minimum eigenvalue (MINEIGEN=) 
or a threshold on the proportion of explained variance (PROPORTION=). An additional option can be submitted, to 
create a scree plot, which is a useful picture of the magnitude of the eigenvalues compared to the eigenvalue 
number. A set of eigenvalues are the roots of a polynomial equation involving the input matrix.  

Next, the method of factor extraction is defined along with the type of rotation to be applied if more than one factor is 
being extracted. There are two kinds of factor rotations: orthogonal and oblique. Orthogonal rotations such as 
varimax and quartimax, do not allow for multiple factors to be correlated. Oblique rotations such as promax (used in 
this paper), oblimin, and quartimin, do allow for correlations among multiple factors. Please refer to the SAS 
documentation for more information on these and other factor rotations. An additional argument referring to the initial 
value of the communalities, or the portion of the variance of a variable explained by the common factors, may also be 
required. However, depending on the method of factor extraction, certain specifications need to be made for 
computing the communalities.  

Principal component extraction is only one method of factor extraction. Please see the SAS documentation for more 
information on other extraction methods, such as principal axis, alpha, and unweighted least squares. If no extraction 
method is specified, principal component extraction will be employed by default. 

Factor extraction methods and prior communality estimates can be paired in different ways because of how the 
eigenvalues are ultimately scaled. The illustration in this paper will pair maximum likelihood extraction with prior 
communalities equal to one based on recommendations by Fabriger, Wegener, MacCallum, and Strahan (1999). This 
avoids the generation of negative eigenvalues which can result when maximum likelihood extraction is paired with 
prior communalities equal to the squared multiple correlation, which could detract from the interpretability of the factor 
solution. Figure 2 displays an example PROC FACTOR statement. Figure 3 displays the SAS log from this example 
statement. The resulting output will be explained later. 
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Figure 2. Complete Example of a PROC FACTOR Statement 

 
Figure 3. Example of SAS log from a PROC FACTOR Statement 

The first note in the log represents the fact that the lower triangle of the variance-covariance matrix was entered to be 
analyzed. The second note indicates that one factor will be retained as specified in the code (n=1). The third note is 
important because it lets the analyst know that the factor solution properly converged. The fourth note reminds the 
analyst that factor rotation is not possible with only one factor. Finally, it is evident that the procedure ran very quickly. 
However, the processing time is dependent upon the size of the variance-covariance matrix or the correlation matrix 
being used and the internal processing power of the analyst’s computer. 

ISSUES IN EXTRACTING MULTIPLE FACTORS 

In educational assessment, factor analytic studies have tried to test whether a number of dimensions equal to the 
number of sub-scores can be extracted (Rock, Bennett, Kaplan, & Jirele, 1988). This is not always an attainable goal, 
yet this does not undermine the utility of the reported sub-scores for providing diagnostic information to students and 
other stakeholders. In exploratory factor analysis, when the prior communality estimates are set to either one or the 
squared multiple correlations, the resulting estimates may exceed a value of one. This causes a lack of convergence 
represented by the statement in the SAS output shown in Figure 4. 

 
Figure 4. PROC FACTOR Output Message for Invalid Communalities 

These values are Heywood cases, meaning that the specific variances, or the portion of the total variance due to the 
specific factor, are negative, resulting in an improper factor solution.  

The causes of Heywood cases are often outliers (Bollen, 1987), variability due to sampling (Anderson & Gerbing, 
1984), or misspecification of the measurement model (Bollen, 1989). This error can be corrected by adding the 
HEYWOOD argument to the PROC FACTOR statement to facilitate model convergence or the ULTRAHEYWOOD 
argument may be added to permit communalities greater than 1.0. However, these modifications can lead to 
unreliable and misleading results. In such instances, the original hypotheses about the structure of the measurement 
model may need to be revised or additional sampling may be needed to address the variability issues. 

SUMMARY OF OUTPUT FROM THE PROC FACTOR STATEMENT 
The output from a PROC FACTOR statement is quite extensive, so only aspects relevant to the discussion will be 
covered in this section. This section will in many ways be comparable to Suhr (2005), but applied to the context of 
educational assessment. The hypothetical test under study has five sub-scales, and the task is to determine whether 
five factors, or perhaps fewer, are sufficient to fit the data. As described in the PROC FACTOR statement in Figure 2, 
maximum likelihood was the method of factor extraction. Since the sub-scales were inherently correlated, a promax 
rotation method was applied except when only one factor was extracted. Prior communalities were set to one. Since 
this test had five sub-scales, several factor solutions were attempted, from one to five. However, Heywood cases 
were detected when a four-factor solution was requested, so analyses stopped at this point. 
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EIGENVALUES 
The eigenvalues are presented first as shown in Table 1. A scaling factor is applied by SAS when the prior commu-
nality estimates are set to one, so the eigenvalues need to be adjusted accordingly to be more in line with the number 
of variables. The adjustment is to divide the eigenvalues by 999. However, the proportion of explained variance is still 
valid as reported in the output. If the prior communality estimates are set to the squared multiple correlations, this is 
equivalent to looking at the weighted reduced correlation matrix obtained when the prior communality estimates are 
set to one. Generally, an eigenvalue greater than 1.0 is considered to be significant (Kaiser, 1960). 

# Eigenvalue Difference Variance Proportion Cumulative Variance Proportion 
1 6.8362  57.0% 57.0% 
2 0.7428 6.0933 6.2% 63.2% 
3 0.6997 0.0432 5.8% 69.1% 
4 0.6332 0.0665 5.3% 74.3% 
5 0.5214 0.1118 4.4% 78.7% 
6 0.4971 0.0243 4.2% 82.8% 
7 0.4618 0.0353 3.9% 86.7% 
8 0.3614 0.1004 3.0% 89.7% 
9 0.3477 0.0137 2.9% 92.6% 

10 0.3299 0.0177 2.8% 95.4% 
11 0.2868 0.0431 2.4% 97.8% 
12 0.2701 0.0167 2.3% 100.0% 

Table 1. Eigenvalue Summary from PROC FACTOR 

As is evident in the output and is true of many standardized tests, the first eigenvalue represents a large share of the 
explained variance compared to subsequent eigenvalues (Steinberg, Cline, & Sawaki, 2011), indicating that only one 
factor may be adequate to fit the data. This can also be confirmed by looking at the scree plot shown in Figure 5. 
When the plot bends, known as the elbow, this helps determine the number of factors to retain (Johnson & Wichern, 
2002). The elbow occurs at a value of 2 on the X-axis representing the eigenvalue number, indicating that factor 
should ideally be retained. However, further exploration of the data is necessary in order to fully investigate the 
number of factors required to account for the data. 
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Figure 5. Scree Plot from Working Example 

It should be noted that when ODS GRAPHICS are enabled and the scree option is changed to plots=scree, 
some of the information provided in Table 1 along with the scree plot from Figure 5 can be simultaneously 
produced as shown in Figure 6. Please note though that the Y-axis of the graph in the left panel uses the 
original scaling of the eigenvalues, which is why Figure 5 is also included in this paper. 
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Figure 6. Scree Plot and Variance Explained Plot from Working Example using ODS GRAPHICS 

CHI-SQUARE HYPOTHESIS TESTS 

SAS implements a statistical test to determine whether the number of extracted factors is sufficient to fit the data. The 
chi-square test examines the degree of difference between the observed and expected correlation or variance-
covariance matrix. The decision rule for evaluating whether the number of factors is sufficient is based on the 
magnitude of the p-value, as in most statistical tests. According to this test, if the p-value is greater than 0.05, the 
number of extracted factors is sufficient to fit the input data matrix. If the p-value is less than 0.05, more factors may 
need to be extracted, which can sometimes be a dubious conclusion if the p-value is significant when the number of 
specified factors is equal to the number of sub-scores on the test.  The Tucker-Lewis Fit Index (TLI) shows the 
degree to which the model fits the data based on the average correlation between items in the data matrix (Bollen & 
Long, 1993). The closer the TLI value is to 1.0, the better. Table 2 displays the results from the hypothesis testing 
across different models. 

Factors Degrees of Freedom Chi-Square p-Value Tucker-Lewis Index 
1 54 229.134 <.0001 0.937 
2 43 154.197 <.0001 0.950 
3 33 81.022 <.0001 0.972 

 

The model fit seems to improve as more dimensions are extracted as the values of the Tucker-Lewis Index increase 
from 0.937 to 0.972. However, it is apparent that little additional explanatory variance can be found in these 
dimensions. Additionally, a Heywood case was detected when attempting to extract four factors. While chi-square 
hypothesis tests are useful diagnostic tools in exploratory factor analysis, these tests are sensitive to sample size. 
The fact that the significance tests indicate that more than three factors are needed to adequately fit the data when 
only one eigenvalue is larger than 1.0 confirms the caution that is needed in interpreting results from the chi-square 
test in isolation and why fit indices should be considered, along with further testing in the CFA stage of analysis. 

FACTOR LOADINGS 
One of the primary pieces of information derived from a factor analysis is the degree to which each input variable is 
associated with each extracted dimension, known as a factor loading. As described earlier, this association is 
generally measured in terms of a correlation. The factor loadings are standardized in the output and range from -1 to 
+1. A general rule of thumb is that a variable meaningfully contributes to an underlying dimension if its factor loading 
is at or above 0.32 (Tabachnick & Fidell, 2007). The location of this information in the output is dependent upon the 
number of factors specified to be extracted in the PROC FACTOR statement for testing. For one factor, the “Factor 
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Pattern” section shows the loadings of the variables. Accounting for factor rotations with multiple factors, these values 
are found in the “Standardized Regression Coefficients” section. The factor loadings for this example are displayed in 
Table 3. Values rounded to or above 0.32 are bolded and all other values are italicized. 

 1-Factor Solution 2-Factor Solution 3-Factor Solution 
Parcel Factor 1 Factor 1 Factor 2 Factor 1 Factor 2 Factor 3 

1 0.782 0.464 0.372 0.361 0.238 0.271 
2 0.781 0.467 0.367 0.360 0.228 0.278 
3 0.773 0.073 0.799 0.781 0.075 0.026 
4 0.647 0.233 0.472 0.463 0.125 0.135 
5 0.743 0.128 0.700 0.671 0.087 0.082 
6 0.762 0.680 0.128 0.020 0.211 0.638 
7 0.672 0.438 0.281 0.211 -0.077 0.630 
8 0.729 0.636 0.135 0.029 0.135 0.666 
9 0.724 0.670 0.100 0.044 0.811 0.027 

10 0.787 0.697 0.140 0.120 0.597 0.170 
11 0.749 0.635 0.162 0.156 0.549 0.136 
12 0.570 0.407 0.202 0.187 0.317 0.133 

 

The factor loadings indicate that the item parcels load strongly on a single factor, confirming the information from the 
scree plot. Yet, the parcels may load on two or perhaps even three distinct dimensions. This does diminish from the 
parsimony of a model with multiple dimensions because it is not entirely evident to which factor the parcel is more 
strongly correlated. This is evident in the two-factor solution as Parcels 6 through 12 appear to separate from Parcels 
1 through 5. In the three-factor solution, Parcels 6 through 12 split into two distinct factors. Multiple factors found in an 
educational assessment may apply to certain specific content areas covered by the test, such as geometry or algebra 
for a mathematics test. While not shown, the results from the four-factor solution where a Heywood case had been 
detected would have shown a potential source for producing the Heywood case as evidenced by a factor loading 
close to 1.0.  

In this case, the one-factor solution is quite strong and might be preferred because it is simple to understand. 
According to Johnson and Wichern (2002), the final decision about the measurement model should be based on the 
proportion of explained variance, knowledge of the subject of interest, and the degree to which the results look 
reasonable. The methodology behind the final solution in terms of extraction method and rotation is less important as 
long as the results from multiple rotation methods essentially confirm the same underlying structure of the data. 
Therefore, in relation to the previous section on chi-square tests, while models with increasing numbers of 
dimensions will always show better fit to the data, parsimony needs to be considered along with fit statistics. 

INTER-FACTOR CORRELATIONS 

The last piece of information in carefully evaluating results from an exploratory factor analysis is the set of inter-factor 
correlations, which are not the same as the observed correlations between the sub-scales. Inter-factor correlations 
are computed when at least two factors are extracted and account for factor rotations. If such correlations are 
extremely high, approaching 0.90 (Stricker, Rock, & Lee, 2005) it is thought that multiple dimensions can be possibly 
consolidated (Bagozzi & Yi, 1988). However, in exploratory factor analyses, these correlations are not often so high.  

In our example, a value of 0.724 was obtained in the two-factor solution and the inter-factor correlations in the three-
factor solution were between 0.684 and 0.694, so a solution with multiple dimensions might also be suitable to fit the 
data. However, the strength of the single-factor solution cannot be dismissed because it represents the most 
parsimonious model available, making it difficult to obtain meaningful guidance as to how best to proceed with the 
analysis at this stage, which is why more formal decisions about the measurement model of interest are made during 
the CFA stage.  

SUMMARY AND CONCLUSIONS 
This paper has attempted to show the power of PROC FACTOR in analyzing large-scale standardized educational 
assessment data. The topic is particularly relevant for the SAS Global Forum audience because of the increased use 
of SAS within the educational field. The analytical capabilities presented here show some advantages for this 
procedure over PROC PRINCOMP within the context of factor extractions for exploratory factor analysis (EFA). 
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Whereas PROC PRINCOMP identifies how many dimensions may exist within a data set, PROC FACTOR does a 
better job at determining how observed scores on test items or item parcels may correspond to unobserved factors.  

The results of the exploratory factor analyses obtained using PROC FACTOR in this example demonstrated why 
often, the simpler model is the preferred model to retain. The chi-square hypothesis tests suggested multiple factors 
existed even though the scree plot suggested a single factor would best fit the data. This again demonstrates the 
sensitivity of this test with large samples relative to the number of variables. While the inter-factor correlations were 
not high enough to suggest factor consolidation and the factor loadings indicated a possible two-dimensional or three-
dimensional structure, little additional explanatory variance (5 to 6 percent) was found with these dimensions, causing 
the uncertainty in interpretation. 

Many supplementary options exist in exploratory factor analysis, such as the computation of factor scores which can 
sometimes be useful in regression models. The reader is directed to the SAS documentation for more information on 
these features. In most instances, the next step in the analysis would be to perform confirmatory factor analysis 
(CFA), which can be done using PROC CALIS in SAS. This allows for the assignment of variables to specific factors, 
which cannot be done in exploratory factor analysis. The results of the confirmatory analysis would attempt to show 
that while multiple sub-scores are reported to students taking this large-scale assessment, the internal structure of 
the test might best be represented by a single dimension. 
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